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1. Introduction

In 1942 M. Nagumo [15] formulated necessary and sufficient conditions under which all
trajectories of a vector field starting at points of a closed set K0 (constraint set) stay in
this set. If we replace the vector field by an orientor field, uniqueness of trajectories is
lost and one may be interested in two different possibilities: either all trajectories starting
from all points of K0 stay in K0 (forward invariance) or for each point of K0 at least one
trajectory starting at this point stays in K0 (viability). Another extension of the problem
leads to a differential inclusion with the right-hand side depending on time and the closed
set changing in time as well.

In the original result of Nagumo and in its later generalizations [1, 3, 9], the tangent cone
to the set K0 or to the graph of the time-dependent multifuction K is used to express the
conditions for viability or invariance. In the latter case the tangent cone is equal to the
contingent derivative of the multifuction K. This concept is one of the generalizations of
the ordinary derivative of a (single-valued) function. Contingent derivative may be applied
to functions that are not differentiable in the ordinary sense or to multifunctions. It seems
however that the contingent derivative may contain directions that are not essential in
the problems of viability or invariance. Such directions appear as limits of sequences of
points of the graph, while in these problems important directions come from (absolutely
continuous) trajectories of differential equations or differential inclusions. In [13], for the
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first time, we applied Sussmann’s generalized differential quotients to express sufficient
conditions for viability of time-dependent differential inclusions. In the very concept of
generalized differential quotient, approximation of a multifunction by continuous functions
plays a fundamental role thus bringing this tool closer to trajectories and their properties.

Set-valued maps that are called here Cellina continuously approximable (CCA) were in-
troduced and studied by Arrigo Cellina in the 1960s [4, 5, 6] and later rediscovered by
Hector Sussmann in his papers on generalized differentials [16, 17, 18] (they were initially
called regular).

We recall here the main properties of CCA set-valued maps and generalized differential
quotients (GDQs). Contrary to the contingent derivative, a generalized differential quo-
tient of a set valued map (at some point of its graph) is not unique. Though in some
cases this lack of uniqueness may be convenient, we see this rather as a flaw. As in [13]
we use the related concept of SGDQ and show its connections with contingent derivative.

The main results of this paper give necessary conditions for viability and invariance of
a differential inclusion �x(t) ∈ F (t, x(t)) with respect to a constraint multifunction K.
Under some basic assumptions on F , we show that both viability and invariance imply
GDQ-differentiability of K at almost every t and every x ∈ K(t), in the direction of
R+. This means that the corresponding SGDQ of K is not empty. Moreover, viability
implies that F (t, x) has nonempty intersection with SGDQ of F at (t, x) in the direction
of R+, for almost every t and every x ∈ K(t). Similarly, invariance implies that F (t, x)
is contained in SGDQ of F at (t, x) in the direction of R+, for almost every t and every
x ∈ K(t). The key point of the proof is the fact that the orientor field evaluated at some
(t, x) is actually a generalized differential quotient of K at (t, x).

Similar theorems were formulated earlier with SGDQ replaced by the contingent derivative
evaluated at 1. As SGDQ is in general smaller than this set, we get a sharper estimate
of the admissible directions. We give an example in which the contingent derivative of K
produces many directions that, because of the form of K, cannot be tangent to invariant
trajectories of the orientor field. On the other hand, SGDQ contains only good directions.

We also show that the conditions shown as necessary for viability and invariance become
sufficient if we add extra assumptions on F and K. To achieve viability we assume a
stronger measurability property of F and to get invariance we impose a Lipschitz property.
These results, however, are simple consequences of earlier works.

2. Preliminaries

By a set-valued map (multifunction) we mean a triple F = (X, Y,G) such that X and Y
are sets and G is a subset of X×Y . The sets X, Y, G are called, respectively, the source,
target and graph of F , and we write X = So(F ), Y = Ta(F ), G = Gr(F ). For x ∈ So(F )
we write F (x) = {y : (x, y) ∈ Gr(F )} (it can happen that F (x) = ∅ for x ∈ So(F )). The
sets Do(F ) = {x ∈ So(F ) : F (x) 6= ∅}, Im(F ) =

⋃

x∈So(F ) F (x), are called, respectively,

the domain and image of F . If F = (X, Y,G) is a set-valued map, we say that F is a
set-valued map from X to Y , and write F : X ։ Y . We use SVM(X, Y ) to denote the
set of all set-valued maps from X to Y . We reserve capital letters for set-valued maps
and small ones for ordinary (single-valued and everywhere defined) maps.

IfX is a metric space supplied with a metric d andK ⊆X, then dist(x,K) := infy∈K d(x, y)
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denotes the distance from x to K, where we set dist(x, ∅) := +∞. For ε > 0, the ball
of radius ε around the set K (or ε-neighborhood of K) is B(K, ε) := Kε := {x ∈ X :
dist(x,K) < ε}. The balls B(K, ε) are neighborhoods of K. When K is compact, each
neighborhood of K contains such a ball around K. If X is a normed space, B will denote
the unit ball centered at the origin.

Let X and Y be metric spaces. We say that a sequence of multifunctions Fn : X ։ Y
graph converges to a multifunction F : X ։ Y , and write Fn

gr
−→ F , if

lim
n→∞

△(Gr(Fn), Gr(F )) = 0

where

△(A,B) = sup{dist(q, B) : q ∈ A}.

Note that △(A,B) in not the usual symmetric distance between two sets. Indeed, if
A ⊂ B then △(A,B) = 0 while △(B,A) 6= 0.

We say that a set-valued map F : X ։ Y is upper semicontinuous (abbr. u.s.c.) at
x̄ ∈ Do(F ) if and only if for any neighborhood U of F (x) there exists δ > 0 such that for
every x ∈ B(x̄, δ), F (x) ⊂ U .

Definition 2.1 ([17]). Let X and Y be metric spaces. A set-valued map F : X ։ Y is
Cellina continuously approximable (abbreviated ‘CCA’) if for every compact subset K of
X

(1) Gr(F |K) is compact;

(2) there exists a sequence {fj}
∞
j=1 of single-valued continuous maps fj : K → Y such

that fj
gr
−→ F |K .

We use CCA(X, Y ) to denote the set of all CCA set-valued maps from X to Y .

When f : X → Y is a single-valued map, then f belongs to CCA(X, Y ) if and only if f
is continuous.

The following results characterize CCA set-valued maps. Convexity plays here an impor-
tant role.

Theorem 2.2 ([17]). Assume that K is a compact metric space, Y is a normed space,
and C is a convex subset of Y. Let F ∈ SVM(K,C) be a set-valued map such that the
graph of F is compact and the value F (x) is a nonempty convex set for every x ∈ K.
Then F is CCA as a set-valued map from K to C.

Theorem 2.3 ([4]). Let X be a metric space, Y a metric locally convex space and let F ∈
SVM(X, Y ) with convex closed values be u.s.c. such that the range F (X) =

⋃

x∈X F (x)
is totally bounded. Then for every ε > 0 there exists a continuous single-valued mapping
f : X → coF (X) ∩B(F (X), ε) such that △(Gr(f), Gr(F )) < ε.

The last theorem implies the following.

Theorem 2.4 ([17]). Assume that X is a metric space, Y is a normed space, and C is
a convex subset of Y. Let F ∈ SVM(X,C) be an upper semicontinuous set-valued map
with nonempty compact convex values. Then F ∈ CCA(X,C).
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Theorem 2.5 ([17]). Assume that X, Y, Z are metric spaces. Let F ∈ CCA(X, Y ),
G ∈ CCA(Y, Z). Then the composite map G ◦ F belongs to CCA(X;Z).

Example 2.6. Consider F : R ։ R such that

F (x) =











−1 if x < 0

[−1, 1] if x = 0

1 if x > 0.

To show that F is CCA it is enough to approximate F , in the graph sense, by a piecewise
linear single-valued function

f(x) =











−1 if x < −ε
x
ε

if −ε ≤ x ≤ ε

1 if x > ε

where ε is sufficiently small.

3. Generalized differentials

Let us start with the definition of directional generalized differential quotients.

Definition 3.1 ([17]). Let m,n ∈ N, F : R
m

։ R
n be a set-valued map, x ∈ R

m,
y ∈ F (x) and let Λ be a nonempty compact subset of Rn×m (then an element of Λ is
an n ×m matrix). Let S be a subset of Rm. We say that Λ is a generalized differential
quotient (gdq) of F at (x ,y ) in the direction S, and write Λ ∈ GDQ(F ; x, y;S), if for
every positive real number δ there exist U,G such that

(1) U is a compact neighborhood of 0 in R
m and U ∩ S is compact;

(2) G is a CCA set-valued map from x+U ∩S to the δ-neighborhood Λδ of Λ in R
n×m;

(3) G(x) · (x− x) ⊆ F (x)− y for every x− x ∈ U ∩ S.

For S = R
m we write Λ ∈ GDQ(F ; x, y) and say that Λ is a generalized differential

quotient of F at (x, y).

Observe that gdqs are not unique. If Λ ∈ GDQ(F ;x, y;S), then for any compact overset
Λ′ of Λ also Λ′ ∈ GDQ(F ;x, y;S).

We say that F : Rm
։ R

n isGDQ-differentiable at (x, y) in the direction S ifGDQ(F ; x, y;
S) is not empty.

As elements of GDQ(F ; x, y;S) are sets, GDQ(F ;x, y;S) is a partially ordered set with
respect to the inclusion relation.

Definition 3.2. Let F be GDQ-differentiable at (x, y) in the direction S. A minimal gdq
of F at (x, y) in the direction S is a minimal element of GDQ(F ;x, y;S) with respect to
inclusion.

Theorem 3.3 (Minimality Theorem, [14]). If GDQ(F ;x, y;S) is not empty, then
there exists in this set at least one minimal gdq. Every element Λ of GDQ(F ; x, y;S)
contains a minimal element of GDQ(F ; x, y;S).
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We use minGDQ(F ;x, y;S) to denote the collection of all minimal gdqs of F at (x, y) in
the direction S.

Example 3.4. Consider the function f : R → R defined by f(x) = |x|. Then one can
show that [−1, 1] ∈ GDQ(f ; 0, 0) and that this is the minimal gdq. This interval is also
the Clarke generalized gradient of f at 0 (see e.g. [7]). However for f(x) = x2 sin 1

x
when

x 6= 0 and f(0) = 0 the same interval is again the Clarke generalized gradient of f at 0,
while the minimal gdq is just the ordinary derivative at 0, equal 0.

Example 3.5. Let F : R ։ R be the set-valued map defined by

F (x) =

{

[−|x|, |x|] if x 6= 0

{0} if x = 0.

Then any singleton {a} for a ∈ [−1, 1] is a minimal gdq of F at (0, 0).

Let X = R
m and Y = R

n.

Definition 3.6. We say that a set-valued map F : X ։ Y is Lipschitz at the point x0 if
there exists L ≥ 0 and a neighborhood N(x0) of x0 such that Do(F ) = N(x0) and

∀x ∈ N(x0), F (x) ⊆ F (x0) + L||x− x0||B

where B is a unit ball in Y .

Definition 3.7. We say that a set-valued map F̃ : X ։ Y is a multiselection of a
set-valued map F : X ։ Y if for every x ∈ X, F̃ (x) ⊆ F (x).

Theorem 3.8 ([13]). Let F :R ։ R
n be a set-valued map. Then F is GDQ-differentiable

at (x0, y0) if and only if there is a compact neighborhood U of x0 such that F |U has a
CCA multiselection F̃ that is Lipschitz at the point x0 and F̃ (x0) = y0.

Corollary 3.9. F : R ։ R
n is GDQ-differentiable at (0, 0) in the direction S = R+ iff

there is U = [0, c] such that F |U has a CCA multiselection, Lipschitz at 0 and equal 0 at
0.

Corollary 3.10. Let F : R ։ R
n and 0 ∈ F (0). If there is a continuous map γ : [0, c] →

R
n such that γ(0) = 0, γ(t) ∈ F (t) and γ has the right-side derivative at 0, then γ′(0) is

a minimal gdq of F at (0, 0) in the direction of R+.

Let SGDQ(K; t, x;R+) denote the closure of the union of all minimal gdqs of K at
(t, x) ∈ GrK in the direction R+. We will apply this concept to characterize viability and
invariance of differential inclusions in Section 4.

Let X be a normed space and C ⊂ X. Let us recall that the contingent cone (the
‘Bouligand cone’) to C at x is the set defined by

TC(x) =

{

w ∈ X : lim inf
t↓0

dist(x+ tw, C)

t
= 0

}

.

Definition 3.11 ([2]). Let X and Y be normed spaces and F : K ։ Y , where K ⊂ X
and Do(F ) = K. The contingent derivative of F at x0 ∈ K and y0 ∈ F (x0), denoted
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by DF (x0, y0), is a set-valued map from X to Y whose graph is the contingent cone
TGr(F )(x0, y0) to the graph of F at (x0, y0).

From the definition of the contingent cone we have

v0 ∈ DF (x0, y0)(u0) ⇔ (u0, v0) ∈ TGr(F )(x0, y0)

or equivalently

v0 ∈ DF (x0, y0)(u0) ⇔ lim inf
h→0+,u→u0

dist

(

v0,
F (x0 + hu)− y0

h

)

= 0.

When F is a locally Lipschitz set-valued map, the definition of the contingent derivative
reduces to the following (see e.g. [1])

v0 ∈ DF (x0, y0)(u0) ⇔ lim inf
h→0+

dist

(

v0,
F (x0 + hu0)− y0

h

)

= 0.

Theorem 3.12 ([13]). Let F : R ։ R
n, Do(F ) = T ⊆ R, be a set-valued map and

y ∈ F (t). Then
Λ ∈ minGDQ(F ; t, y;R+) ⇒ Λ ⊆ DF (t, y)(1).

Remark 3.13. Similarly, one can show that

Λ ∈ minGDQ(F ; t, y;R−) ⇒ Λ ⊆ DF (t, y)(−1).

Corollary 3.14. Under assumptions of Theorem 3.12 we have the following inclusion

SGDQ(F ; t, y;R+) ⊆ DF (t, y)(1).

Corollary 3.15. Consider F : R ։ R
n. If F is GDQ-differentiable at the point (x, y) in

the direction of R+ (R−), then DF (t, y)(1) 6= ∅ (DF (t, y)(−1) 6= ∅).

The next example shows that the contingent derivative in general is larger than the union
of minimal generalized differential quotients.

Example 3.16. Consider a set-valued map F : R ։ R defined as follows

K(t) =

{

{t− 1
n
| n ∈ N, n > 1

t
} ∪ {t} if t 6= 0

{0} if t = 0.

Then DK(0, 0)(1) = [0, 1], while SGDQ(K; 0, 0;R+) = {1}.

4. Viability and invariance of differential inclusions

Let K : T ։ R
n, where Do(K) = T = [0, 1] ⊆ R, be a constraint multifunction and

F : [0, 1] × R
n

։ R
n be an orientor field (i.e. multivalued vector field). Consider the

multivalued Cauchy problem:

{

�x(t) ∈ F (t, x(t)),

x(t0) = x0 ∈ K(t0), t0 ∈ [0, 1).
(1)



Z. Bartosiewicz, E. Girejko / On Generalized Differentials, Viability and ... 825

By a (forward) solution to this problem we mean an absolutely continuous function
x : [t0, 1] → R

n that satisfies the inclusion almost everywhere and satisfies the initial
condition. The set of all such solutions is denoted by Sol(F, t0, x0). The solution is
(forward) invariant (with respect to K) if x(t) ∈ K(t) for every t ∈ [t0, 1].

The differential inclusion �x(t) ∈ F (t, x(t)) is called (forward) invariant (with respect to
K) if for every t0 ∈ [0, 1) and every x0 ∈ K(t0) all solutions of (1) are invariant.

The differential inclusion �x(t) ∈ F (t, x(t)) is called (forward) viable (with respect to K)
if for every t0 ∈ [0, 1) and every x0 ∈ K(t0) there exists an invariant solution to (1).

Observe that if Sol(F, t0, x0) is not empty for every t0 ∈ [0, 1) and every x0 ∈ K(t0) and
the inclusion is invariant then it is also viable. Moreover, if for every t0 ∈ [0, 1) and every
x0 ∈ K(t0), Sol(F, t0, x0) consists of one element, then both properties coincide.

Let K : T ։ R
n, where Do(K) = T , be closed-valued. We say that K is left absolutely

continuous on [0, 1] if the following holds:

∀ε > 0, ∀ compact P ⊂ R
n, ∃δ > 0, ∀I ⊂ N,

∀ {ti, τi : ti < τi, i ∈ I} with (ti, τi) ∩ (tj, τj) = ∅ for i 6= j, (2)
∑

(τi − ti) ≤ δ ⇒
∑

△(K(ti) ∩ P,K(τi)) ≤ ε

where N is the set of natural numbers.

We get the definition of right absolute continuity and absolute continuity by replacing
△(K(ti) ∩ P,K(τi)) in (2), respectively, by △(K(τi) ∩ P,K(ti)) and max{△(K(ti) ∩
P,K(τi)),△(K(τi) ∩ P,K(ti))}.

We gather some assumptions on the multifunction F : T × R
n

։ R
n that will be useful

in the sequel.

(A0) For every measurable γ : [0, 1] → R
n the multifunction t ։ F (t, γ(t)) is measurable.

(A1) t ։ F (t, x) is measurable for every x ∈ R
n.

(A2) ||F (t, x)|| ≤ µ(t)(1 + ||x||) for almost all t ∈ [0, 1] and all x ∈ R
n, where µ is

integrable.

(A3) The graphs Gr(F (t, ·)) are closed for almost all t ∈ [0, 1].

(A4) The multifunction x ։ F (t, x) is continuous for almost every t ∈ [0, 1].

(A5) ∀ k > 0 ∃ ck ∈ L1(0, 1) such that for almost all t ∈ [0, 1], F (t, ·) is ck(t) Lipschitz
on kB.

Now we are going to show that viability and invariance are naturally related to generalized
differential quotients. For that we need the following lemma.

Lemma 4.1 ([9, 10]). Let F : [0, 1] × R
n

։ R
n fulfil the assumptions (A1), (A2),

(A3) and have nonempty closed convex values. Then there exists a set A ⊂ [0, 1] of
full (Lebesgues) measure such that

∀ (τ, xτ ) ∈ A× R
n, ∀ ǫ > 0, ∃ δ > 0, ∀ x ∈ Sol(F, τ, xτ ), ∀ 0 < |h| < δ

1

h
(x(τ + h)− xτ ) ∈ F (τ, xτ ) + εB.

Similarly as in [9], Lemma 4.1 implies the following:
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Corollary 4.2. Let V be a separable metric space and let f : [0, 1]×R
n×V → R

n satisfy
the following conditions:

1. for almost all t ∈ [0, 1] the map (x, v) 7→ f(t, x, v) is continuous;

2. for all (x, v) ∈ R
n × V the map t 7→ f(t, x, v) is measurable;

3. there is an integrable function µ : [0, 1] → R such that for almost all t ∈ [0, 1] and
all (x, v) ∈ R

n × V , ||f(t, x, v)|| ≤ µ(t)(1 + ||x||).

Then there exists a set A ⊂ [0, 1] of full measure such that for every τ ∈ A, every v ∈ V
and every solution x(·) of �x(t) = f(t, x(t), v) the derivative �x(τ) exists and is equal to
f(τ, x(τ), v).

Theorem 4.3. Let K : [0, 1] ։ R
n and let F : [0, 1]× R

n
։ R

n fulfil assumptions (A1),
(A2), (A3) and have nonempty compact convex values. If the inclusion �x(t) ∈ F (t, x(t))
is viable with respect to K, then for almost every τ ∈ [0, 1] and every xτ ∈ K(τ), K is
GDQ-differentiable at (τ, xτ ) in the direction R+ and

F (τ, xτ ) ∈ GDQ(K; τ, xτ ;R+).

Proof. Consider a set A ⊂ [0, 1] of full measure from Lemma 4.1. Let us assume that
0 ∈ A and (0, 0) ∈ Gr(K). Without loss of generality, we can put (τ, xτ ) = (0, 0).
We have to show that for every ε > 0 there exists δ > 0 and a CCA set-valued map
G : [0, δ] ։ F (0, 0)ε such that G(h)h ⊆ K(h) for h ∈ [0, δ]. Let us choose any ε > 0 and
let δ > 0 be a number, dependent on ε, that is guaranteed by Lemma 4.1. Choose an
invariant solution to (1) with t0 = 0 and x(0) = 0 and define the set-valued map G on
[0, δ] as follows

G(h) =

{

F (0, 0), h = 0
x(h)
h
, h 6= 0.

From Lemma 4.1
x(h)

h
∈ F (0, 0)ε (3)

for h ∈ [0, δ], which means that G is u.s.c. at h = 0. It is also u.s.c. at all h > 0 as h 7→ x(h)
h

is a single-valued continuous function. Moreover, (3) implies that G(h) ⊂ F (0, 0)ε for
h > 0, and obviously G(0) ⊂ F (0, 0)ε.

Since G is u.s.c. with nonempty compact convex values, then, by Theorem 2.4, G is a CCA
set-valued map. To finish the proof let us notice that G(h)h ⊆ K(h) for every h ∈ [0, δ].
Indeed, for h 6= 0 we have x(h) ⊆ K(h) by viability and for h = 0, G(0) · 0 ⊆ K(0) by
assumption that (0, 0) ∈ Gr(K).

Remark 4.4. Invariant solutions are global, i.e. they are defined on the entire interval
[t0, 1]. To get the conclusion of Theorem 4.3 we need only local solutions defined on
[t0, t0 + γ], for some γ > 0, that satisfy x(t) ∈ K(t).

Corollary 4.5. Let all the assumptions of Theorem 4.3 hold. If the inclusion �x(t) ∈
F (t, x(t)) is viable with respect to K, then for almost every τ ∈ [0, 1] and every xτ ∈
K(τ) there exists Λ ∈ minGDQ(K; τ, xτ ;R+) (so Λ ⊆ SGDQ(K; τ, xτ ;R+)) such that
Λ ⊆ F (τ, xτ ).
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Proof. From Theorem 4.3, F (τ, xτ ) is a gdq of K at (τ, xτ ). By Theorem 3.3 it contains
some minimal gdq Λ.

Corollary 4.6. Let all the assumptions of Theorem 4.3 hold. If the inclusion �x(t) ∈
F (t, x(t)) is viable with respect to K, then there exists a set A ⊆ [0, 1] of full measure
such that for every t ∈ A and every x ∈ K(t) we have

F (t, x) ∩ SGDQ(K; t, x;R+) 6= ∅. (4)

Corollary 4.6 gives a necessary condition for viability of the differential inclusion. However,
to reverse the implication we need slightly stronger assumptions on K and F .

Theorem 4.7 ([13]). Assume that K : T ։ R
n, where T = [0, 1], is an u.s.c. mul-

tifunction with nonempty compact values such that for all (t, x) ∈ Gr(K), K is GDQ
differentiable at (t, x) in the direction of R+ and for every ε > 0 there exists Tε ⊆ T such
that λ(T\Tε) < ε and the map (t, x) 7→ SGDQ(K; t, x;R+) is u.s.c. on (Tε ×R

n)∩GrK.
Let F : GrK ։ R

n with nonempty compact convex values satisfy conditions (A0), (A2)
and (A3).
If F (t, x) ∩ SGDQ(K; t, x;R+) 6= ∅ for almost every t and every x ∈ K(t), then the
inclusion �x(t) ∈ F (t, x(t)) is viable with respect to K.

To study invariance we represent the multifunction F by a single-valued map depending
on an additional variable. To do this we need stronger assumptions on F .

Definition 4.8 ([2]). Let U be a metric space. We say that a single-valued map

f : [0, 1]× R
n × U → R

n

is a Caratheodory parametrization of F : [0, 1]× R
n

։ R
n if

(i) ∀(t, x) ∈ [0, 1]× R
n, F (t, x) = f(t, x, U),

(ii) ∀(x, u) ∈ R
n × U , f(·, x, u) is measurable,

(iii) ∀(t, u) ∈ [0, 1]× U , f(t, ·, u) is continuous,

(iv) ∀(t, x) ∈ [0, 1]× R
n, f(t, x, ·) is continuous.

Existence of a Caratheodory parametrization is assured by the following:

Lemma 4.9 ([2]). Consider a set-valued map F : [0, 1]×R
n

։ R
n with nonempty com-

pact convex images. Assume that F satisfies (A1), (A2) and (A4).
Then there exists a Caratheodory parametrization f of F with U = B – the unit ball in
R

n – such that:

∃c > 0,∀t ∈ [0, 1],∀x ∈ R
n,∀u, v ∈ B, ||f(t, x, u)− f(t, x, v)|| ≤ cµ(t)(1 + ||x||)||u− v||

Now we can prove a necessary condition of invariance.

Theorem 4.10. Let K : [0, 1] ։ R
n, Do(K) = [0, 1] and let F : [0, 1] × R

n
։ R

n with
nonempty compact convex values fulfil assumption (A1), (A2) and (A4).
If the inclusion �x(t) ∈ F (t, x(t)) is invariant with respect to K, then there exists a set
A ⊂ [0, 1] of full measure such that for every t ∈ A and for every x ∈ K(t), K is
GDQ-differentiable at (t, x) in the direction of R+ and

F (t, x) ⊆ SGDQ(K; t, x;R+). (5)
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Proof. Let f be a Caratheodory parametrization of F that exists by Lemma 4.9. Let A
be the set that is guaranteed by Corollary 4.2 for the function f . We can assume that
1 /∈ A. Let us choose τ ∈ A, xτ ∈ K(τ) and w ∈ F (τ, xτ ). We are going to show that
w ∈ SGDQ(K; τ, xτ ;R+). There exists v ∈ B such that w = f(τ, xτ , v). Let x(·) satisfy
the equation �x(t) = f(t, x(t), v) for a.e. t ∈ [τ, 1] and the initial condition x(τ) = xτ .
Then x(·) also satisfies the inclusion �x(t) ∈ F (t, x(t)) a.e. on [τ, 1] and �x(τ) = w. Since
the inclusion is invariant with respect to K, x(t) ∈ K(t) for all t ∈ [τ, 1]. Observe that,
by Corollary 3.10, w is a minimal gdq of K at the point (τ, xτ ) in the direction R+, so
eventually w ∈ SGDQ(K; τ, xτ ;R+).

Remark 4.11. In [9] it is shown that a necessary condition for invariance is that

F (t, x) ⊆ DK(t, x)(1) (6)

holds for all t from a full measure set and all x ∈ K(t). Since, in general DK(t, x)(1) is
larger than SGDQ(K; t, x;R+), condition (5) is stronger than condition (6). This means
that Theorem 4.10 is stronger than its counterparts using the contingent derivative.

Remark 4.12. If in Theorem 4.10 we replace assumption (A4) by (A3) (as was in The-
orem 4.3 and Corollary 4.6 concerning viability), its conclusion does not hold in general.
Let, for example, F (t, x) = 0 for x 6= 0 and let F (t, 0) = [0, 1] ⊂ R. Let K(t) = {0}.
Then for every t ∈ [0, 1] the graph of F (t, ·) is closed, but F (t, ·) is not continuous. The
inclusion �x(t) ∈ F (t, x(t)) is invariant with respect to K. However, condition (5) does
not hold for x = 0 and any t.

To reverse Theorem 4.10 we need more assumptions on the orientor field F and the con-
straint multifunction K. In particular, we need uniqueness of solutions for the Caratheo-
dory parametrization and for that we require that F satisfies the Lipschitz condition
(A5).

Example 4.13. Let K(t) = {0} ⊂ R and F (t, x) =
√

|x| for t ∈ [0, 1] and x ∈ R. Then
for any t ∈ [0, 1], F (t, 0) = {0} = K ′(t) = SGDQ(K; t, 0,R+). However the differential
inclusion (in fact, the equation) is not invariant with respect to K. This is due to the
fact that the equation �x(t) = F (t, x(t)) has nonzero solutions corresponding to the initial
condition x(τ) = 0.

Theorem 4.14. Let K : [0, 1] ։ R
n, Do(K) = [0, 1], be GDQ-differentiable at every

point (t, x) ∈ Gr(K) and be absolutely continuous and with compact values. Let F :
[0, 1]× R

n
։ R

n with nonempty compact convex values fulfil assumption (A1), (A2) and
(A5). Then the following conditions are equivalent

(i) there exists a set A ⊂ [0, 1] of full measure such that for every t ∈ A and for every
x ∈ K(t), F (t, x) ⊆ SGDQ(K; t, x;R+)

(ii) the inclusion �x(t) ∈ F (t, x(t)) is invariant with respect to K.

Proof. Let us assume that (i) is satisfied. By Theorem 3.12 we know that SGDQ(K; t, x;
R+) ⊆ DK(t, x)(1). Thus, by Theorem 4.10 from [9] we have the thesis.
The implication (ii) ⇒ (i) follows from Theorem 4.10.

The following example illustrates the last theorem and shows that, in some cases, SGDQ
is a more adequate generalized differential than the classical contingent derivative.
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Example 4.15. Let us consider K : [0, 1] ։ R defined as in Example 3.16. We consider
the following Cauchy problem

{

�x(t) ∈ F (t, x(t)), a.e. on [0, 1]

x(0) = 0 ∈ K(0)
(7)

where F : [0, 1] × R ։ R and F (t, x) = 1. Observe that SGDQ(K; t, x;R+) = 1.
Then, of course, the tangential condition from Theorem 4.14 is fulfilled. Notice that
(t, x) ։ SGDQ(K; t, x;R+) is the ‘optimal’ set-valued differential of K in the sense that
the tangent vectors to all invariant solutions to (7) are included in it and there are no
superfluous parts. On the other hand, one can observe that for t > 0, DK(t, t)(1) =
[−∞, 1] and although the tangential condition F (t, x) ⊂ DK(t, x)(1) from [9] is fulfilled,
the contingent derivative is very big and contains a superfluous part.
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[3] D. Bothe: Multivalued differential equations on graphs, Nonlinear Anal., Theory Methods
Appl. 18 (1992) 245–252.

[4] A. Cellina: A theorem on the approximation of compact multi-valued maps, Atti Accad.
Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 47(6) (1969) 429–433.

[5] A. Cellina: A further result on the apprioximation of set-valued mappings, Atti Accad. Naz.
Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 48(8) (1970) 412–416.

[6] A. Cellina: Fixed points of noncontinuous mappings, Atti Accad. Naz. Lincei, VIII. Ser.,
Rend., Cl. Sci. Fis. Mat. Nat. 49(8) (1970) 30–33.

[7] F. H. Clarke: Optimization and Nonsmooth Analysis, Wiley, New York (1983); SIAM,
Philadelphia (1990).

[8] K. Deimling: Multivalued Differential Equations, Walter de Gruyter, Berlin (1992).
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