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1. Introduction

In 1975, the extended mean values E(r, s;x, y) were defined by K. B. Stolarsky [1] as
follows

E(r, s;x, y) =

(

r

s
· y

s − xs

yr − xr

)
1

s−r

, rs(r − s)(x− y) 6= 0, (1)

E(r, 0;x, y) =

(

1

r
· yr − xr

log y − logx

)
1

r

, r(x− y) 6= 0, (2)

E(r, r;x, y) =
1

e
1

r

(

xxr

yy
r

)
1

xr−yr

, r(x− y) 6= 0, (3)

E(0, 0;x, y) =
√
xy, x 6= y, (4)

E(r, s;x, y) = x, x = y. (5)

Here x, y > 0 and r, s ∈ R.
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It is easy to see that the extended mean values E(r, s;x, y) are continuous on the domain
{(r, s;x, y) | r, s ∈ R;x, y > 0}. They are of symmetry between r and s and between x

and y, many basic properties have been obtained by E. B. Leach and M. C. Sholander in
[2]. Many mean values are special cases of E, for example,























































E(r, 2r;x, y) = Mr(x, y), (power mean or Hölder mean)
E(1, p;x, y) = Sp(x, y), (extended logarithmic mean)
E(1, 1;x, y) = I(x, y), (identric or exponential mean)
E(p, p;x, y) = Ip(x, y), (extended identric or exponential mean)
E(1, 2;x, y) = A(x, y), (arithmetic mean)
E(0, 0;x, y) = G(x, y), (geometric mean)
E(−2,−1;x, y) = H(x, y), (harmonic mean)
E(0, 1;x, y) = L(x, y), (logarithmic mean)
E(r, r + 1;x, y) = Fr(x, y). (one-parameter mean)

(6)

Study of E(r, s;x, y) is not only interesting but also important, because most of the two-
variables mean values are special cases of E(r, s;x, y) and it is challenging to study a
function whose formulation is so indeterminate [3].

For convenience of readers, we recall the notations and definitions as follows.

For x = (x1, x2) ∈ (0,∞)× (0,∞) and α ≥ 0, we denote by

logx = (logx1, logx2)

and
xα = (xα

1 , x
α
2 ).

For x = (x1, x2), y = (y1, y2) ∈ R2, we denote by

xy = (x1y1, x2y2)

and
ex = (ex1 , ex2).

Definition 1.1. A set E1 ⊆ R2 is called a convex set if x+y

2
∈ E1 whenever x, y ∈ E1.

A set E2 ⊆ (0,∞) × (0,∞) is called a geometrically convex set if x
1

2y
1

2 ∈ E2 whenever
x, y ∈ E2.

It is easy to see that E ⊆ (0,∞) × (0,∞) is a geometrically convex set if and only
if logE = {logx, x ∈ E} is a convex set, and F ⊆ R2 is a convex set if and only if
eF = {ex : x ∈ F} is a geometrically convex set.

Definition 1.2. Let E ⊆ R2 be a convex set. A function f : E → R is said to be
a convex function on E if f(x+y

2
) ≤ f(x)+f(y)

2
for all x, y ∈ E. Moreover, f is called a

concave function if −f is a convex function.

Definition 1.3. Let E ⊆ (0,∞) × (0,∞) be a geometrically convex set. A function

f : E → (0,∞) is called a geometrically convex function on E if f(x
1

2y
1

2 ) ≤ f
1

2 (x)f
1

2 (y)
for all x, y ∈ E. We say f is a geometrically concave function if 1

f
is a geometrically

convex function.
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Definitions 1.2 and 1.3 have the following consequences.

Fact 1.4. If E1 ⊆ (0,∞)× (0,∞) is a geometrically convex set and f : E1 → (0,∞) is a
geometrically convex function, then

F (x) = log f(ex) : logE1 → R

is a convex function. Conversely, if E2 is a convex set and F : E2 → R is a convex
function, then

f(x) = eF (logx) : eE2 → (0,∞)

is a geometrically convex function.

Definition 1.5. Let E ⊆ R2 be a set. A function F : E → R is called a Schur convex
function on E if

F (x1, x2) ≤ F (y1, y2)

for each two-tuples x = (x1, x2) and y = (y1, y2) in E, such that x ≺ y, i.e.

x[1] ≤ y[1]

and
x[1] + x[2] = y[1] + y[2],

where x[i] denotes the ith largest component in x. A function F is called a Schur concave
function if −F is a Schur convex function.

Definition 1.6. Let E ⊆ (0,∞)× (0,∞) be a set. A function F : E → (0,∞) is called
Schur geometrically convex function on E if

F (x1, x2) ≤ F (y1, y2)

for each pair x = (x1, x2) and y = (y1, y2) in E, such that logx ≺ log y, i.e.

x[1] = y[1] and x[1]x[2] = y[1]y[2].

F is called a Schur geometrically concave function if 1
F

is a Schur geometrically convex
function.

Definitions 1.5 and 1.6 have the following consequences.

Fact 1.7. Let E ⊆ (0,∞) × (0,∞) be a set and H = logE = {logx : x ∈ E}. Then
f : E → (0,∞) is a Schur geometrically convex (or concave, respectively) function on E

if and only if log f(ex) is a Schur convex (or concave, respectively) function on H.

The following well-known result was proved by A. W. Marshall and I. Olkin in [4].

Theorem 1.8. Let E ⊆ R2 be a symmetric convex set with nonempty interior intE and
ϕ : E → R be a continuous symmetric function on E. If ϕ is differentiable on intE, then
ϕ is Schur convex (or concave, respectively) on E if and only if

(y − x)

(

∂ϕ

∂y
− ∂ϕ

∂x

)

≥ 0 (or ≤ 0, respectively)

for all (x, y) ∈ intE.
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The following theorem can easily be derived from Fact 1.7 and Theorem 1.8.

Theorem 1.9. Let E ⊆ (0,∞) × (0,∞) be a symmetric geometrically convex set with
nonempty interior intE and ϕ : E → (0,∞) be a continuous symmetric function on
E. If ϕ is differentiable on intE, then ϕ is Schur geometrically convex (or concave,
respectively) on E if and only if

(log y − logx)

(

y
∂ϕ

∂y
− x

∂ϕ

∂x

)

≥ 0 (or ≤ 0, respectively)

for all (x, y) ∈ intE.

The theory of convex functions and Schur convex functions is one of the most important
theory in the fields of modern analysis and geometry. It can be used in global Riemannian
geometry [5, 6], operator inequalities [7], nonlinear PDE of elliptic type [8], combinatorial
optimization [9], isoperimetric problem for polytopes [10], linear regression [11], graphs
and metrices [12], improperly posed problems [13], inequalities and extremal problems
[14], nilpotent groups [15], global surface theory [16] and other related fields.

The notion of geometrical convexity is introduced by P. Montel [17], in a beautiful paper
where the analogues of the notion of convex function in n variables are discussed. Once
upon a time, the theory of geometrical convexity seemed to be hidden, which is a pity
because of its richness. Recently, C. P. Niculescu [18] discussed an attractive class of
inequalities, which arise from the notion of geometrically convex functions.

Recently, the Schur convexity of the extended mean values E(r, s;x, y) with respect to
(r, s) and (x, y) are investigated in [19–21]. F. Qi [19] first obtained the following result.

Theorem 1.10. For fixed (x, y) ∈ (0,∞)× (0,∞) with x 6= y, the extended mean values
E(r, s;x, y) are Schur concave on [0,∞)× [0,∞) and Schur convex on (−∞, 0]× (−∞, 0]
with respect to (r, s).

In [20], F. Qi, J. Sándor, S. S. Dragomir and A. Sofo tried to obtain the Schur convexity
of the extended mean values E(r, s;x, y) with respect to (x, y) for fixed (r, s) and declared
an incorrect conclusion as follows. For given (r, s) with r, s 6∈ (0, 3

2
) (or r, s ∈ (0, 1],

respectively), the extended mean values E(r, s;x, y) are Schur concave (or Schur convex,
respectively) with respect to (x, y) on (0,∞)× (0,∞). H. N. Shi, S. H. Wu and F. Qi [21]
observed that the above conclusion is wrong and obtained the following theorem.

Theorem 1.11. For fixed (r, s) ∈ R2,

(1) if 2 < 2r < s or 2 ≤ 2s ≤ r, then the extended mean values E(r, s;x, y) are Schur
convex with respect to (x, y) ∈ (0,∞)× (0,∞);

(2) if (r, s) ∈ {r < s ≤ 2r, 0 < r ≤ 1} ∪ {s < r ≤ 2s, 0 < s ≤ 1} ∪ {0 < s < r ≤ 1} ∪
{0 < r < s ≤ 1}∪{s ≤ 2r < 0}∪{r ≤ 2s < 0}, then the extended mean values E(r, s;
x, y) are Schur concave with respect to (x, y) ∈ (0,∞)× (0,∞).

The main purpose of this article is to present the Schur geometrical convexity of the
extended mean values E(r, s;x, y) with respect to (x, y) for fixed (r, s). Our main result
is the following.
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Theorem 1.12. For fixed (r, s) ∈ R2,

(1) the extended mean values of E(r, s;x, y) are Schur geometrically convex with respect
to (x, y) ∈ (0,∞)× (0,∞) if and only if s+ r ≥ 0;

(2) the extended mean values of E(r, s;x, y) are Schur geometrically concave with respect
to (x, y) ∈ (0,∞)× (0,∞) if and only if s+ r ≤ 0.

From Theorem 1.12 we get the following five immediate consequences.

Corollary 1.13. For (r, s) ∈ R2 and (x, y) ∈ (0,∞)× (0,∞),

(1) E(r, s;x, y) ≥ √
xy if and only if s+ r ≥ 0;

(2) E(r, s;x, y) ≤ √
xy if and only if s+ r ≤ 0.

Corollary 1.14. The extended logarithmic mean value E(1, p;x, y) = Sp(x, y) is Schur
geometrically convex with respect to (x, y) ∈ (0,∞) × (0,∞) if and only if p ≥ −1; and
Schur geometrically concave if and only if p ≤ −1.

Corollary 1.15. The extended identric mean value E(p, p;x, y) = Ip(x, y) is Schur geo-
metrically convex with respect to (x, y) ∈ (0,∞)× (0,∞) if and only if p ≥ 0; and Schur
geometrically concave if and only if p ≤ 0.

Corollary 1.16. The Hölder mean value E(r, 2r;x, y) = Mr(x, y) is Schur geometrically
convex with respect to (x, y) ∈ (0,∞)×(0,∞) if and only if r ≥ 0; and Schur geometrically
concave if and only if r ≤ 0.

Corollary 1.17. The one-parameter mean value E(r, r + 1;x, y) = Fr(x, y) is Schur
geometrically convex with respect to (x, y) ∈ (0,∞) × (0,∞) if and only if r ≥ −1

2
; and

Schur geometrically concave if and only if r ≤ −1
2
.

2. Lemmas

In this section we introduce and establish several lemmas, which are used in the proof of
Theorem 1.12.

Lemma 2.1. Let s, r ∈ R, s 6= 0 and f(t) = r
s
(s− r)(ts+r − 1)− r

s
(s+ r)(ts − tr). Then

the following statements hold.

(1) If s ≥ r and s+ r ≥ 0, then f(t) ≥ 0 for t ∈ [1,∞);

(2) If s ≥ r and s+ r ≤ 0, then f(t) ≤ 0 for t ∈ [1,∞).

Proof. Let g(t) = t1−rf ′(t), then simple computation yields

f(1) = 0, (7)

f ′(t) =
r

s
(s2 − r2)ts+r−1 − r(s+ r)ts−1 +

r2

s
(s+ r)tr−1, (8)

g(1) = f ′(1) = 0 (9)

and

g′(t) = (s− r)(s+ r)(rtr − r)ts−r−1. (10)
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If s ≥ r and s+ r ≥ 0, then from (10) we see that

g′(t) ≥ 0 (11)

for t ∈ [1,∞). Then Lemma 2.1(1) follows from (7)-(9) and (11).

If s ≥ r and s+ r ≤ 0, then (10) again yields that

g′(t) ≤ 0 (12)

for t ∈ [1,∞). Then Lemma 2.1(2) follows from (7)-(9) and (12).

Lemma 2.2. Let s ∈ R and f(t) = s(ts + 1) log t− 2(ts − 2). Then the following conclu-
sions are true.

(1) If s ≥ 0, then f(t) ≥ 0 for t ∈ [1,∞);

(2) If s ≤ 0, then f(t) ≤ 0 for t ∈ [1,∞).

Proof. Let g(t) = tf ′(t), then simple computation yields

f(1) = 0, (13)

g(1) = f ′(1) = 0 (14)

and
g′(t) = s3ts−1 log t. (15)

If s ≥ 0, then clearly (15) gives that

g′(t) ≥ 0 (16)

for t ∈ [1,∞); and
g′(t) ≤ 0 (17)

for t ∈ [1,∞) if s ≤ 0.

Thus, the proof follows from (13), (14), (16) and (17).

Lemma 2.3. Let t ∈ R and f(t) = t2r − 2rtr log t− 1. Then the following statements are
true:

(1) If r ≥ 0, then f(t) ≥ 0 for t ∈ [1,∞);

(2) If r ≤ 0, then f(t) ≤ 0 for t ∈ [1,∞).

Proof. Let g(t) = t1−rf ′(t), then simple computation yields

f(1) = 0, (18)

g(1) = f ′(1) = 0 (19)

and

g′(t) =
2r2

t
(tr − 1). (20)

If r ≥ 0, from (20) we clearly see that

g′(t) ≥ 0 (21)
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for t ∈ [1,∞); and

g′(t) ≤ 0 (22)

for t ∈ [1,∞) if r ≤ 0.

Therefore, Lemma 2.3 follows from (18), (19), (21) and (22).

Lemma 2.4. For fixed r, s ∈ R, E(r, s;x, y) is differentiable with respect to (x, y) ∈
(0,∞)× (0,∞).

Proof. By the elementary theory of differential and integral calculus we know that
Lemma 2.4 is true once we prove that ∂E(r,s;x,y)

∂x
and ∂E(r,s;x,y)

∂y
are continuous with re-

spect to (x, y) ∈ (0,∞) × (0,∞) for fixed r, s ∈ R. Since E(r, s;x, y) is symmetric

with respect to x and y, it suffices to prove that ∂E(r,s;x,y)
∂x

is continuous with respect to
(x, y) ∈ (0,∞)× (0,∞) for fixed r, s ∈ R.

If x 6= y, then the proof of the continuity for ∂E(r,s;x,y)
∂x

is trivial by (1)-(4). Hence we have

to prove that ∂E(r,s;x,y)
∂x

is continuous on {(x, y) : x = y, x > 0}.

Firstly, we shall prove that there exists partial derivative ∂E(r,s;x,y)
∂x

∣

∣

∣

(r,s;x0,x0)
for all x0 > 0

and for fixed s, r ∈ R. The proof is divided into five cases.

Case 1. r = s = 0. In this case, we see that

lim
x→x0

√
x0x− x0

x− x0

=
1

2
. (23)

So, (4), (5) and (23) yield ∂E
∂x

∣

∣

(0,0;x0,x0)
= 1

2
.

Case 2. s = 0, r 6= 0. Making use of L’Hospital’s rule we get

lim
x→x0

(1
r

xr

0
−xr

logx0−logx
)
1

r − x0

x− x0

=
1

r2
lim
x→x0

[

(
1

r

xr
0 − xr

logx0 − logx
)
1

r
−1−rxr−1(logx0 − logx) + 1

x
(xr

0 − xr)

(logx0 − logx)2

]

=
1

r2
lim
x→x0

(

1

r

−rxr−1

− 1
x

)
1

r
−1

lim
x→x0

−rxr(logx0 − logx) + (xr
0 − xr)

x0(logx0 − logx)2

=
1

r2
x1−r
0 lim

x→x0

−r2xr−1(logx0 − logx)

−2x0

x
(logx0 − logx)

=
1

2
. (24)

Now, (2) and (5) together with (24) imply that ∂E
∂x

∣

∣

(r,0;x0,x0)
= 1

2
.

Case 3. r = 0, s 6= 0. The symmetry of E(r, s;x, y) with respect to (r, s) and Case 2
show that ∂E

∂x

∣

∣

(0,s;x0,x0)
= 1

2
.



714 Y. Chu, X. Zhang, G. Wang / The Schur Geometrical Convexity of the Extended ...

Case 4. r = s 6= 0. Using L’Hospital’s rule we obtain

lim
x→x0

1

e
1
r

(

xx
r

x
x
r
0

0

)
1

xr−x
r
0 − x0

x− x0

=
1

e
1

r

lim
x→x0

(

xxr

x
xr

0

0

)
1

xr−x
r
0

lim
x→x0

(

xr logx− xr
0 logx0

xr − xr
0

)

′

= x0 lim
x→x0

−rxr
0x

r−1 logx+ x2r−1 − xr
0x

r−1 + rxr
0x

r−1 logx0

(xr − xr
0)

2

= lim
x→x0

−r(r − 1)xr
0 logx− (2r − 1)xr

0 + (2r − 1)xr + r(r − 1)xr
0 logx0

2r(xr − xr
0)

= lim
x→x0

−r(r − 1)xr
0
1
x
+ (2r − 1)rxr−1

2r2xr−1
=

1

2
. (25)

Then (3), (5) and (25) lead to ∂E
∂x

∣

∣

(r,r;x0,x0)
= 1

2
.

Case 5. rs(r − s) 6= 0. Using L’Hospital’s rule we obtain

lim
x→x0

(

r
s

xs

0
−xs

xr

0
−xr

)
1

s−r − x0

x− x0

=
r

s(s− r)
lim
x→x0

(

r

s

xs
0 − xs

xr
0 − xr

)
1

s−r
−1

lim
x→x0

(

xs
0 − xs

xr
0 − xr

)

′

=
r

s(s− r)
x1−s+r
0 lim

x→x0

−sxr
0x

s−1 + (s− r)xs+r−1 + rxs
0x

r−1

(xr
0 − xr)2

=
rx1−s+r

0

s(s− r)
lim
x→x0

s(1− s)xr
0x

s−2 + [(s− r)(s+ r − 1)xs + r(r − 1)xs
0]x

r−2

−2rxr−1(xr
0 − xr)

=
x2−s
0

2s(r − s)
lim
x→x0

s(1− s)xr
0x

s−2 + [(s− r)(s+ r − 1)xs + r(r − 1)xs
0]x

r−2

xr
0 − xr

=
−s(s− 1)(s− 2) + (s− r)(s+ r − 1)(s+ r − 2) + r(r − 1)(r − 2)

2sr(s− r)

=
1

2
. (26)

So, (1) and (5) together with (26) imply that ∂E
∂x

∣

∣

(r,s;x0,x0)
= 1

2
.

Next we shall prove that ∂E(r,s;x,y)
∂x

is continuous with respect to (x, y) ∈ (0,∞)× (0,∞)
for any fixed (r, s) ∈ R×R. The proof is again divided into five cases.

Case I. r = s = 0. In this case, (4), (5) and (23) imply that

∂E(0, 0;x, y)

∂x
=















1

2

√

y

x
, x 6= y,

1

2
, x = y.
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It is easy to see that limx→x0
y→x0

∂E(0,0;x,y)
∂x

= 1
2
for any x0 > 0, and hence ∂E(0,0;x,y)

∂x
is contin-

uous with respect to (x, y) ∈ (0,∞)× (0,∞).

Case II. s = 0, r 6= 0. In this case, (2) and (5) together with (24) give that

∂E(r, 0;x, y)

∂x
=















1

r2

(

1

r

yr − xr

log y − logx

)
1

r
−1 −rxr(log y − logx) + yr − xr

x(log y − logx)2
, x 6= y,

1

2
, x = y.

Since

lim
x→x0
y→x0

[

1

r2

(

1

r

yr − xr

log y − logx

)
1

r
−1 −rxr(log y − logx) + yr − xr

x(log y − logx)2

]

=
1

r2
x1−r
0 lim

x→x0
y→x0

−r log y

x
+ ( y

x
)r − 1

(log y

x
)2

lim
x→x0
y→x0

xr−1

=
1

r2
lim
t→1

−r log t+ tr − 1

(log t)2
=

1

2

for any x0 > 0, we see that ∂E(r,0;x,y)
∂x

is continuous with respect to (x, y) ∈ (0,∞)×(0,∞).

Case III. r = 0, s 6= 0. The symmetry of E(r, s;x, y) with respect to (r, s) and Case II

show that ∂E(0,s;x,y)
∂x

is continuous with respect to (x, y) ∈ (0,∞)× (0,∞).

Case IV. r = s 6= 0. In this case, (3), (5) and (25) yield

∂E(r, r;x, y)

∂x
=















rxr−1yr(log y − logx) + xr−1(xr − yr)

(xr − yr)2
E(r, r;x, y), x 6= y,

1

2
, x = y.

Since

lim
x→x0
y→x0

[

rxr−1yr(log y − logx) + xr−1(xr − yr)

(xr − yr)2
E(r, r;x, y)

]

= lim
x→x0
y→x0

E(r, r;x, y) lim
x→x0
y→x0

1

x
lim
x→x0
y→x0

r( y
x
)r log y

x
+ [1− ( y

x
)r]

[1− ( y
x
)]2

= lim
t→1

rtr log t+ (1− tr)

(1− tr)2
=

1

2

for all x0 > 0, we find that ∂E(r,r;x,y)
∂x

is continuous with respect to (x, y) ∈ (0,∞)×(0,∞).

Case V. rs(r − s) 6= 0. In this case, (1), (5) and (26) imply that

∂E(r, s;x, y)

∂x
=















E(r, s;x, y)

s− r

(

rxr−1

yr − xr
− sxs−1

ys − xs

)

, x 6= y,

1

2
, x = y.
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Now, for all x0 > 0 we compute

lim
x→x0
y→x0

[

E(r, s;x, y)

s− r

(

rxr−1

yr − xr
− sxs−1

ys − xs

)]

=
1

s− r
lim
x→x0
y→x0

E(r, s;x, y) · lim
x→x0
y→x0

1

x
· lim

x→x0
y→x0

[

r

( y
x
)r − 1

− s

( y
x
)s − 1

]

=
1

s− r
lim
t→1

[

r

tr − 1
− s

ts − 1

]

=
1

2
.

Hence ∂E(r,s;x,y)
∂x

is continuous with respect to (x, y) ∈ (0,∞)× (0,∞).

For a set E ⊂ R2, let Ē be the closure of E. From the continuity of the extended
mean values E(r, s;x, y) and the definitions of Schur geometrically convex and Schur
geometrically concave, the following lemma is obvious.

Lemma 2.5. Let E be a set in rs-plane with nonempty interior, if the extended mean
values E(r, s;x, y) are Schur geometrically convex (or Schur geometrically concave, re-
spectively) with respect to (x, y) ∈ (0,∞) × (0,∞) for (r, s) ∈ E. Then E(r, s;x, y) is
Schur geometrically convex (or Schur geometrically concave, respectively) with respect to
(x, y) ∈ (0,∞)× (0,∞) for (r, s) ∈ Ē.

3. Proof of Theorem 1.12

We use Theorem 1.9 and Lemma 2.4 to the discuss the nonpositivity and nonnegativity of
(log y − logx)(y ∂E

∂y
− x∂E

∂x
) for all (x, y) ∈ (0,∞)× (0,∞) and for fixed (r, s) ∈ R2. Since

(log y− logx)(y ∂E
∂y

−x∂E
∂x
) = 0 for x = y and (log y− logx)(y ∂E

∂y
−x∂E

∂x
) is symmetric with

respect to x and y, w.l.g. we assume y > x in the following discussion.

Let

E1 = {(r, s) : s+ r > 0} ,
E2 = {(r, s) : s+ r < 0} ,
E11 = {(r, s) : s > r, s+ r > 0} ,
E12 = {(r, s) : s < r, s+ r > 0} ,
E13 = {(r, s) : s = r > 0} ,
E21 = {(r, s) : s > r, s+ r < 0} ,
E22 = {(r, s) : s < r, s+ r < 0}

and
E23 = {(r, s) : s = r < 0} .

Then
E1 = E11 ∪ E12 ∪ E13, E11 ∩ E12 = E11 ∩ E13 = E12 ∩ E13 = ∅ (27)

and
E2 = E21 ∪ E22 ∪ E23, E21 ∩ E22 = E21 ∩ E23 = E22 ∩ E23 = ∅. (28)

By Lemma 2.5, we see that Theorem 1.12 is true if we prove that (logy − logx)(y ∂E
∂y

−
x∂E

∂x
) ≥ 0 for y > x > 0 and (r, s) ∈ E1, and (log y− logx)(y ∂E

∂y
− x∂E

∂x
) ≤ 0 for y > x > 0

and (r, s) ∈ E2. We divide our proof into three cases.
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Case 1. (r, s) ∈ E11. We divide the discussion of this case into two subcases.

Subcase 1.1. (r, s) ∈ E11 and r 6= 0. We note that (1) leads to the following identity.

(log y − logx)(y
∂E

∂y
− x

∂E

∂x
)

=
r

s

(

ys − xs

yr − xr

)
1

s−r
−1

log y − logx

(yr − xr)2
xs+r 1

s− r

×
{r

s
(s− r)[(

y

x
)s+r − 1]− r

s
(s+ r)[(

y

x
)s − (

y

x
)r]
}

. (29)

Hence, (29), y > x and Lemma 2.1(1) yield

(log y − logx)(y
∂E

∂y
− x

∂E

∂x
) ≥ 0.

Subcase 1.2. (r, s) ∈ E11 and r = 0. The relations r = 0, s > 0 and (2) lead to

(log y − logx)(y
∂E

∂y
− x

∂E

∂x
)

=
1

s2

(

1

s

ys − xs

log y − logx

)
1

s
−1

xs

log y − logx

×
{

s[(
y

x
)s + 1] log

y

x
− 2[(

y

x
)s − 1]

}

. (30)

Since y > x, by Lemma 2.2(1) we see that (30) gives

(log y − logx)

(

y
∂E

∂y
− x

∂E

∂x

)

≥ 0.

Case 2. (r, s) ∈ E12. From Case 1 and the symmetry of E(r, s;x, y) with respect to r

and s, we get

(log y − logx)

(

y
∂E

∂y
− x

∂E

∂x

)

≥ 0.

Case 3. (r, s) ∈ E13. In this case, (3) leads to

(log y − logx)

(

y
∂E

∂y
− x

∂E

∂x

)

=
log y − logx

(xr − yr)2
x2rE

[

(y

x

)2r

− 2r
(y

x

)r

log
y

x
− 1

]

.

This identity gives by Lemma 2.3(1) that

(log y − logx)

(

y
∂E

∂y
− x

∂E

∂x

)

≥ 0,

since y > x. Making use of Lemma 2.1(2), Lemma 2.2(2), Lemma 2.3(2) and the similar
discussions as in the above cases, we conclude that

(log y − logx)

(

y
∂E

∂y
− x

∂E

∂x

)

≤ 0.

for (r, s) ∈ E2.
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