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1. Introduction

Semidefinite programming is a rapidly growing field of optimization (compare [48] and
[49] for an overview). Various important practical problems lead to a semidefinite pro-
gramming formulation (e.g., see [48] and [28]). It is characteristic for these finite dimen-
sional optimization problems that the image of a certain matrix-valued function is positive
semidefinite. During the last years a further problem class (where the copositivity of the
image of this matrix-valued function is required) has been added. These problems are
called copositive programming problems (e.g., see [6], [40], [5], [17], [16] and [41]). It turns
out that both problem classes can be covered by a general class of optimization problems
with cone constraint.

Copositive programming problems arise in different fields of optimization. For instance,
continuous quadratic optimization problems ([6], [18], [11] and the references in [21]),
the maximum stable set problem ([6], [18], [11]), the quadratic assignment problem ([18],
[42], [11]) and a minimum-cut graph tri-partitioning problem ([11], [43]) can be written
as copositive programs. It is interesting to note that copositivity also has its application
in elasticity theory (see [46]), differential equations e.g. appearing in population genetics
(see [21]), linear quadratic control (see [26]) and game theory in biology (see [7], [32]).

In this paper we investigate a general partial ordering being useful for both problem
classes, we explore these problems with vector-valued objective function, and we develop
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the whole theory in an infinite-dimensional setting. Since the partial ordering is defined
by a so-called K-semidefinite ordering cone for an arbitrary nonempty set K, we speak
of set-semidefinite optimization. For the definition of an ordering cone see Def. 1.19, [27].

To be more specific we have the following standard assumption in this paper.

Assumption 1.1. LetX, Y and Z be topological linear spaces; let Z be partially ordered
by a pointed convex cone CZ ; and let f : X → Z and G : X → L(Y, Y ∗) (here L(Y, Y ∗)
denotes the linear space of continuous linear maps from Y to its topological dual space
Y ∗) be given maps.

In the following we write linear forms ℓ of a topological dual space as 〈ℓ, ·〉, and for the
scalar product in R

n we use the notation a⊤b for a, b ∈ R
n. Under Assumption 1.1 we

investigate the vector optimization problem

min
x∈S

f(x) (1)

with the constraint set
S := {x ∈ X | G(x) 4 0L(Y,Y ∗)}. (2)

Here 4 denotes a special partial ordering defined later. Recall that a minimal solution
x̄ ∈ S of the vector optimization problem (1) is defined as the preimage of a minimal
element f(x̄) of the image set f(S), i.e. x̄ is a minimal solution if

({f(x̄)} − CZ) ∩ f(S) = {f(x̄)}

(compare [27]). In connection with optimality conditions we are also interested in weakly
minimal solutions being defined under the additional assumption that CZ has a nonempty
interior int(CZ). The element x̄ ∈ S is called a weakly minimal solution of problem (1),
if f(x̄) is a weakly minimal element of the image set f(S), i.e.

({f(x̄)} − int(CZ)) ∩ f(S) = ∅.

Special problems with scalar-valued objective function and matrix-valued function G be-
long to the general problem class defined by (1). For instance, if Mn denotes the linear
space of real (n, n) matrices with the scalar product 〈·, ·〉 defined by 〈A,B〉 = trace(A·B⊤)
for all A,B ∈ Mn, and the partial ordering 4 induced by the Löwner ordering cone

Mn
+ := {A ∈ Mn | A is positive semidefinite}, (3)

then the optimization problem (1) describes a semidefinite programming problem (Löwner
[34] has introduced this partial ordering in 1934). One often considers the linear subspace
Sn of Mn consisting of symmetric matrices. In this special case the scalar product is
defined by 〈A,B〉 = trace(A ·B) for all A,B ∈ Sn. The ordering cone in this subspace is
denoted by Sn

+ := Mn
+ ∩ Sn.

Recall that a matrix A ∈ Mn is called copositive, if y⊤Ay ≥ 0 for all y ∈ R
n with

y1, . . . , yn ≥ 0. This notion has been introduced by Motzkin [38] in 1952. If the partial
ordering 4 is induced by

Mn
++ := {A ∈ Mn | A is copositive}, (4)
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then the optimization problem (1) describes a copositive programming problem. We have
again Sn

++ := Mn
++ ∩ Sn.

Based on this special ordering structure for matrices we use a general partial ordering 4.

Definition 1.2. For an arbitrary nonempty set K ⊂ Y the set

CK
L(Y,Y ∗) := {A ∈ L(Y, Y ∗) | 〈Ay, y〉 ≥ 0 for all y ∈ K}

is called K-semidefinite cone (for simplicity we write CK
L ). Every A ∈ CK

L is called
K-semidefinite.

In this definition we require that a map A ∈ CK
L is positive semidefinite on a set K.

This set K plays the role of a parameter for the ordering cone CK
L . Notice that CK

L is a
convex cone for every parameter K. Therefore, it is an ordering cone inducing a partial
ordering 4 in L(Y, Y ∗). This partial ordering is used in the definition of the constraint set
(2). K-semidefinite quadratic forms for a closed convex cone K and a real Hilbert space
(Y, 〈·, ·〉) have already been studied by Martin [35] in 1980. An application in control
theory is also discussed in [35].

Example 1.3. In this example we consider the matrix space Mn and special sets K:

(a) For K = {0Rn} we obtain CK
Mn = Mn.

(b) With K = R
n
+ we conclude CK

Mn = Mn
++ (defined by (4)). In this case the ordering

cone consists of all copositive matrices.

(c) If we choose K = R
n, we get CK

Mn = Mn
+ (defined by (3)). So, this ordering cone

describes all positive semidefinite matrices.

Remark 1.4. In nonlinear optimization a necessary optimality condition of second order
for constrained problems in Banach spaces says that the quadratic form of the second
Fréchet derivative of the Lagrangian at the optimal solution is nonnegative on a certain
contingent cone (for details see [37], Thm. 3.3, [8], [53], Thm. 5.5.2, and compare also
[14]). If the map defining the inequality constraint is convex, then this contingent cone is
even convex. This necessary optimality condition of second order means that the second
Fréchet derivative of the Lagrangian is set-semidefinite. So, the set-semidefinite cone is
an important concept in nonlinear optimization.

In continuous finite dimensional optimizationK-semidefinite maps have been investigated
in connection with a conjugate decomposition by Han and Mangasarian [23] (see also [22])
and in connection with optimality conditions (see also [14]), and further in [15], [44] and
[47] in view of quadratic programming. This notion has been used by Gowda [20] for
the investigation of complementarity problems. Blum and Oettli [3] have utilized this
concept for the investigation of equilibrium problems. In copositive programming this
notion has been already mentioned in [6]. In the literature K-semidefinite matrices are
also called copositive with respect to the set K (see e.g. [26], [20], [47], [2]), K-copositive
([7], [4], [6], [14]), cone-positive (if K is a cone, see [44]), positive semidefinite ([22], [24])
or nonnegative definite ([51], [52]) on the set K, or M -conditionally positive definite if
K = {y ∈ R

n | My ∈ R
n
+} for a matrix M (see e.g. [36]).

In the next sections we investigate problem (1). This is done using a convex cone CK
L

inducing the partial ordering 4 in (2). Properties of this ordering cone are given in Section
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2. Optimality conditions of the Lagrange type reducing to extended KKT conditions are
formulated in Section 3. The fourth section presents duality results for problem (1)
including the linear case. Finally, we introduce a penalty approach for the treatment of
the constraint.

2. Properties of CK

L

In this section we study theK-semidefinite cone CK
L for an arbitrary nonempty setK ⊂ Y

and in addition to that especially for the case, that the setK is a cone. We present various
properties of this ordering cone and we also examine special variants of this cone in a finite
dimensional setting. We begin our investigations with simple calculation rules.

As CK
L is a convex cone we have for all A1, A2 ∈ CK

L and λ ≥ 0

λ(A1 + A2) ∈ CK
L .

Lemma 2.1. Let K1, K2 ⊂ Y be given nonempty sets. Then it is

CK1∪K2

L = CK1

L ∩ CK2

L .

Proof. We first show that CK1∪K2

L ⊂ CK1

L ∩CK2

L . For that let A ∈ CK1∪K2

L be arbitrarily
chosen, i.e.

〈Ay, y〉 ≥ 0 for all y ∈ K1 ∪K2.

We conclude 〈Ay, y〉 ≥ 0 for all y ∈ K1 and hence A ∈ CK1

L and also 〈Ay, y〉 ≥ 0 for all
y ∈ K2 and hence A ∈ CK2

L . Summarizing this we get A ∈ CK1

L ∩ CK2

L .

It remains to show CK1

L ∩ CK2

L ⊂ CK1∪K2

L . For A ∈ CK1

L ∩ CK2

L it is 〈Ay, y〉 ≥ 0 for all
y ∈ K1 and for all y ∈ K2. Thus we have 〈Ay, y〉 ≥ 0 for all y ∈ K1 ∪K2 and therefore
A ∈ CK1∪K2

L .

Lemma 2.2. Let K1, K2 ⊂ Y be given nonempty sets with K1 ⊂ K2. Then it is

CK2

L ⊂ CK1

L .

Proof. For A ∈ CK2

L it is 〈Ay, y〉 ≥ 0 for all y ∈ K2 and due to K1 ⊂ K2 it is a fortiori
〈Ay, y〉 ≥ 0 for all y ∈ K1, i.e. A ∈ CK1

L .

Using this lemma on K1 ∩K2 ⊂ K1 ∪K2 together with Lemma 2.1 we conclude:

Corollary 2.3. Let K1, K2 ⊂ Y be given nonempty sets. Then it is

CK1∩K2

L ⊃ CK1

L ∩ CK2

L .

The converse inclusion is generally not true as it is demonstrated in the following example.

Example 2.4. Let Y = R
2 and let the sets K1, K2 ⊂ R

2 be given by

K1 = {y ∈ R
2 | y1 ≥ 0, y2 = 0}

and K2 = R
2. Then the map A : R2 → R

2,

y 7→

(
1 0
0 −1

)

y

is K1 ∩ K2-semidefinite, as y⊤Ay = y21 − y22 ≥ 0 for all y ∈ K1 ∩ K2 = K1. But it is
y⊤Ay < 0 for y = (0, 2)⊤ ∈ K2 and therefore it is A 6∈ CK1

L ∩ CK2

L .
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In the following lemma it is shown that K-semidefiniteness already implies (−K)-semi-
definiteness.

Lemma 2.5. Let K ⊂ Y be a given nonempty set. Then it is

CK
L = C−K

L .

Proof. Let A ∈ CK
L be arbitrarily given. Because of the linearity of A ∈ L(Y, Y ∗) and

Ay ∈ Y ∗ we have for all y ∈ K

0 ≤ 〈Ay, y〉

= 〈−Ay,−y〉

= 〈A(−y),−y〉.

This is equivalent to
0 ≤ 〈Ay, y〉 for all y ∈ −K

and thus to A ∈ C−K
L .

As a direct consequence of Lemma 2.1 and Lemma 2.5 it follows

C
K∪(−K)
L = CK

L . (5)

In some special cases K-semidefinite maps are already Y -semidefinite.

Lemma 2.6. Let (Y, 〈·, ·〉) be a real Hilbert space, K ⊂ Y a set with int(K) 6= ∅ and let
A ∈ L(Y, Y ) be a self adjoint map. If A is K-semidefinite and there exists a ȳ ∈ int(K)
with Aȳ = 0Y , then A is already Y -semidefinite.

Proof. Let ȳ ∈ int(K) with Aȳ = 0Y and thus with 〈Aȳ, ȳ〉 = 0. For all y ∈ Y there
exists a small scalar ε > 0 such that it holds ȳ + ε y ∈ K and thus due to A self adjoint

0 ≤ 〈A(ȳ + ε y), (ȳ + ε y)〉

= 〈Aȳ, ȳ〉
︸ ︷︷ ︸

=0

+2ε〈 Aȳ
︸︷︷︸

=0Y

, y〉+ ε2〈Ay, y〉

= ε2
︸︷︷︸

>0

〈Ay, y〉.

Therefore it is 〈Ay, y〉 ≥ 0 for all y ∈ Y .

For symmetric copositive matrices this result is shown in [13]. Cottle et al. discuss in
[13] also the notion of K-flatness and the connection to K-semidefiniteness for symmetric
(n, n) matrices. This result can be generalized to continuous linear maps A ∈ L(Y, Y ∗)
with an arbitrary real Hilbert space (Y, 〈·, ·〉).

Definition 2.7. Let (Y, 〈·, ·〉) be a real Hilbert space and let K ⊂ Y be a nonempty
set. Then A ∈ L(Y, Y ) is called K-flat if for all y ∈ K the equation 〈Ay, y〉 = 0 implies
(A+ A∗)y = 0Y with A∗ : Y → Y the adjoint map to A.

For K = R
n
+ a matrix A ∈ Sn which is copositive and for which it also holds that

〈Ay, y〉 = 0 and y ∈ R
n
+ implies Ay = 0n, is also called copositive plus, see e.g. [26],

Remark on p. 14.
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Theorem 2.8. Let (Y, 〈·, ·〉) be a real Hilbert space, K ⊂ Y a nonempty convex set and
A ∈ L(Y, Y ) a map. If A is K-flat then A or −A is K-semidefinite.

Proof. If 〈Ay, y〉 ≥ 0 or 〈(−A)y, y〉 = −〈Ay, y〉 ≥ 0 for all y ∈ K the conclusion is
shown. Therefore, we assume there exist y1, y2 ∈ K with

qA(y
1) > 0 > qA(y

2) (6)

for qA : Y → R, qA(y) = 〈Ay, y〉 for all y ∈ Y . As K is convex the line segment with
endpoints y1, y2 belongs to K. As the map qA is continuous, there exists an interior point
y0 of this line segment with

qA(y
0) = 〈Ay0, y0〉 = 0.

Because A is K-flat it follows (A + A∗)y0 = 0Y . Any point of the line segment can be
written as y = y0 + λ · v for some direction v ∈ Y and a scalar λ ∈ R. We have for all y
of the line segment

qA(y) = 〈A(y0 + λv), y0 + λv〉

= 〈Ay0, y0〉
︸ ︷︷ ︸

=0

+λ〈(A+ A∗)y0
︸ ︷︷ ︸

=0Y

, v〉+ λ2〈Av, v〉

= λ2〈Av, v〉 = λ2qA(v).

Consequently qA is equal to zero or has the sign of qA(v) along the entire line contradicting
the assumption (6). This completes the proof.

The converse implication is generally not true as the following example demonstrates.

Example 2.9. Let Y = R
2 and K = {y ∈ R

2 | y21 − y22 ≥ 0, y1 ≥ 0}. Then the map
A : R2 → R

2,

y 7→

(
1 0
0 −1

)

y

is K-semidefinite, but not K-flat, as for the point (3, 3)⊤ ∈ K it holds

y⊤Ay = 0 but (A+ A⊤)y = (6,−6)⊤ 6= 02.

A weak converse implication under the additional assumption that K is a convex cone
with int(K) 6= ∅ is given in Lemma 5.6. There it is shown that for a K-semidefinite map
A, y ∈ K and 〈Ay, y〉 = 0 implies (A+ A∗)y ∈ K∗.

In this paper K∗ denotes the topological dual set to a set K, i.e.

K∗ = {y ∈ Y ∗ | 〈y, k〉 ≥ 0 for all k ∈ K}

(in the case of a convex cone K the set K∗ equals the dual cone).

The following criteria for K-semidefiniteness is similar to the criteria given in Theorem
2.8.

Theorem 2.10. Let (Y, 〈·, ·〉) be a real Hilbert space, K ⊂ Y a nonempty convex set and
let A ∈ L(Y, Y ) be given. If y ∈ K and 〈Ay, y〉 = 0 implies (A + A∗)y ∈ K∗ and there
exists a y ∈ K with 〈Ay, y〉 > 0, then A is K-semidefinite.
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Proof. We assumeA is notK-semidefinite and thus there exists a ȳ ∈ K with 〈Aȳ, ȳ〉 < 0.
Then due to the continuity of the map y 7→ 〈Ay, y〉 and as K is a convex set there is a
λ ∈]0, 1[ such that for yλ = (1− λ)ȳ + λy ∈ K it is

〈Ayλ, yλ〉 = 0.

Then we have (A+ A∗)yλ ∈ K∗ and we conclude

〈Ayλ, yλ〉 = (1− λ)2〈Aȳ, ȳ〉+ λ(1− λ)〈(A+ A∗)ȳ, y〉+ λ2〈Ay, y〉

= (1− λ) 〈(A+ A∗)ȳ, yλ〉 − (1− λ)2〈A∗ȳ, ȳ〉+ λ2 〈Ay, y〉
︸ ︷︷ ︸

>0

> (1− λ)
︸ ︷︷ ︸

>0

〈(A+ A∗)yλ
︸ ︷︷ ︸

∈K∗

, ȳ
︸︷︷︸

∈K

〉 − (1− λ)2
︸ ︷︷ ︸

>0

〈Aȳ, ȳ〉
︸ ︷︷ ︸

<0

> 0

in contradiction to 〈Ayλ, yλ〉 = 0.

For the case of copositive symmetric matrices this result can also be found in [50]. Next
we come to some results concerning the eigenvalues and eigenvectors of a K-semidefinite
linear map.

Lemma 2.11. Let (Y, 〈·, ·〉) be a real Hilbert space. Let K ⊂ Y be a given nonempty
set and A ∈ L(Y, Y ) be K-semidefinite. Then for every eigenvector y ∈ K of A the
correspondent eigenvalue λ is nonnegative.

Proof. Due to y ∈ K and y 6= 0Y we have for the associated eigenvalue λ

0 ≤ 〈Ay, y〉 = 〈λy, y〉 = λ 〈y, y〉
︸ ︷︷ ︸

>0

and thus λ ≥ 0.

Kaplan shows in [30] (see also [31]) that if a matrix A ∈ Sn is copositive then A has no
eigenvector y ∈ int(Rn

+) with associated eigenvalue λ < 0.

Lemma 2.12. Let (Y, 〈·, ·〉) be a real Hilbert space and A ∈ L(Y, Y ) arbitrarily cho-
sen. Let y1, . . . , yk ∈ Y (k ∈ N) be k eigenvectors of A with 〈yi, yj〉 ≥ 0 for all
i, j ∈ {1, . . . , k}, i 6= j, and with eigenvalues λi ≥ 0. Let K ⊂ Y be a nonempty set
with

K ⊂ cone(convex hull{y1, . . . , yk}).

Then A is K-semidefinite.

Proof. Let y ∈ K be arbitrarily chosen. Then there exist β, µ1, . . . , µk ≥ 0 with

k∑

i=1

µi = 1 and y = β

k∑

i=1

µiy
i.
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Because of the linearity of A we conclude

〈Ay, y〉 =

〈

A

(

β

k∑

i=1

µiy
i

)

, β

k∑

i=1

µiy
i

〉

= β2

k∑

i=1

k∑

j=1

µiµj〈Ay
i, yj〉

= β2

k∑

i=1

k∑

j=1

µiµj
︸︷︷︸

≥0

λi
︸︷︷︸

≥0

〈yi, yj〉
︸ ︷︷ ︸

≥0

≥ 0.

Thus A is K-semidefinite.

Example 2.13. Let Y = R
3 and consider the matrix

A =





2 0 4
0 6 0
4 0 2



 ∈ S3.

Let the nonempty set K ⊂ R
3 be given by

K ⊂ cone



convex hull











1
0
1



 ,





0
1
0













 .

It is simple to see that the eigenvalues and eigenvectors of A are λ1 = λ2 = 6 with
y = α (1, 0, 1)⊤ + β (0, 1, 0)⊤ ((α, β) 6= (0, 0)) and λ3 = −2 with y = γ (−1, 0, 1)⊤ (γ 6= 0).
Then the matrix A is K-semidefinite.

Now we consider the special case that the set K is a cone. For the case of a total ordering
introduced by the cone K in Y the following result can be of interest.

Theorem 2.14. Let ≤ define a total ordering in Y , i.e. for all y1, y2 ∈ Y it holds y1 ≤ y2

or y2 ≤ y1, and let the ordering cone K be defined by

K = {y ∈ Y | y ≥ 0Y }.

Then it is
CK

L = CY
L ,

i.e. K-semidefiniteness equals Y -semidefiniteness.

Proof. As the ordering ≤ is total we have for the cone K the property Y = K ∪ (−K).
With (5) we conclude

CY
L = C

K∪(−K)
L = CK

L .

As an application of this result to the matrix space Mn we get a characterization of
positive semidefinite matrices.
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Example 2.15. Consider the matrix space Mn and the lexicographical ordering in R
n,

which is total, defined by the cone

K = {y ∈ R
n | ∃k ∈ {1, . . . , n} with yi = 0 for i < k and yk > 0} ∪ {0n}.

Then, a matrix A ∈ Mn is positive semidefinite (compare Example 1.3 (c)) if and only if
it is K-semidefinite.

For non-pointed cones K we can show that semidefiniteness w. r. t. a special smaller cone
already implies K-semidefiniteness. Recall that a cone K ⊂ Y is called pointed if K ∩
(−K) = {0Y }. We need the following decomposition of a cone K.

Lemma 2.16. Let K ⊂ Y be a cone and b ∈ Y ∗ \ {0Y ∗} be arbitrarily given. Then it is

K = K1 ∪K2 ∪ (−K1)

with cones
K1 := {y ∈ K ∩ (−K) | 〈b, y〉 ≥ 0}

and
K2 := {y ∈ K | y 6∈ −K} ∪ {0Y }.

Proof. Of course it isK1, K2 ⊂ K. For an arbitrary y ∈ −K1 it is −y ∈ K1 and therefore
−y ∈ K ∩ (−K), thus −y ∈ −K and hence y ∈ K. Then we have also −K1 ⊂ K and we
conclude K1 ∪K2 ∪ (−K1) ⊂ K.

It remains to show K ⊂ K1 ∪ K2 ∪ (−K1). For that let y ∈ K be arbitrarily chosen.
If y 6∈ −K we have immediately y ∈ K2. Else, for y ∈ K ∩ (−K) we have to consider
the case 〈b, y〉 ≥ 0, which induces y ∈ K1, and the case 〈b, y〉 < 0. In the latter case we
conclude 〈b,−y〉 > 0. Besides, because of y ∈ K ∩ (−K), we have −y ∈ K ∩ (−K), too.
This leads to −y ∈ K1 and thus y ∈ −K1, which completes the proof.

Using this decomposition we get the following result for a K-semidefinite map:

Theorem 2.17. Let K ⊂ Y be a cone. Then we get, using the decomposition of Lemma
2.16,

CK
L = CK1∪K2

L .

Proof. Using the decomposition K = K1 ∪ K2 ∪ (−K1) of the cone K and applying
Lemma 2.1 and Lemma 2.5 we get

CK
L = CK1

L ∩ CK2

L ∩ C−K1

L
︸ ︷︷ ︸

=C
K1
L

= CK1

L ∩ CK2

L

= CK1∪K2

L

We illustrate this result with three examples:
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Example 2.18. (a) Let K ⊂ Y be a pointed cone. Then it is K1 = {0Y } and K2 = K.
Thus the result of Theorem 2.17 is trivial.

(b) Let K = Y . Thus it is K2 = {0Y } and K1 = {y ∈ Y | 〈b, y〉 ≥ 0} for an arbitrary
b ∈ Y ∗ \ {0Y ∗}. Then the map A ∈ L(Y, Y ∗) is K-semidefinite if and only if it is K1-
semidefinite.

(c) Let Y = R
2 and K = {y ∈ R

2 | y1 ≥ 0 ∨ y2 ≥ 0}. Then it is for b = (1,−1)⊤

K1 = {y ∈ R
2 | y1 ≥ 0 ∧ y2 ≤ 0}

and

K2 = {y ∈ R
2 | y1 > 0 ∧ y2 > 0} ∪ {02}

(see Figure 2.1). Therefore, if A ∈ M2 is semidefinite w. r. t. the cone K1 ∪K2 then it is
also K-semidefinite.

Figure 2.1: Cones K, K1, and K2 of Example 2.18 (c).

To show that a map is K-semidefinite, sometimes it is simpler to work with a suitable
subset B ⊂ K instead of the whole cone K. This result is given in the following theorem.

Theorem 2.19. Let K ⊂ Y be a cone and let B be a subset of K such that for any y ∈ K

there exists a λ ∈ R and a b ∈ B with

y = λb. (7)

Then A ∈ CK
L if and only if

〈Ay, y〉 ≥ 0 for all y ∈ B. (8)

Proof. Because of B ⊂ K for any A ∈ CK
L (8) follows immediately (compare Lemma

2.2). For showing the converse implication we assume that (8) is satisfied. Let y ∈ K be
arbitrarily chosen. Then there is a λ ∈ R and a b ∈ B with (7) and we get

〈Ay, y〉 = 〈A(λb), λb〉

= λ2
︸︷︷︸

≥0

〈Ab, b〉
︸ ︷︷ ︸

≥0

≥ 0.

Thus A ∈ CK
L .
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This result can of course be generalized to arbitrary nonempty sets K ⊂ Y . To give an
example for Theorem 2.19 it is demonstrated in [52] that for the case Y = R

n, A ∈ Sn it
suffices to show for a k ∈ {1, . . . , n}

y⊤Ay ≥ 0 for all y ∈ R
n
+ with yk = 1

to prove the copositivity, i.e. the R
n
+-semidefiniteness, of A.

Recall that a nonempty convex subset B of a convex cone K 6= {0Y } is called a base for
K, if for every y ∈ K \{0Y } there exists a λ > 0 and a b ∈ B such that the representation
in (7) is unique. Since a base B fulfills the assumptions of Theorem 2.19, the result of
this lemma also holds for a base. For example the set

B = {y ∈ R
n
+ | ‖y‖1 = 1}

is a base for the cone K = R
n
+. This set is used in [10] and already in [1] to check a

symmetric matrix for R
n
+-semidefiniteness. Each nontrivial convex cone with a base is

pointed (see [27], Lemma 1.14). If the cone K is not pointed but the linear space Y is
normed, we can use in Theorem 2.19 for example the set B = {y ∈ K | ‖y‖Y = 1}.

If the cone K has a special structure the following result is of interest.

Theorem 2.20. Let Y , W be real separated locally convex linear spaces, with W partially
ordered by a convex cone KW . Let the convex cone K ⊂ Y be given by

K = {y ∈ Y | y = Kw, w ∈ KW}

with a continuous linear map K : W → Y . Then A ∈ L(Y, Y ∗) is K-semidefinite if and
only if K

∗
AK is KW -semidefinite, with K

∗
: Y ∗ → W ∗ the adjoint map to K.

Proof. The map A is K-semidefinite if and only if

〈Ay, y〉 ≥ 0 for all y ∈ K

⇔ 〈AKw,Kw〉 ≥ 0 for all w ∈ KW

⇔ 〈K
∗
AKw,w〉 ≥ 0 for all w ∈ KW

being equivalent to K
∗
AK KW -semidefinite.

This result is especially interesting in the finite dimensional case.

Corollary 2.21. Let Y = R
n, A ∈ Mn and K ⊂ Y a polyhedral convex cone. Then

there is a matrix K ∈ R
n×s with

K = {y ∈ R
n | y = Kx, x ∈ R

s
+} (9)

and A is K-semidefinite if and only if K
⊤
AK ∈ Ms

++.

Proof. According to [45], Prop 2.1.12 a convex cone is polyhedral if and only if it is finitely
generated. Thus, there exists a matrix K ∈ R

n×s with (9). Then the assumptions of
Theorem 2.20 are fulfilled andK-semidefiniteness ofA is equivalent to Rs

+-semidefiniteness

ofK
⊤
AK. According to Example 1.3 (b) Rs

+-semidefiniteness is equivalent to copositivity.
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Thus testing for K-semidefiniteness w. r. t. a polyhedral cone can be reduced to test for
copositivity. For general non-polyhedral cones this is generally not true, but Loewy and
Schneider show in [33] that semidefiniteness of a matrix A ∈ Sn w. r. t. the non-polyhedral
ice-cream cone

K =

{

y ∈ R
n
∣
∣
∣

√

y21 + . . .+ y2n−1 ≤ yn

}

is equivalent to the existence of a scalar µ ≥ 0 such that the matrix

A− µ diag(−1, . . . ,−1, 1)

is positive semidefinite, i.e. Rn-semidefinite.

The following theorem shows a certain invariance of set-semidefinite maps under trans-
formation with invertible maps. It can easily be concluded from Theorem 2.20 but it can
also be proved directly very easily and thus the proof is omitted here.

Theorem 2.22. Let Y be a real separated locally convex linear space, B : Y → Y a
continuous linear invertible map and let K be a nonempty subset of Y . Then a map A ∈
L(Y, Y ∗) is K-semidefinite if and only if B∗AB is B−1K-semidefinite. Here B∗ : Y ∗ → Y ∗

denotes the adjoint of B and we set B−1K := {B−1k | k ∈ K}.

Remark 2.23. If Y = R
n and B is an orthogonal matrix, the classical Jacobi method

(for the determination of all eigenvalues of a matrix) working with orthogonal transforma-
tions, produces set-semidefinite matrices if the original matrix is set-semidefinite. After
a sufficiently large number of iterations one then obtains nearly a diagonal matrix which
is, by Theorem 2.22, semidefinite with respect to the transformed cones.

The next corollary shows for special polyhedral conesK in R
n that theK-semidefiniteness

reduces to copositivity. It is very similar to the result in Corollary 2.21 but works with a
different representation of the polyhedral cone.

Corollary 2.24. Let Y = R
n and an invertible matrix F ∈ Mn be given. If

K = {y ∈ R
n | Fy ≥ 0Rn}

where ≥ has to be understood in a componentwise sense, then a matrix A ∈ Mn is K-
semidefinite if and only if (F⊤)−1AF−1 is copositive, i.e. Rn

+-semidefinite.

Proof. This result follows from Theorem 2.22, if we set B := F−1 and if we notice that

B−1K = FK = {Fy | y ∈ R
n, Fy ≥ 0Rn} = R

n
+.

The result can also be concluded from Corollary 2.21 for K = F−1 and s = n.

In the finite dimensional case Y = R
n we present some further special results on K-

semidefinite matrices.

Lemma 2.25. Let Y = R
n and K = R

n
+. If A = (aij)i,j∈{1,...,n} ∈ Mn is K-semidefinite,

then it is

aii ≥ 0 for all i = 1 . . . , n.
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Proof. Let i ∈ {1, . . . , n} be arbitrarily chosen. Then we have for the unit vector ei ∈ K

0 ≤ ei⊤Aei = aii.

So, every copositive matrix in Mn has nonnegative diagonal elements. This is of course
also true for arbitrary K-semidefinite matrices with ei ∈ K for all i = 1, . . . , n, and
therefore also for positive semidefinite matrices (see also [41]). The result of Lemma 2.25
can also be found in [4], [12], [25], [26] and [50] for symmetric matrices. Bomze presents in
[4] even an algorithm with which one can test whether a tridiagonal matrix is copositive
or not only by checking the signs of the entries. We illustrate now the results of Corollary
2.24 and Lemma 2.25 with an example:

Example 2.26. Let Y = R
n and we choose the matrices

A =





−23 7 34
7 5 11
34 11 13



 and F =





2 0 −1
5 1 0
0 1 3



 .

The cone K is defined as in Corollary 2.24. Then the matrix A is not K-semidefinite
because the matrix

(F⊤)−1AF−1 =





−17 6 −5
6 −3 4

−5 4 0





has a negative diagonal element and is thus, according to Lemma 2.25, not copositive.

The result of Lemma 2.25 also implies the following:

Lemma 2.27. Let A = (aij)i,j∈{1,...,n} ∈ Sn be a diagonal matrix. Then A is copositive if
and only if A is positive semidefinite.

Proof. If A is copositive then by Example 1.3 (b) A is R
n
+-semidefinite and we have

according to Lemma 2.25
aii ≥ 0 for all i = 1 . . . , n.

SinceA is a diagonal matrix, all eigenvalues ofA are diagonal entries and thus nonnegative.
Therefore, A is positive semidefinite.

Now let A be positive semidefinite. Then of course (compare Lemma 2.2) A is R
n
+-

semidefinite, too.

In view of the optimality conditions in the following section the dual cone and the interior
of the cone CK

L are of interest. For the finite dimensional case Y = R
n and the matrix

space Sn we summarize some results on dual cones. Proofs can be found in [28] for a closed
convex cone K, in [47] for a given nonempty set K ⊂ R

n and in [44] for a polyhedral cone
K ⊂ R

n.

Lemma 2.28.

(a) Let K ⊂ R
n be a nonempty given set. Then it is

(CK
Sn)∗ = cl cone

(
convex hull {xx⊤ | x ∈ K}

)
.
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(b) Let K ⊂ R
n be a closed convex cone. Then it is

(CK
Sn)∗ = convex hull {xx⊤ | x ∈ K}

and (CK
Sn)∗ is closed.

(c) Let K = R
n, then CK

Sn = Sn
+ and it is (CK

Sn)∗ = CK
Sn, i.e. Sn

+ is self-dual.

In the literature elements of the dual cone
(

C
R
n
+

Sn

)∗

=
(
Sn
++

)∗
= convex hull{xx⊤ | x ∈ R

n
+}

are called completely positive matrices.

For determining the interior of the cone CK
L let CK

L denote the set of strict K-semidefinite
maps, i.e. let

CK
L := {A ∈ L(Y, Y ∗) | 〈Ay, y〉 > 0 for all y ∈ K \ {0Y }} ,

for an arbitrary nonempty setK ⊂ Y . Of course it is CK
L ⊂ CK

L . If the set CK
L is nonempty

for a reflexive Banach space Y , is under some additional assumptions the interior of the
cone CK

L .

Theorem 2.29. Let (Y, ‖·‖Y ) be a real reflexive Banach space, let K be a closed convex
cone, and let the set CK

L be nonempty. If there are linear functionals ℓ1, . . . , ℓk ∈ Y ∗ and
real numbers α1 6= 0, . . . , αk 6= 0 for some k ∈ N so that

K =
k
∪
i=1

cone (Ki)

with
Ki := {y ∈ K ∩B | ℓi(y) = αi} for all i ∈ {1, . . . , k}

(B denotes the closed unit ball) and for every A ∈ CK
L the quadratic form 〈A·, ·〉 is weakly

lower semicontinuous, then
int(CK

L ) = CK
L .

Proof. For the proof of the inclusion CK
L ⊂ int(CK

L ) we fix an arbitrary map A ∈ CK
L .

Under the assumptions of the theorem the cone K is weakly closed and the closed unit
ball B is weakly compact (see [27], Lemma 1.41) and thus the set K ∩ B is also weakly
compact. Consequently, for every i ∈ {1, . . . , k} the set Ki is weakly compact as well.
Further it is Ki ⊂ K \ {0Y } for i = 1, . . . , k. Since the quadratic form 〈A·, ·〉 is weakly
lower semicontinuous, by Thm. 2.3 in [28] there exists a scalar ε > 0 with

ε ≤ min
y∈Ki

〈Ay, y〉 for all i ∈ {1, . . . , k}.

Let Nε(A) := {D ∈ L(Y, Y ∗) | ‖D − A‖L(Y,Y ∗) < ε} denote the ε-neighborhood of A
and let a map D ∈ Nε(A) be arbitrarily chosen. For an arbitrary y ∈ K\{0Y } we have
y ∈ cone(Ki)\{0Y } for some i ∈ {1, . . . , k} or

y = λiki for some λi > 0 and some ki ∈ Ki.
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Then we obtain because of Ki ⊂ B

1

λ2
i

〈Dy, y〉 = 〈Dki, ki〉

= 〈Aki, ki〉
︸ ︷︷ ︸

≥ε

+〈(D − A)ki, ki〉

≥ ε− | 〈 (D − A)ki, ki 〉 |

≥ ε− ‖ (D − A)ki ‖Y ∗ · ‖ki‖Y
︸ ︷︷ ︸

≤1

≥ ε− ‖D − A ‖L(Y,Y ∗)
︸ ︷︷ ︸

<ε

· ‖ki‖Y
︸ ︷︷ ︸

≤1

≥ 0

and thus D ∈ CK
L . Therefore we have shown Nε(A) ⊂ CK

L and thus A ∈ int(CK
L ). As

A ∈ CK
L is arbitrarily chosen we have CK

L ⊂ int(CK
L ).

It remains to show int(CK
L ) ⊂ CK

L . Let A ∈ int(CK
L ) be arbitrarily chosen. Then there

exists a ε-neighborhood Nε(A) of A with Nε(A) ⊂ CK
L . For arbitrarily chosen D ∈ CK

L

there exists a λ > 0 with

Dλ := A+ λ (A−D) ∈ Nε(A).

Consequently, we have

A =
1

1 + λ
Dλ +

λ

1 + λ
D

and we obtain for all y ∈ K \ {0Y }

〈Ay, y〉 =
1

1 + λ
〈Dλy, y〉
︸ ︷︷ ︸

≥0

+
λ

1 + λ
〈Dy, y〉
︸ ︷︷ ︸

>0

> 0,

i.e. A ∈ CK
L .

If the cone K is a subset of a finite-dimensional real Banach space the quadratic form
〈A·, ·〉 for A ∈ CK

L is weakly lower semicontinuous. For a real Hilbert space (Y, 〈·, ·〉) any
quadratic form 〈A·, ·〉 for which A is Y -semidefinite is weakly lower semicontinuous (see
[19], Theorem 2.1). Besides, if (Y, 〈·, ·〉) is a real Hilbert space then CK

L 6= ∅ as the identity
map is always an element of CK

L for any set K ⊂ Y . Notice that in the case of Y = R
n

the convex cone K = R
n
+ fulfills the assumptions of Theorem 2.29 because of the equality

K = cone
{

y ∈ R
n
+

∣
∣
∣

n∑

i=1

yi = 1
}

︸ ︷︷ ︸

=:K1

.

Using various subsets K1, . . . , Kk any closed convex nontrivial cone K in R
n fulfills the

assumptions of the previous theorem.
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Corollary 2.30. Let Y = R
n and K ⊂ R

n be a closed convex nontrivial cone. Then

int(CK
L ) = CK

L .

Proof. As Y is finite dimensional the set CK
L is nonempty and the quadratic forms 〈A·, ·〉

are weakly lower semicontinuous for all A ∈ CK
L . Consider the l1 norm in R

n, i.e. the
closed unit ball B equals {y ∈ R

n |
∑n

i=1 |yi| ≤ 1}. For l1, . . . , l2n ∈ R
n denoting all

vectors of the form (±1, . . . ,±1) ∈ R
n we define

Ki := {y ∈ K ∩B | li(y) = 1} for all i ∈ {1, . . . , 2n}

(notice that the cone generated by the set Ki equals the intersection of the i-th orthant
in R

n with the cone K). If we set I := {i ∈ {1, . . . , 2n} | Ki 6= ∅}, we then obtain

K = ∪
i∈I

cone (Ki)

and the assertion follows from Theorem 2.29.

The result of Theorem 2.29 is a generalization of a result in [9]. There it is shown that in
the finite dimensional case Y = R

n for K = R
n
+ it holds

int(CK
Sn) = {A ∈ Sn | y⊤Ay > 0 for all y ∈ R

n
+ \ {0Rn}},

i.e. the interior elements of the cone of copositive matrices Sn
++ are exactly the strict

copositive matrices.

As a consequence of Corollary 2.30 we have the following results for Y = R
n and the

matrix space Sn, but direct proofs can be found in [28].

Corollary 2.31. Let K ⊂ R
n be a convex cone. Then

{A ∈ Sn | A is positive definite} ⊂ int(CK
Sn).

For K = R
n equality holds, i.e.

int(CK
Sn) = {A ∈ Sn | A is positive definite}.

3. Optimality Conditions

In this section we investigate the set-semidefinite optimization problem (1) and formulate
necessary and sufficient optimality conditions for this problem. For an arbitrary nonempty
set K ⊂ Y we consider the K-semidefinite cone CK

L inducing the partial ordering 4 in
the definition of the constraint set S in (2). To be more concrete, under Assumption 1.1
we examine the set-semidefinite optimization problem

min f(x) subject to the constraint
−G(x) ∈ CK

L , x ∈ X
(10)

with the constraint set S = {x ∈ X | G(x) ∈ −CK
L }. The following theorem gives a

necessary condition for a minimal solution of problem (10).
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Theorem 3.1. Let the set-semidefinite optimization problem (10) be given under As-
sumption 1.1, and let X be a real Banach space and Y and Z real normed spaces. Let
the ordering cones CZ and CK

L have a nonempty interior. Let x̄ ∈ S be a weakly minimal
solution of problem (10). Moreover, let f and G be Fréchet differentiable at x̄. Then there
are continuous linear functionals t ∈ C∗

Z, U ∈ (CK
L )∗ with (t, U) 6= 0Z∗×L(Y,Y ∗)∗ so that

t ◦ f ′(x̄) + U ◦G′(x̄) = 0X∗ (11)

and

(U ◦G)(x̄) = 0. (12)

If, in addition to the given assumptions

G′(x̄)(X) + cone
(
CK

L + {G(x̄)}
)
= L(Y, Y ∗) (13)

then t 6= 0Z∗.

Proof. The first part of this theorem follows from a general Lagrange multiplier rule
given in [27], Thm. 7.4, if we notice that the superset used in [27] equals the whole space
X in our case. For the proof of the second part of this theorem let the condition (13) be
satisfied. Now assume that t = 0Z∗ . Then for an arbitrary element A ∈ L(Y, Y ∗) there is
a nonnegative number α, a vector x ∈ X and a map D ∈ CK

L with

A = G′(x̄)(x) + α(D +G(x̄)).

Then we obtain with the equations (11) and (12) and the positivity of U

〈U,A〉 = (U ◦G′(x̄)) (x)
︸ ︷︷ ︸

=0

+α〈U,D〉
︸ ︷︷ ︸

≥0

+α(U ◦G)(x̄)
︸ ︷︷ ︸

=0

≥ 0.

Consequently, we have U = 0L(Y,Y ∗)∗ . But this contradicts the assertion that (t, U) 6=
0Z∗×L(Y,Y ∗)∗ .

The necessary optimality condition given in Theorem 3.1 generalizes the well-known La-
grange multiplier rule. The regularity assumption (13) is the known Kurcyusz-Robinson-
Zowe regularity condition (see [28], p. 114). It does not use the interior of the ordering
cone and, therefore, it is more general than the known Slater condition.

Corollary 3.2. Let the assumptions of Theorem 3.1 be satisfied and let CZ 6= Z. If x̄ ∈ S

is a minimal solution of problem (10), then we obtain the necessary condition in Theorem
3.1.

Proof. Under the additional assumption CZ 6= Z every minimal solution of problem (10)
is also a weakly minimal solution of (10) (see [27], Lemma 4.14). Hence, we get the same
assertion as in Theorem 3.1.

Next we specialize the previous results to the finite dimensional case and we present
KKT-type conditions.
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Theorem 3.3. Let f : Rm → R
k and G : Rm → Mn be given functions, let CRk and

CK
Mn be ordering cones with a nonempty interior, and let CRk be pointed. Let x̄ ∈ S be

a weakly minimal solution of (10). Let f be differentiable at x̄ and let G be elementwise
differentiable at x̄. Then there is a vector t ∈ C∗

Rk and a matrix U ∈ (CK
Mn)∗ with

(t, U) 6= (0Rk , 0Mn) so that

k∑

i=1

ti∇fi(x̄) +






〈U,Gx1
(x̄)〉

...
〈U,Gxm

(x̄)〉




 = 0Rm (14)

and
〈U,G(x̄)〉 = 0. (15)

If, in addition to the above assumptions

G′(x̄)(Rm) + cone
(
CK

Mn + {G(x̄)}
)
= Mn, (16)

then t 6= 0Rk . Here we use the notation

Gxi
:=






∂
∂xi

G11 . . . ∂
∂xi

G1n

...
...

∂
∂xi

Gn1 . . . ∂
∂xi

Gnn




 for all i ∈ {1, . . . ,m}

and

G′(x̄)(h) =
m∑

i=1

Gxi
(x̄)hi for all h ∈ R

m.

Proof. This proof follows the proof of Theorem 7.8 in [28]. In this special case the Fréchet
derivative of G at x̄ is given by

G′(x̄)(h) =
m∑

i=1

Gxi
(x̄)hi for all h ∈ R

m

(see [28], Lemma 7.7) and, therefore, we obtain for U ∈ (CK
Mn)∗

(U ◦G′(x̄))(h) =
m∑

i=1

〈U,Gxi
(x̄)〉hi for all h ∈ R

m.

Moreover, for the Fréchet derivative of f at x̄ and t ∈ C∗
Rk we get

t ◦ f ′(x̄) =
k∑

i=1

ti∇fi(x̄).

So, the equation (14) follows from equation (11) and the equation (15) is equivalent to
the equation (12) in this special case. The regularity assumption (16) is equivalent to the
Kurcyusz-Robinson-Zowe regularity condition (13).
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Under generalized convexity assumptions the necessary optimality condition in Theorem
3.1 is also a sufficient optimality condition. Here we recall the concept of C̃-quasiconvexity
(see also [28], Def. 5.12).

Definition 3.4. Let T be a nonempty subset of a real linear space X, and let C̃ be a
nonempty subset of a real normed space V . Let h : T → V be a given map having a
directional derivative at some x̄ ∈ T in every direction x − x̄ with arbitrary x ∈ T . The
map h is called C̃-quasiconvex at x̄, if for all x ∈ T

h(x)− h(x̄) ∈ C̃ ⇒ h′(x̄)(x− x̄) ∈ C̃.

Now we present the sufficient optimality condition.

Theorem 3.5. Let the set-semidefinite optimization problem (10) be given under As-
sumption 1.1, let Y and Z be real normed spaces, and let the ordering cone CZ be non-
trivial. Let f and G have a directional derivative at some x̄ ∈ S. Moreover, let the map
(f,G) : X → Z × L(Y, Y ∗) be C̃-quasiconvex at x̄ with

C̃ := (−CZ \ {0Z})×
(
−CK

L + lin(G(x̄))
)
.

If there are continuous linear functionals t ∈ C
#
Z , U ∈ (CK

L )∗ so that

t ◦ f ′(x̄) + U ◦G′(x̄) = 0X∗ (17)

and

(U ◦G)(x̄) = 0, (18)

then x̄ is a minimal solution of problem (10).

Here

C
#
Z := {t ∈ Z∗ | 〈t, c〉 > 0 for all c ∈ CZ \ {0Z}} (19)

denotes the so-called quasi-interior of the dual cone C∗
Z and lin(G(x̄)) denotes the one-

dimensional linear space spanned by G(x̄).

Proof. Assume that there is a vector x ∈ X with

(f ′(x̄)(x− x̄) , G′(x̄)(x− x̄)) ∈ C̃.

Then we have

f ′(x̄)(x− x̄) ∈ −CZ \ {0Z}

and

G′(x̄)(x− x̄) ∈ −CK
L + lin(G(x̄)),

and we obtain with the definition of the quasi-interior C#
Z and with the equation (18) for

some α ∈ R

(t ◦ f ′(x̄) + U ◦G′(x̄))(x− x̄) < α〈U,G(x̄)〉 = 0.

This contradicts the equation (17). Hence, we have for all x ∈ X

(f ′(x̄)(x− x̄) , G′(x̄)(x− x̄)) 6∈ C̃
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and because (f,G) is C̃-quasiconvex this implies

(f(x)− f(x̄) , G(x)−G(x̄)) 6∈ C̃ for all x ∈ X.

This means that there is no x ∈ X with

f(x)− f(x̄) ∈ −CZ \ {0Z}

and

G(x)−G(x̄) ∈ − CK
L + lin(G(x̄))

⇔ G(x) ∈ {G(x̄)} − CK
L + lin(G(x̄))

⊂ − CK
L − CK

L + lin(G(x̄))

= − CK
L + lin(G(x̄))

and thus in particular with G(x) ∈ −CK
L . Consequently, there is no feasible vector x ∈ S

with
f(x) ∈ {f(x̄)} − CZ \ {0Z}

or
(f(x̄)− CZ) ∩ f(S) = {f(x̄)}.

This means that x̄ is a minimal solution of problem (10).

A similar result can also be shown for the weak minimality notion (see [27], Thm. 7.20 and
Cor. 7.21). Notice that for the sufficient optimality condition we use a stronger assumption
on t. Here t should be in the quasi-interior of the dual cone whereas in Theorem 3.1 the
functional t is an element of the dual cone. This theoretical gap results from the fact
that there is no complete characterization of minimal solutions, if one works with linear
scalarization (for instance, see Thm. 5.18 and the following discussion in [27]).

Finally, we specialize the preceding sufficient optimality condition to the finite dimensional
case. Recall, that a differentiable function h : T → R with T ⊂ R

m is called pseudoconvex
at some x̄ ∈ T if for all x ∈ T

∇h(x̄)⊤(x− x̄) ≥ 0 ⇒ h(x)− h(x̄) ≥ 0.

Theorem 3.6. Let f : Rm → R
k and G : Rm → Mn be given functions, let CRk 6= {0Rk}

and CK
Mn be ordering cones, and let CRk be pointed. Let f be differentiable at some x̄ ∈ S

and let G be elementwise differentiable at x̄. Assume that f1, . . . , fk are pseudoconvex at
x̄ and the map G is

(
−CK

Mn + lin(G(x̄))
)
-quasiconvex at x̄. If there is a vector t ∈ C

#
Rk

and a matrix U ∈ (CK
Mn)∗ so that

k∑

i=1

ti∇fi(x̄) +






〈U , Gx1
(x̄)〉

...
〈U , Gxm

(x̄)〉




 = 0Rm (20)

and
〈U , G(x̄)〉 = 0, (21)

then x̄ is a minimal solution of problem (10).
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Proof. By Lemma 7.7 in [28] the equation (20) equals

∇(t⊤f(x̄)) + U ◦G′(x̄) = 0Rm

for the Fréchet derivative G′(x̄) of G at x̄. With Lemma 5.16 and Cor. 5.15 in [28]
we conclude that x̄ then is a minimal solution of the problem minx∈S t⊤f(x). By a
scalarization result (Thm. 5.18 (b) in [27]) x̄ is a minimal solution of the set-semidefinite
optimization problem (10).

For the special ordering cone CRk = R
k
+ the quasi-interior of the dual cone is given as

C
#
Rk =

{
t ∈ R

k | ti > 0 for all i ∈ {1, . . . , k}
}
.

In this case one can set t1 = . . . = tk = 1 in the equation (20) and then one can try to
determine a matrix U ∈ (CK

Mn)∗ and a vector x̄ ∈ S satisfying the KKT-system (20) and
(21).

We complete our investigations with a simple example.

Example 3.7. We investigate the set-semidefinite optimization problem (10) with X =
Z = R

2, Y = R
3, and the ordering cones CZ = R

2
+ and CK

S3 = S3
+. We consider the

objective function f : R2 → R
2 with

f(x1, x2) =

(
(x1 + 1)2 + (x2 − 2)2

x1 + 4x2

)

for all (x1, x2) ∈ R
2

and the constraint function G : R2 → S3 with

G(x1, x2) = −





x1 1 0
1 x2 0
0 0 x1 + 1



 for all (x1, x2) ∈ R
2.

Then the constraint set is given by

S = {x ∈ R
2 | −G(x) positive semidefinite }.

The matrix −G(x) has the eigenvalues

λ1/2 =
x1 + x2

2
±

√

(x1 + x2)2

4
− x1x2 + 1

and λ3 = x1 + 1 being nonnegative if and only if

x1x2 ≥ 1, x1 > 0, x2 > 0.

Therefore, we obtain the constraint set

S = {x ∈ R
2
+ | x1x2 ≥ 1}.

We want to determine a minimal solution x̄ of the optimization problem using Theorem
3.6. With the derivatives ∇f1(x̄) = 2(x̄1 + 1, x̄2 − 2), ∇f2(x̄) = (1, 4),

Gx1
(x̄) = −





1 0 0
0 0 0
0 0 1



 and Gx2
(x̄) = −





0 0 0
0 1 0
0 0 0
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we get the KKT-conditions (20) and (21) as

2 t1

(
x̄1 + 1
x̄2 − 2

)

+ t2

(
1
4

)

+

(
−U11 − U33

−U22

)

=

(
0
0

)

(22)

and
U11 x̄1 + 2U21 + U22 x̄2 + U33 (x̄1 + 1) = 0 (23)

where t1, t2 are positive real numbers and Uij are the coefficients of a symmetric positive
semidefinite (3, 3) matrix U . Remember, that according to Lemma 2.28 (c) the cone S3

+ is
self-dual. If we choose the parameters t1 = 1, t2 = 2, and the positive semidefinite matrix

U =





6 −6 0
−6 6 0
0 0 0



 ,

then the equation (22) is equivalent to x̄1 = x̄2 = 1 and the equation (23) is also satisfied
for these values. Since the matrix

−G(x̄1, x̄2) =





1 1 0
1 1 0
0 0 2





is positive semidefinite, the pair (x̄1, x̄2) = (1, 1) is a feasible point of the set-semidefinite
optimization problem. Finally notice that the objective functions f1 and f2 are convex
and the map G is linear. Then all assumptions of Theorem 3.6 are fulfilled. Hence, we
conclude that (x̄1, x̄2) = (1, 1) is a minimal solution of the set-semidefinite optimization
problem.

4. Duality

As in the previous section we examine the vector optimization problem (1) under As-
sumption 1.1, i.e. we consider the problem

min f(x) subject to the constraint
−G(x) ∈ CK

L , x ∈ X
(24)

for an arbitrary nonempty set K ⊂ Y . Here we use the additional assumptions that f and
G are convex, and that the quasi-interior C#

Z of the dual cone is nonempty. So, problem
(24) is a convex vector optimization problem.

In this section problem (24) is called primal problem. We will associate a so-called dual
problem to this primal problem and we will present weak, strong and converse duality
theorems. Finally, we specialize our theory to the linear case and obtain duality results
for linear set-semidefinite vector optimization problems.

4.1. Convex Optimization Problems

The standard assumption of this subsection is summarized in

Assumption 4.1. Let Assumptions 1.1 be satisfied, let f and G be convex, let K ⊂ Y

be an arbitrary nonempty set and let the quasi-interior C#
Z (see (19)) be nonempty.
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Under this assumption we assign a dual problem to the primal problem (24)

max z subject to the constraints

〈t, z〉 ≤ inf
x∈X

(t ◦ f + U ◦G)(x), z ∈ Z, t ∈ C
#
Z , U ∈ (CK

L )∗. (25)

A triple (z, t, U) is called a maximal solution of this problem, if it is a minimal solution
w.r.t. the ordering cone −CZ . A first relationship between the primal and dual problem
is given in

Theorem 4.2 (weak duality theorem). Let Assumption 4.1 be satisfied. For every
feasible pair (z̄, t̄, Ū) of the dual problem (25)

〈t̄, z̄〉 ≤ (t̄ ◦ f)(x̄) for all x̄ ∈ S.

Proof. We have for an arbitrary x̄ ∈ S

〈t̄, z̄〉 ≤ inf
x∈X

(t̄ ◦ f + Ū ◦G)(x) ≤ (t̄ ◦ f)(x̄) + (Ū ◦G)(x̄)
︸ ︷︷ ︸

≤0

≤ (t̄ ◦ f)(x̄).

Theorem 4.3 (strong duality theorem). Let Assumption 4.1 be satisfied, and let x̄ ∈
S be a minimal solution of the primal problem (24) with the additional property that for
some t ∈ C

#
Z

(t ◦ f)(x̄) ≤ (t ◦ f)(x) for all x ∈ S.

Let the scalar optimization problem min
x∈S

(t ◦ f)(x) be stable, i.e.

inf
x∈S

(t ◦ f)(x) = sup
U∈(CK

L
)∗
inf
x∈X

(t ◦ f + U ◦G)(x)

and the problem

sup
U∈(CK

L
)∗
inf
x∈X

(t ◦ f + U ◦G)(x)

has at least one solution. Then there is a maximal solution (z̄, t̄, Ū) of the dual problem
(25) with f(x̄) = z̄.

Proof. This theorem is an equivalent formulation of Theorem 8.7 (b) in [27] in the case
of set-semidefinite optimization.

If for the problem minx∈S f(x) the generalized Slater condition is satisfied, i.e. there
exists a vector x ∈ X with G(x) ∈ −int(CK

L ), then the problem minx∈S(t ◦ f)(x) is stable
(compare [27], p. 197).

Notice that it is also possible to work with the weak minimality notion according to [27],
p. 196. But here we restrict ourselves to the minimality notion which is of interest in
practice.
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Theorem 4.4 (strong converse duality theorem). Let Assumption 4.1 be satisfied
and, in addition, let Z be locally convex, let the set f(S) + CZ be closed, and let for
arbitrary t ∈ C

#
Z

inf
x∈S

(t ◦ f)(x) = sup
U∈(CK

L
)∗
inf
x∈X

(t ◦ f + U ◦G)(x).

Then for every maximal solution (z̄, t̄, Ū) of the dual problem (25) there exists a minimal
solution x̄ of the primal problem (24) with z̄ = f(x̄).

Proof. This theorem is an equivalent formulation of Theorem 8.9 (b) in [27] in the case
of set-semidefinite optimization.

4.2. Linear Optimization Problems

In this subsection we specialize the convex problem to a linear vector optimization prob-
lem. First, we modify our standard assumption.

Assumption 4.5. LetX and Z be real separated locally convex topological linear spaces.
Let Y be a real normed space and let the linear space L(Y, Y ∗) be partially ordered with
an ordering cone CK

L for an arbitrary nonempty set K ⊂ Y . Let the ordering cone CZ be
nontrivial, i.e. CZ 6= {0Z}, and let the quasi-interior C#

Z be nonempty. Let C : X → Z and
A : X → L(Y, Y ∗) be continuous linear maps, and let B ∈ L(Y, Y ∗) be fixed. Moreover,
let the constraint set

S := {x ∈ X | A(x)−B ∈ CK
L }

be nonempty.

Under this assumption we consider the primal linear problem

min C(x) subject to the constraint
A(x)−B ∈ CK

L , x ∈ X.
(26)

Then the dual linear problem can be written as

max z subject to the constraints

〈t, z〉 ≤ 〈t, C(x)〉+ 〈U,B − A(x)〉 for all x ∈ X; z ∈ Z, t ∈ C
#
Z , U ∈ (CK

L )∗.

If we denote

S := {(z, t, U) ∈ Z × C
#
Z × (CK

L )∗ | 〈t, z〉 ≤ 〈t, C(x)〉+ 〈U,B − A(x)〉
for all x ∈ X},

(27)

we can rewrite this set using the following lemma.

Lemma 4.6. Let Assumption 4.5 be satisfied, and let the set S be given by (27). Then

S = {(z, t, U) ∈ Z × C
#
Z × (CK

L )∗ | A∗(U) = C∗(t) and 〈t, z〉 ≤ 〈U,B〉}

(A∗ and C∗ denote adjoint maps).
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Proof. (a) Let (z, t, U) ∈ S be arbitrarily given. Then we get

(t ◦ C − U ◦ A)(x) ≥ 〈t, z〉 − 〈U,B〉 for all x ∈ X (28)

implying

t ◦ C − U ◦ A = 0X∗

or

A∗(U) = C∗(t).

For x = 0X it follows from (28)

〈t, z〉 ≤ 〈U,B〉.

(b) Let (z, t, U) ∈ Z ×C
#
Z × (CK

L )∗ with A∗(U) = C∗(t) and 〈t, z〉 ≤ 〈U,B〉 be arbitrarily
given. Then we conclude

(t ◦ C − U ◦ A)(x) = 0 ≥ 〈t, z〉 − 〈U,B〉 for all x ∈ X

implying (z, t, U) ∈ S.

Hence, the dual linear problem can be written as

max z subject to the constraints

A∗(U) = C∗(t), 〈t, z〉 ≤ 〈U,B〉, z ∈ Z, t ∈ C
#
Z , U ∈ (CK

L )∗.
(29)

The inequality constraint 〈t, z〉 ≤ 〈U,B〉 can be treated as an equality. This result is
proved in the next lemma.

Lemma 4.7. Let Assumption 4.5 be satisfied. The triple (z̄, t̄, Ū) is a maximal solution
of the dual problem (29) if and only if it is a maximal solution of the problem

max z subject to the constraints

A∗(U) = C∗(t), 〈t, z〉 = 〈U,B〉, z ∈ Z, t ∈ C
#
Z , U ∈ (CK

L )∗.
(30)

Proof. (a) Let (z̄, t̄, Ū) be a maximal solution of problem (29). Assume that 〈t̄, z̄〉 <

〈Ū , B〉, then there is an element c ∈ CZ \ {0Z} with 〈t̄, c〉 = 〈Ū , B〉 − 〈t̄, z̄〉 > 0. So, we
obtain

〈t̄, z̄ + c〉 = 〈t̄, z̄〉+ 〈t̄, c〉 = 〈Ū , B〉.

Since the element (z̄ + c, t̄, Ū) satisfies the constraints of problem (29), we obtain a con-
tradiction to the assumption that (z̄, t̄, Ū) is a maximal solution of problem (29). Conse-
quently, we have 〈t̄, z̄〉 = 〈Ū , B〉 and (z̄, t̄, Ū) is a maximal solution of problem (30).

(b) Let (z̄, t̄, Ū) be a maximal solution of problem (30) and assume that it is not a maximal
solution of problem (29). Then there is an element c ∈ CZ \ {0Z} so that (z̄ + c, t, U)
is a feasible point of problem (29). Hence, we have 〈t, z̄ + c〉 ≤ 〈U,B〉. In analogy
to part (a) the case 〈t, z̄ + c〉 < 〈U,B〉 means that there is some c̃ ∈ CZ \ {0Z} with
〈t, z̄ + c + c̃〉 = 〈U,B〉. So, (z̄ + c + c̃, t, U) is a feasible point of (30), a contradiction to
the maximality of (z̄, t̄, Ū).
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Although problem (30) is only an equivalent formulation of the dual problem (29), we call
it the dual linear problem being used in the following.

It may be of interest to note that based on the formulation (30) and using the approach
in [27], Section 8.3, under Assumption 4.1 and the additional assumption B 6= 0L(Y,Y ∗)

the dual problem is even equivalent to the problem

max T (B) subject to the constraints

(C − TA)∗(t) = 0X∗ , T ∗(t) ∈ (CK
L )∗, t ∈ C

#
Z , T ∈ L(L(Y, Y ∗), Z).

It is known (compare the proof of Theorem 2.3 in [27]) that T has a special structure.
It maps the linear space L(Y, Y ∗) to a two-dimensional subspace of Z. This subspace is
even one-dimensional in many cases.

Remark 4.8. We now discuss the special case that the primal linear problem is a scalar
optimization problem, i.e. Z = R. Then we have the ordering cone CZ = R+ with the
quasi-interior C

#
Z = R+ \ {0} of the dual cone. This means that t ∈ C

#
Z is equivalent

to t > 0. And the equation 〈t, z〉 = 〈U,B〉 is equivalent to z = 1
t
〈U,B〉. So, the dual

problem (30) can be written as

max 1
t
〈U,B〉 subject to the constraints

A∗(1
t
U) = C∗, t > 0, U ∈ (CK

L )∗.

being equivalent to the problem

max 〈U,B〉 subject to the constraints
A∗(U) = C∗, U ∈ (CK

L )∗.

Remark 4.9. We consider the linear vector optimization problem in finite dimensions.
Now we assume that X = R

m, Y = R
n, and Z = R

k. Then the linear map A : Rm → Mn

can be written as

A(x) = A(1)x1 + . . .+ A(m)xm for all x ∈ R
m

with matrices A(1), . . . , A(m) ∈ Mn. For given matrices C ∈ R
k×m and B ∈ Mn the

primal problem (26) is

min Cx subject to the constraint
A(1)x1 + . . .+ A(m)xm −B ∈ CK

Mn , x ∈ R
m.

For the formulation of the dual problem we need the adjoint map A∗ given by

〈A∗U, x〉 = 〈U , A(x)〉

= 〈U , A(1)〉x1 + . . .+ 〈U , A(m)〉xm

=
(
〈U , A(1)〉, . . . , 〈U , A(m)〉

)
· x for all x ∈ R

m and all U ∈ Mn.

From the general formulation (30) we then obtain the special dual problem

max z subject to the constraints
〈U , A(1)〉 = c⊤1 t

...
〈U , A(m)〉 = c⊤mt

t⊤z = 〈U , B〉, z ∈ R
k, t ∈ C

#
Rk , U ∈ (CK

Mn)∗

(31)
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where ci (1 ≤ i ≤ m) denotes the i-th column of the matrix C. For instance, if we choose
the subspace Sn, the cones K = R

n
+ (i.e., we consider the copositive case) and CRk = R

k
+,

then the dual problem (31) can be specialized to

max z subject to the constraints
〈U , A(1)〉 = c⊤1 t

...
〈U , A(m)〉 = c⊤mt

t⊤z = 〈U , B〉, t1, . . . , tk > 0, z ∈ R
k, U ∈ Sn completely positive.

Remember that according to Lemma 2.28 (b) the dual cone of the cone of the copositive
matrices is given by the cone of the completely positive matrices.
Notice that this duality approach in finite dimensions extends the approach in [29] given
for a scalar-valued linear objective and positive semidefinite matrices.

We end our investigations again with an example.

Example 4.10. Similar to Example 3.7 we investigate the following vector optimization
problem with X = Z = R

2, Y = R
3 and the ordering cones CZ = R

2
+, C

K
S3 = S3

+:

min f(x1, x2) =

(
x1

x2

)

subject to the constraint

−G(x1, x2) =





x1 1 0
1 x2 0
0 0 x1 + 1



 ∈ S3
+, x = (x1, x2) ∈ R

2.

(32)

The constraint set is according to Example 3.7 given by

S = {x ∈ R
2 | −G(x) positive semidefinite }

= {x ∈ R
2
+ | x1x2 ≥ 1}.

The set of minimal solutions of problem (32) is thus

S0 := {x ∈ R
2
+ | x1x2 = 1},

see Figure 4.1.

The objective function f is linear, i.e. f(x) = Cx with

C =

(
1 0
0 1

)

,

and the constraint function G is also linear. It is G(x) = B − A(x) with

B =





0 −1 0
−1 0 0
0 0 −1





and A(x) = A(1)x1 + A(2)x2 with

A(1) =





1 0 0
0 0 0
0 0 1



 and A(2) =





0 0 0
0 1 0
0 0 0



 .
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Figure 4.1: Minimal solution set of Example 4.10.

By Remark 4.9 the dual problem to (32) is then given by problem (31), i.e.

max z =

(
z1
z2

)

subject to the constraints

〈U , A(1)〉 = c⊤1 t, 〈U , A(2)〉 = c⊤2 t, t⊤z = 〈U , B〉,

z ∈ R
2, t ∈ C

#
R2 , U ∈ S3

+, i.e. U is positive semidefinite.

Remember that (S3
+)

∗ = S3
+ according to Lemma 2.28 (c) and that 〈A , B〉 = trace(A ·B)

for arbitrary A,B ∈ S3. Further it is C#
R2 = {y ∈ R

2 | y1, y2 > 0}. Thus the dual problem
is equivalent to

max z subject to the constraints
U11 + U33 = t1, U22 = t2, t1z1 + t2z2 = −2U12 − U33,

t1, t2 > 0, z ∈ R
2, U ∈ S3

+

(33)

with Uij being the coefficients of a symmetric positive semidefinite matrix U ∈ S3
+. The

point x̄ = (1, 1) ∈ S0 is a minimal solution of problem (32) and for t = (1, 1) ∈ C
#
R2 it is

(t ◦ f)(x) = x1 + x2 ≥ x1 +
1

x1

=
(x1 − 1)2

x1
︸ ︷︷ ︸

≥0

+2 ≥ 2 = (t ◦ f)(x̄) for all x ∈ S.

For x = (2, 2) the eigenvalues of −G(x) are λ1 = 1, λ2/3 = 3 and thus (with Corollary
2.31)

−G(x) ∈ int(S3
+) = {A ∈ S3 | A is positive definite }.

Then the generalized Slater condition is satisfied for the problem minx∈S f(x) and thus
the problem minx∈S(t ◦ f)(x) is stable. Therefore the assumptions of Theorem 4.3 are
satisfied for x̄ = (1, 1) and the dual problem (33) has at least one solution (z̄, t̄, Ū) with
f(x̄) = (1, 1) = z̄. Here this is the case for t̄ = (1, 1) and

Ū =





1 −1 0
−1 1 0
0 0 0



 .
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5. Penalty Approach

For treating the constraint G(x) 4 0L(Y,Y ∗) in the optimization problem (1) we develop a
penalty approach. In this section we assume the set K ⊂ Y to be a cone. First we need
some results about a minimization of the map y 7→ 〈Ay, y〉 for A ∈ L(Y, Y ∗) over the cone
K.

Lemma 5.1. Let K ⊂ Y be a cone and A ∈ L(Y, Y ∗). Then it is

inf
y∈K

〈Ay, y〉 ∈ {−∞, 0}.

Proof. Due to 0Y ∈ K it is

inf
y∈K

〈Ay, y〉 ≤ 〈A0Y , 0Y 〉 = 0.

If infy∈K〈Ay, y〉 < 0, then there exists a ȳ ∈ K with 〈Aȳ, ȳ〉 < 0. For arbitrary λ > 0 it
is λȳ ∈ K, too, because K is a cone. Thus we have

〈A(λȳ), λȳ〉 = λ2 〈Aȳ, ȳ〉
︸ ︷︷ ︸

<0

.

Because we can choose λ > 0 arbitrarily we conclude

inf
y∈K

〈Ay, y〉 = −∞.

Corollary 5.2. Under the assumptions of Lemma 5.1 it is

inf
y∈K

〈Ay, y〉 =

{

0 for A K-semidefinite,

−∞ else.

Proof. If A is K-semidefinite we have 〈Ay, y〉 ≥ 0 for all y ∈ K and thus infy∈K〈Ay, y〉
= 0. Else there exists a ȳ ∈ K with 〈Aȳ, ȳ〉 < 0 and therefore infy∈K〈Ay, y〉 = −∞.

If there exists a set B ⊂ K as described in Theorem 2.19 it can be sufficient to consider
B instead of K.

Theorem 5.3. Let K ⊂ Y be a cone and B ⊂ Y as in Theorem 2.19. Then A is
K-semidefinite if and only if

0 ≤ inf
y∈B

〈Ay, y〉.

Proof. According to Theorem 2.19 A is K-semidefinite if and only if

〈Ay, y〉 ≥ 0 for all y ∈ B,

and thus if and only if infy∈B〈Ay, y〉 ≥ 0.
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For example, for Y = R
n this result can be used for checking whether a matrix A ∈ Mn

is K-semidefinite. For K = R
n
+ the compact set B = {y ∈ R

n
+ | ‖y‖ = 1} (with ‖·‖ an

arbitrary norm in R
n) fulfills the assumptions of Theorem 2.19 and can be used as a base

on which the problem

min
y∈B

y⊤Ay (34)

is solved for testing whether the matrix A is copositive. For solving (34) numerical
methods of global optimization are needed, but it is well known that the determination
of the copositivity of a given symmetric matrix is a NP-hard problem ([39]).

According to Lemma 5.1 if ȳ is a minimal solution of

min
y∈K

〈Ay, y〉

it is 〈Aȳ, ȳ〉 = 0. Using the generalized Lagrange multiplier rule we can show that we
then also have Aȳ ∈ K∗. For that we need the Fréchet derivative of the map qA : Y →
R, y 7→ 〈Ay, y〉.

Lemma 5.4. Let (Y, 〈·, ·〉) be a real Hilbert space and let A ∈ L(Y, Y ). For ȳ ∈ Y the
Fréchet derivative of the map qA : Y → R, qA(y) = 〈Ay, y〉 is given by

q′A(ȳ)(y) = 〈(A+ A∗)ȳ, y〉

for all y ∈ Y with A∗ : Y → Y the adjoint map to A.

Proof. As it is

lim
‖h‖Y →0

|qA(ȳ + h)− qA(ȳ)− q′A(ȳ)(h)|

‖h‖Y

= lim
‖h‖Y →0

|〈A(ȳ + h), ȳ + h〉 − 〈Aȳ, ȳ〉 − 〈(A+ A∗)ȳ, h〉|

‖h‖Y

= lim
‖h‖Y →0

|〈Ah, h〉|

‖h‖Y

≤ lim
‖h‖Y →0

‖Ah‖Y ‖h‖Y
‖h‖Y

= lim
‖h‖Y →0

‖Ah‖Y = 0

we have

lim
‖h‖Y →0

|qA(ȳ + h)− qA(ȳ)− q′A(ȳ)(h)|

‖h‖Y
= 0

and thus qA is Fréchet differentiable with Fréchet derivative q′A(ȳ)(y) = 〈(A+A∗)ȳ, y〉 for
all y ∈ Y .

If the map A is self-adjoint then we conclude that the Fréchet derivative is given by
q′A(ȳ)(y) = 2〈Aȳ, y〉 for all y ∈ Y .
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Theorem 5.5. Let (Y, 〈·, ·〉) be a real Hilbert space, K ⊂ Y a convex cone with int(K) 6= ∅
and A ∈ L(Y, Y ). If ȳ is a minimal solution of

min
y∈K

〈Ay, y〉, (35)

it is (A+ A∗)ȳ ∈ K∗ and 〈(A+ A∗)ȳ, ȳ〉 = 0 with the adjoint map A∗ : Y → Y to A.

Proof. The constraint y ∈ K of the optimization problem (35) is equivalent to g(y) ∈ −K

with the convex function g : Y → Y, g(y) = −y for all y ∈ Y . As int(K) 6= ∅ there exists
a y ∈ int(K) and thus

g(ȳ) + g′(ȳ)(y − ȳ) = −ȳ − (y − ȳ) = −y ∈ −int(K). (36)

Therefore, applying Theorem 5.6 in [28] the Kurcyusz-Robinson-Zowe regularity assump-
tion is satisfied. Note that here the condition (36) is equivalent to the generalized Slater
condition, i.e. to the existence of an element y ∈ Y with g(y) ∈ −int(K) ([27], p. 197).
Using the generalized Lagrange multiplier rule (see [28], Theorem 5.3) it follows that there
exists a u ∈ K∗ with 〈u, ȳ〉 = 0 and

q′A(ȳ) + u ◦ g′(ȳ) = 0Y

with qA as in Lemma 5.4. We conclude (A+ A∗)ȳ − u = 0Y and thus

(A+ A∗)ȳ = u ∈ K∗.

Then the equation 〈u, ȳ〉 = 0 can be written as 〈(A+ A∗)ȳ, ȳ〉 = 0.

Thus, for A self-adjoint, we conclude under the assumptions of Theorem 5.5

Aȳ ∈ K∗ and 〈Aȳ, ȳ〉 = 0.

Han and Mangasarian discuss in [23], p. 2-3, the optimization problem (35) for the finite
dimensional case Y = R

n and deduce a result as in Theorem 5.5.

Now we are able to formulate a weak converse implication of Theorem 2.8.

Lemma 5.6. Let (Y, 〈·, ·〉) be a real Hilbert space, K ⊂ Y a convex cone with int(K) 6= ∅
and let A ∈ L(Y, Y ) be a K-semidefinite map. Then y ∈ K with 〈Ay, y〉 = 0 implies
(A+ A∗)y ∈ K∗ with A∗ : Y → Y the adjoint map to A.

Proof. As A is K-semidefinite there exists according to Corollary 5.2 a minimal solution
of

min
y∈K

〈Ay, y〉 (37)

with minimal value 0. Thus any y ∈ K with 〈Ay, y〉 = 0 is a minimal solution of (37) and
Theorem 5.5 then implies (A+ A∗)y ∈ K∗.

Note, that with additionally assuming that A is self-adjoint we get under the assumptions
of Lemma 5.6 that y ∈ K with 〈Ay, y〉 = 0 implies Ay ∈ K∗. For A ∈ Sn and K = R

n
+

this result is stated in [26], Lemma 4.4.

We now come to the announced penalty formulation of the constraint G(x) 4 0L(Y,Y ∗).



798 G. Eichfelder, J. Jahn / Set-Semidefinite Optimization

Theorem 5.7. Let K ⊂ Y be a cone and let B be given as in Theorem 2.19. Let S be
defined as in (2), i.e.

S = {x ∈ X | −G(x) is K-semidefinite}.

If we define a function P : X → R+ by

P (x) = max{ 0 , sup
y∈B

〈G(x)y, y〉} for all x ∈ X

it follows

P (x) = 0 ⇔ x ∈ S.

Proof. Let x ∈ X be given. By Theorem 5.3 −G(x) is K-semidefinite, i.e. x ∈ S, if and
only if

inf
y∈B

〈−G(x)y, y〉 ≥ 0

or

〈G(x)y, y〉 ≤ 0 for all y ∈ B

being equivalent to

P (x) = max{ 0 , sup
y∈B

〈G(x)y, y〉

︸ ︷︷ ︸

≤0

} = 0.

This result of Theorem 5.7 can also be formulated for arbitrary nonempty sets K. The
function P in the preceding theorem is of Penalty type, i.e. x ∈ S if and only if P (x) = 0
and P (x) > 0 for x ∈ X \ S. But note that P may not be a continuous function. We
can apply Theorem 5.7 for example if B is a base of K. We can use this, for instance, for
X = R

m, Y = R
n, K ⊂ R

n a pointed convex cone with a base B ⊂ Y and Z = R for
solving problem (1):

min f(x) subject to the constraint
−G(x) K-semidefinite, x ∈ R

m

by the following Penalty approach (µ > 0)

min
x∈Rm

f(x) + µP (x) = min
x∈Rm

f(x) + µ ·max{ 0 , sup
y∈B

y⊤G(x)y }.

Here, the subproblem

sup
y∈B

y⊤G(x)y

for x ∈ R
m has to be solved by a numerical method of global optimization.
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6. Conclusions

A new field of vector optimization in infinite dimensions called set-semidefinite optimiza-
tion is presented which covers the known semidefinite and copositive programming in
finite dimensions. The basic principle of this generalization is the introduction of a spe-
cial ordering cone, the K-semidefinite cone, which is the convex cone of all quadratic
forms being positive semidefinite on a set K. Various results for this cone are proved such
as calculation rules, specifications, connections to eigenvalues and a characterization of
the interior.

Necessary as well as sufficient optimality conditions are given for the general case and
specialized to finite dimensions extending the known results in semidefinite optimization
to problems with vector-valued objective function. The theory is completed by several
duality results with a special focus on linear problems. Moreover, a penalty approach is
developed for the solution of set-semidefinite optimization problems using an appropriate
global optimization solver. Numerical examinations of this approach are subject to further
research.

The advantage of this generalization is that the gained results can be applied both to
semidefinite and copositive optimization. Thus these problem classes can be extended
to vector-valued objective functions based on the presented theory. Further this paper
establishes a basis for the consideration of more general problems of semidefinite type in
the future.
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