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In this paper we present a new proof for maximal monotonicity of subdifferential operators. This result
was proved by Rockafellar in [6] where other fundamental results were also proved. The proof presented
here is simpler and makes use of classical results from subdifferential calculus as Brgndsted-Rockafellar’s
theorem and Fenchel duality formula.
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1. Introduction

Let X be a real Banach space with dual X*. A proper convex function on X is a function
f: X — RU{+o0}, not identically +oo, such that

ST =Nz +Ay) < (1= A)f(z) + Af(y)

whenever z € X, y € X and 0 < A < 1. The subdifferential of f is the point-to-set
operator f : X == X* defined at z € X by

Of(x) = {u € X* | f(y) > f(x) + {y— z,u), for all y € X},

where (-, ) denotes the canonical duality product between X and X*. For each = € X,
the elements u € Jf (x) are called subgradients of f at x.

A point-to-set operator A : X = X* is said to be monotone if
(x —y,u—v) >0, whenever u € A(z),v € A(y).

It is easy to check that Jf is monotone. The monotone operator A is called mazimal
monotone if, in addition, its graph

GA) ={(z,u) |ue A(x)} C X x X~
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is not properly contained in the graph of any other monotone operator A" : X = X*.
This is equivalent to say that

(x — xo,v —vg) >0, for all (z,v) € G(A) = (xo,v0) € G(A).

Rockafellar proved in a fundamental work [6] that the subdifferential of a proper convex
lower semicontinuous (l.s.c. from now on) function is maximal monotone. Beside this
result, that paper contain other useful and interesting results (see Theorem 6.1 of [4]
for an application). After that seminal paper, simpler proofs of Rockafellar’s result were
given in [8] and then in [1], [7], [5] and [9]. A simple proof based on [11] was obtained in
[10]. Our aim is to give (another) new and simple proof of the maximal monotonicity of
the subdifferential.

For a proper convex function f, the Fenchel-Legendre conjugate of f is the function
f*: X* - RU{+o00} defined by

F*(w) = sup{(a,u) — f(x) | = € X}.

If f is also Ls.c., then f* is proper and from its definition, follows directly the Fenchel-
Young inequality: for all z € X, u € X*,

f@)+ f*(u) > (x,u), with equality if and only if u € f(x). (1)
For instance, if we consider f(z) = $||z[/%, it is not difficult to see that f*(u) = ||ul|?,
where || - || denotes both norms of vectors spaces X and X*.

The concept of e-subdifferential of a convex function f was introduced by Brgndsted and
Rockafellar [3]. It is a point-to-set operator O.f : X = X* defined at each x € X as

O-f(x)={ue X" | f(y) > f(z) + (y —x,u) —¢, forally € X},

where ¢ > 0. Note that 0f = dyf and df(x) C 0-f(x), for all € > 0. Using the conjugate
function f* of f it is easy to see that

u€0-f(xr) & f (u)+ f(x) < {(z,u) +e. (2)

The following fundamental theorem of Brgndsted and Rockafellar [3], estimates how well
0. f approximates 0f.

Theorem 1.1. If f is a Ls.c. proper convex function on X and u € O.f(x), for any
n > 0, there exist vectors z € X and w € X* such that ||z —z|| <n, |w—u|] <e/n and
w € df(z).

Next we present the classical Fenchel duality formula, which proof can be found in |2,
page 11]

Theorem 1.2. Let us consider two proper and convex functions f and g such that f (or
g) is continuous at a point & € X for which f(&) < oo and g(&) < oco. Then,

Inf{f(z) +g(x)} = max{—f"(-u) - ¢"(u)}. (3)

These theorems above will be of fundamental importance in the proof of Theorem 2.1,
which is presented in the next section.



M. M. Alves, B. F. Svaiter /A New Proof for Maximal Monotonicity of ... 347

2. Main result

In this section a new proof for maximal monotonicity of subdifferential of a l.s.c. proper
convex function is presented as a direct application of Theorems 1.1 and 1.2.

Theorem 2.1. If f is a l.s.c. proper convex function on X, then Of is a mazimal mono-

tone operator from X to X*.

Proof. Let us suppose (xg,v9) € X x X* is such that
(x — xo,v —v9) >0

holds true whenever v € df(z). We aim to prove that vy € df (o).
Define fo: X — R U {+o0},

folz) = [z +20) = (2, v0)- (4)

Applying Theorem 1.2 to fy and g(x) = %||z||?> we conclude that there exists u € X* such

that i
1 1
ut { o) + el } = = f5 ) = g1l

i

zeX
As fo is Ls.c., proper and convex, both sides on the above equation are finite. Therefore,
reordering this equation we obtain

ing { o) + 3ol b+ £ + Sl =o. )

In particular, there exists a (minimizing) sequence {y,} such that

1 1 9 . 1 5
L2 o)+ gl £ ) + 5l
> () + Sllgall® + Sl
= Yn, U 9 Yn 5 Uu
1
> (lyal — lull? > 0, ©)

where the second inequality follows from Fenchel-Young inequality. Using the above
equation we obtain

Jo(yn) + f5 (W) = (yn,u) < 1/n”.

Hence, u € 012 fo(yn) and by Theorem 1.1 it follows that there exist sequences {z,} in
X and {w,} in X* such that

Wy € 0fo(zn), |wn—ul| <1/n and ||z, —yul < 1/n. (7)
Using the initial assumption, we also obtain
(2, wp) > 0. (8)
Using (6) we obtain

lyall = lull,  {yn,u) = —llul®, asn — oo, 9)
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which, combined with (7) and (8) yields u = 0. Therefore, y, — 0. As fyis l.s.c., x =0
minimizes fo(z) + 1[|z|? and, using (5) we have

fo(0) + f5(0) = 0.

Therefore 0 € 0f,(0), which is equivalent to vy € df (). O
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