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1. Introduction

Let X be a real Banach space. We use the notation X∗ for the topological dual of X and
〈·, ·〉 stands for both duality products in X ×X∗ and X∗ ×X∗∗,

〈x, x∗〉 = x∗(x), 〈x∗, x∗∗〉 = x∗∗(x∗), x ∈ X, x∗ ∈ X∗, x∗∗ ∈ X∗∗.

A point to set operator T : X ⇉ X∗ is a relation on X to X∗:

T ⊂ X ×X∗

and x∗ ∈ T (x) means (x, x∗) ∈ T . An operator T : X ⇉ X∗ is monotone if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ T.

The operator T is maximal monotone if it is monotone and maximal in the family of
monotone operators of X into X∗ (with respect to order of inclusion).

In [11] Fitzpatrick has put in light the possibility to represent maximal monotone operators
by convex functions on X ×X∗. Before that, Krauss [12] managed to represent maximal
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monotone operators by subdifferentials of saddle functions. Fitzpatrick’s approach was
constructive: Given a maximal monotone operator T : X ⇉ X∗, he has defined the lower
semicontinuous convex function ϕT : X ×X∗ → R̄ as

ϕT (x, x
∗) = sup

(y,y∗)∈T

〈x− y, y∗ − x∗〉+ 〈x, x∗〉. (1)

Follows directly from maximal monotonicity of T , that ϕT majorizes the duality product
on X ×X∗. On the other hand, ϕT is equal to the duality product in the graph of T . In
this sense, it is said that ϕT is a convex representation of T or the Fitzpatrick function
of T . It was also proved [11] that ϕT is the smallest function in the family of lower
semicontinuous convex functions on X ×X∗ which have the above proprieties:

Theorem 1.1 ([11, Theorem 3.10]). If T is a maximal monotone operator on a real
Banach space X, then (1) is the smallest element of the Fitzpatrick family FT ,

FT =







h ∈ R̄
X×X∗

∣

∣

∣

∣

∣

∣

h is convex and lower semicontinuous
〈x, x∗〉 ≤ h(x, x∗), ∀(x, x∗) ∈ X ×X∗

(x, x∗) ∈ T ⇒ h(x, x∗) = 〈x, x∗〉







(2)

Moreover, for any h ∈ FT ,

(x, x∗) ∈ T ⇐⇒ h(x, x∗) = 〈x, x∗〉.

Note that any h ∈ FT fully characterizes T . Fitzpatrick family of convex representations
of a maximal monotone operator was recently rediscovered by Burachik and Svaiter [9]
and Martinez-Legaz and Théra [14]. Since then, this subject has been object of intense
research [9, 21, 10, 13, 1, 3, 18, 15].

In [9], Burachik and Svaiter also proved that this family has a biggest element:

Proposition 1.2. Let T be a maximal monotone operator on a real Banach space X.
There exists a (unique) maximum element σT ∈ FT ,

σT = sup
h∈FT

{h},

which satisfies, in a reflexive and in a generic space, respectively

ϕ∗
T (x

∗, x) = σT (x, x
∗), σ∗

T (x
∗, x) = ϕT (x, x

∗).

Moreover, σT can be characterized as

σT (x, x
∗) = clconv(π + δT )(x, x

∗),

where π denotes the duality product on X ×X∗ and δT is the indicator function of T .

Beside that, a complete study of the epigraphical structure of the function σT is also pre-
sented in [9] and it is proved that FT is invariant under a suitable generalized conjugation
operator.

Such invariance can be expressed as: If T : X ⇉ X∗ is maximal monotone and h ∈ FT ,
then

h (x, x∗) ≥ 〈x, x∗〉,
h∗(x∗, x) ≥ 〈x, x∗〉, (3)
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for all (x, x∗) ∈ X ×X∗.

Condition (3) was proved [10] to be not only a necessary condition but also a sufficient
condition for maximal monotonicity in a reflexive Banach space.

Theorem 1.3 ([10, Theorem 3.1]). Let X be a reflexive Banach space. If h : X ×
X∗ → R̄ is proper, convex, lower semicontinuous and

h (x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

h∗(x∗, x) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

then the operator T : X ⇉ X∗ defined as

T = {(x, x∗) ∈ X ×X∗ | h (x, x∗) = 〈x, x∗〉}

is maximal monotone and T = {(x, x∗) ∈ X ×X∗ | h∗ (x∗, x) = 〈x, x∗〉}.

Theorem 1.3 has been used for characterizing maximal monotonicity [19, 2] in reflexive
Banach spaces. It is an open question whether (3) is also a sufficient condition for maximal
monotonicity in a non-reflexive Banach space. A natural generalization of (3) in a generic
Banach space is

h (x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.
(4)

In this paper, we prove that (4) is a sufficient condition for a lower semicontinuous convex
function h to represent a maximal monotone operator in a generic Banach space.

The theory of convex representations of maximal monotone operators is closely related to
the study of a family of enlargements of such operators [9] introduced in [20]. In particular,
an important question concerning the study of ε-enlargements [6, 7, 8], T ε, of a maximal
monotone operator T is whether an element in the graph of T ε can be approximated by
an element in the graph of T . This question has been successfully solved for the extension
∂εf , of ∂f , by Brøndsted and Rockafellar in [5]: Given ε > 0 and x∗ ∈ ∂εf(x), for all
λ > 0 there exists x̄∗

λ ∈ ∂f(x̄λ), such that

‖x̄λ − x‖ ≤ λ, ‖x̄∗
λ − x∗‖ ≤ ε

λ
. (5)

It does make sense to ask if the same property is valid for maximal monotone operators,
that are not subdifferentials, with respect to its ε-enlargements: Let X is a real Banach
space, T : X ⇉ X∗ a maximal monotone operator and x∗ ∈ T ε(x) for some ε > 0. Given
λ > 0, does there exists x̄∗

λ ∈ T ε(x̄λ) such that (5) is valid?

The answer is affirmative in a reflexive Banach space setting [8] but is negative in a
non-reflexive Banach space [17]. From now on, we will refer to this fact as Brøndsted-
Rockafellar property.

The major goal of this paper, is to show that (4) is a sufficient condition for a lower
semicontinuous convex function h to represent a maximal monotone operator in a generic
Banach space and that such operators satisfy a strict Brøndsted-Rockafellar property (see
Theorem 4.2, item 4.).
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The manuscript is organized as follows: In Section 2 we establish some well known results
and the notation to be used in the article. In Section 3 we are concerned with preliminary
technical results and in Section 4 we prove our main results.

2. Basic Results and Notation

The norms on X, X∗ and X∗∗ will be denoted by ‖ · ‖. We use the notation R̄ for the
extended real numbers:

R̄ = {−∞} ∪ R ∪ {∞}.

A convex function f : X → R̄ is said to be proper if f > −∞ and there exists a
point x ∈ X for which f(x) < ∞. The subdifferential of f is the point to set operator
∂f : X ⇉ X∗ defined at x ∈ X by

∂f(x) = {x∗ ∈ X∗ | f(y) ≥ f(x) + 〈y − x, x∗〉, for all y ∈ X}.

For each x ∈ X, the elements x∗ ∈ ∂f(x) are called subgradients of f . Rockafellar proved
that if f is proper, convex and lower semicontinuous, then ∂f is maximal monotone on
X [16].

Fenchel-Legendre conjugate of f : X → R̄ is f ∗ : X∗ → R̄ defined by

f ∗(x∗) = sup{〈x, x∗〉 − f(x) | x ∈ X}.

Note that f ∗ is always convex and lower semicontinuous. If f is proper convex and lower
semicontinuous, then f ∗ is proper and from its definition, follows directly Fenchel-Young
inequality: for all x ∈ X, x∗ ∈ X∗,

f(x) + f ∗(x∗) ≥ 〈x, x∗〉 and f(x) + f ∗(x∗) = 〈x, x∗〉 iff x∗ ∈ ∂f(x). (6)

Note that h(x, x∗) := f(x) + f ∗(x∗) fully characterizes ∂f .

The concept of ε-subdifferential of a convex function f was introduced by Brøndsted and
Rockafellar [5]. It is a point to set operator ∂εf : X ⇉ X∗ defined at each x ∈ X as

∂εf(x) = {x∗ ∈ X∗ | f(y) ≥ f(x) + 〈y − x, x∗〉 − ε, for all y ∈ X},

where ε ≥ 0. Note that ∂f = ∂0f and ∂f(x) ⊂ ∂εf(x), for all ε ≥ 0. Using the conjugate
function f ∗ of f it is easy to see that

x∗ ∈ ∂εf(x) ⇔ f(x) + f ∗(x∗) ≤ 〈x, x∗〉+ ε. (7)

An important tool to be used in the next sections is the classical Fenchel duality formula,
which we present now.

Theorem 2.1 ([4, pp. 11]). Let us consider two proper and convex functions f and g
such that f (or g) is continuous at a point x ∈ X for which f(x) < ∞ and g(x) < ∞.
Then,

inf
x∈X

{f(x) + g(x)} = max
x∗∈X∗

{−f ∗(−x∗)− g∗(x∗)}. (8)
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3. Preliminary Results

In this section we present some preliminary technical results which will be used in the
next sections.

Theorem 3.1. Suppose that h : X × X∗ → R̄ is proper, convex, lower semicontinuous
and

h (x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

Then, for any ε > 0 there exists (x̃, x̃∗) ∈ X ×X∗ such that

h(x̃, x̃∗) +
1

2
‖x̃‖2 + 1

2
‖x̃∗‖2 < ε, ‖x̃‖2 ≤ h(0, 0), ‖x̃∗‖2 ≤ h(0, 0),

where the two last inequalities are strict in the case h(0, 0) > 0.

Proof. If h(0, 0) < ε then (x̃, x̃∗) = (0, 0) has the desired properties. The non-trivial case
is

ε ≤ h(0, 0), (9)

which we consider now. Using the first assumption on h, we conclude that for any (x, x∗) ∈
X ×X∗,

h(x, x∗) + 1
2
‖x‖2 + 1

2
‖x∗‖2 ≥ 〈x, x∗〉+ 1

2
‖x‖2 + 1

2
‖x∗‖2

≥ −‖x‖ ‖x∗‖+ 1
2
‖x‖2 + 1

2
‖x∗‖2

= 1
2
(‖x‖ − ‖x∗‖)2 ≥ 0.

(10)

The second assumption on h also gives, for all (z∗, z∗∗) ∈ X∗ ×X∗∗,

h∗(z∗, z∗∗) + 1
2
‖z∗‖2 + 1

2
‖z∗∗‖2 ≥ 〈z∗, z∗∗〉+ 1

2
‖z∗‖2 + 1

2
‖z∗∗‖2

≥ −‖z∗‖ ‖z∗∗‖+ 1
2
‖z∗‖2 + 1

2
‖z∗∗‖2

= 1
2
(‖z∗‖ − ‖z∗∗‖)2 ≥ 0.

(11)

Now using Theorem 2.1 with f, g : X ×X∗ → R̄,

f(x, x∗) = h(x, x∗), g(x, x∗) =
1

2
‖x‖2 + 1

2
‖x∗‖2

we conclude that there exists (z∗, z∗∗) ∈ X∗ ×X∗∗ such that

inf h(x, x∗) +
1

2
‖x‖2 + 1

2
‖x∗‖2 = −h∗(z∗, z∗∗)− 1

2
‖z∗‖2 − 1

2
‖z∗∗‖2.

As the right hand side of the above equation is non positive and the left hand side is non
negative, these two terms are zero. Therefore,

inf h(x, x∗) +
1

2
‖x‖2 + 1

2
‖x∗‖2 = 0, (12)

and

h∗(z∗, z∗∗) +
1

2
‖z∗‖2 + 1

2
‖z∗∗‖2 = 0. (13)
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For (z∗, z∗∗) = (z∗, z∗∗), all inequalities on (11) must hold as equalities. Therefore,

‖z∗‖2 = ‖z∗∗‖2 = −h∗(z∗, z∗∗) ≤ h(0, 0), (14)

where the last inequality follows from the definition of conjugate.

Using (12) we conclude that for any η > 0, there exists (xη, xη
∗) ∈ X ×X∗ such that

h(xη, xη
∗) +

1

2
‖xη‖2 +

1

2
‖xη

∗‖2 < η. (15)

If h(0, 0) = ∞, then, taking η = ε and (x̃, x̃∗) = (xη, xη
∗) we conclude that the theorem

holds. Now, we discuss the case h(0, 0) < ∞. In this case, using (14) we have

‖z∗‖ = ‖z∗∗‖ ≤
√

h(0, 0). (16)

Note that from (9) we are considering

ε ≤ h(0, 0) < ∞. (17)

Combining (15) with (13) and using Fenchel-Young inequality (6) we obtain

η > h(xη, xη
∗) + 1

2
‖xη‖2 + 1

2
‖xη

∗‖2 + h∗(z∗, z∗∗) + 1
2
‖z∗‖2 + 1

2
‖z∗∗‖2

≥ 〈xη, z
∗〉+ 〈xη

∗, z∗∗〉+ 1
2
‖xη‖2 + 1

2
‖xη

∗‖2 + 1
2
‖z∗‖2 + 1

2
‖z∗∗‖2

≥ 1
2
‖xη‖2 − ‖xη‖‖z∗‖+ 1

2
‖z∗∗‖2 + 1

2
‖xη

∗‖2 − ‖xη
∗‖‖z∗∗‖+ 1

2
‖z∗∗‖2

= 1
2
(‖xη‖ − ‖z∗‖)2 + 1

2
(‖xη

∗‖ − ‖z∗∗‖)2 .

As the two terms in the last inequality are non negative,

‖xη‖ < ‖z∗‖+
√

2η, ‖xη
∗‖ < ‖z∗∗‖+

√

2η.

Therefore, using (16) we obtain

‖xη‖ <
√

h(0, 0) +
√

2η, ‖xη
∗‖ <

√

h(0, 0) +
√

2η.

To end the proof, take in (15)

0 < η <
ε2

2h(0, 0)
(18)

and let

τ =

√

h(0, 0)
√

h(0, 0) +
√
2η

, x̃ = τ xη, x̃∗ = τ xη
∗. (19)

Then,
‖x̃‖ <

√

h(0, 0), ‖x̃∗‖ <
√

h(0, 0).

Now, using the convexity of h and of the square of the norms and (15), we have

h(x̃, x̃∗) +
1

2
‖x̃‖2 + 1

2
‖x̃∗‖2

≤ (1− τ) h(0, 0) + τ

(

h(xη, xη
∗) +

1

2
‖xη‖2 +

1

2
‖xη

∗‖2
)

< (1− τ) h(0, 0) + τ η

= h(0, 0)− τ(h(0, 0)− η).
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Therefore, using also (18)

ε−
(

h(x̃, x̃∗) +
1

2
‖x̃‖2 + 1

2
‖x̃∗‖2

)

≥ ε− h(0, 0) + τ(h(0, 0)− η)

> ε− h(0, 0) + τ(h(0, 0)− 2η)

= ε− h(0, 0) +
√

h(0, 0)
(

√

h(0, 0)−
√

2η
)

= ε−
√

2h(0, 0)η > 0.

which completes the proof.

In Theorem 3.1 the origin has a special role. In order to use this theorem with an arbitrary
point, define, for h : X ×X∗ → R̄ and (z, z∗) ∈ X ×X∗,

h(z,z∗) : X ×X∗ → R̄,

h(z,z∗)(x, x
∗) = h(x+ z, x∗ + z∗)−

[

〈x, z∗〉+ 〈z, x∗〉+ 〈z, z∗〉
]

.
(20)

The next proposition follows directly from algebraic manipulations and from (20).

Proposition 3.2. Take h : X ×X∗ → R̄ and (z, z∗) ∈ X ×X∗.

1. If h is proper, convex and lower semicontinuous, then h(z,z∗) is also proper, convex
and lower semicontinuous.

2. (h(z,z∗))
∗ = (h∗)(z∗,z), where in the right hand side z is identified with its image by

the canonical injection of X into X∗∗:

(h∗)(z∗,z)(x
∗, x∗∗) = h∗(x∗ + z∗, x∗∗ + z)−

[

〈x∗, z〉+ 〈z∗, x∗∗〉+ 〈z∗, z〉
]

.

3. For any (x, x∗) ∈ X ×X∗,

h(z,z∗)(x, x
∗)− 〈x, x∗〉 = h(x+ z, x∗ + z∗)− 〈x+ z, x∗ + z∗〉.

4. If h majorizes the duality product in X ×X∗ then h(z,z∗) also majorizes the duality
product in X ×X∗.

5. If h∗ majorizes the duality product in X∗ × X∗∗ then (h(z,z∗))
∗ also majorizes the

duality product in X∗ ×X∗∗.

Corollary 3.3. Suppose that h : X × X∗ → R̄ is proper, convex, lower semicontinuous
and

h (x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

Then, for any (z, z∗) ∈ X ×X∗ and ε > 0 there exist (x̃, x̃∗) ∈ X ×X∗ such that

h(x̃, x̃∗) < 〈x̃, x̃∗〉+ ε,

‖x̃− z‖2 ≤ h(z, z∗)− 〈z, z∗〉,
‖x̃∗ − z∗‖2 ≤ h(z, z∗)− 〈z, z∗〉.

where the two last inequalities are strict in the case 〈z, z∗〉 < h(z, z∗).
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Proof. If h(z, z∗) = 〈z, z∗〉 then (x̃, x̃∗) = (z, z∗) satisfy the desired conditions. Assume
that

0 < h(z, z∗)− 〈z, z∗〉. (21)

Using Proposition 3.2 and applying Theorem 3.1 for the function h(z,z∗) we conclude that
there exists (z̃, z̃∗) ∈ X ×X∗ such that

h(z,z∗)(z̃, z̃
∗) +

1

2
‖z̃‖2 + 1

2
‖z̃∗‖2 < ε, ‖z̃‖2 < h(z,z∗)(0, 0), ‖z̃∗‖2 < h(z,z∗)(0, 0). (22)

By (20), note that h(z,z∗)(0, 0) = h(z, z∗)− 〈z, z∗〉. Let

x̃ = z̃ + z, x̃∗ = z̃∗ + z∗.

Therefore, using (22) and (21), we have

‖x̃− z‖2 < h(z, z∗)− 〈z, z∗〉, ‖x̃∗ − z∗‖2 < h(z, z∗)− 〈z, z∗〉.

To end the proof of the first part of the corollary, use Proposition 3.2 and (22) to obtain

h(x̃, x̃∗)− 〈x̃, x̃∗〉 = h(z,z∗)(z̃, z̃
∗)− 〈z̃, z̃∗〉

≤ h(z,z∗)(z̃, z̃
∗) + 1

2
‖z̃‖2 + 1

2
‖z̃∗‖2 < ε.

Theorem 3.4. Suppose that h : X × X∗ → R̄ is proper, convex, lower semicontinuous
and

h (x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

If (x, x∗) ∈ X ×X∗, ε > 0 and

h(x, x∗) < 〈x, x∗〉+ ε,

then, there exists (x̄, x̄∗) ∈ X ×X∗ such that

h(x̄, x̄∗) = 〈x̄, x̄∗〉, ‖x− x̄‖ <
√
ε, ‖x∗ − x̄∗‖ <

√
ε.

Moreover, for any λ > 0 there exists (x̄λ, x̄
∗
λ) ∈ X ×X∗ such that

h(x̄λ, x̄
∗
λ) = 〈x̄, x̄∗

λ〉, ‖x̄λ − x‖ < λ, ‖x̄∗
λ − x∗‖ <

ε

λ
.

Proof. Let
h(x, x∗)− 〈x, x∗〉 < ε0 < ε. (23)

For an arbitrary θ ∈ (0, 1), define inductively a sequence {(xk, x
∗
k)} as follows: For k = 0,

let
(x0, x

∗
0) = (x, x∗). (24)

Given k and (xk, x
∗
k), use Corollary 3.3 to conclude that there exists some (xk+1, x

∗
k+1)

such that
h(xk+1, x

∗
k+1)− 〈xk+1, x

∗
k+1〉 < θk+1ε0 (25)
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and
‖xk+1 − xk‖2 ≤ h(xk, x

∗
k)− 〈xk, x

∗
k〉,

‖x∗
k+1 − x∗

k‖2 ≤ h(xk, x
∗
k)− 〈xk, x

∗
k〉.

(26)

Using (23) and (25) we conclude that for all k,

0 ≤ h(xk, x
∗
k)− 〈xk, x

∗
k〉 < θkε0. (27)

which, combined with (26) yields

∞
∑

k=0

‖xk+1 − xk‖ <
√
ε0

∞
∑

k=0

√
θk,

∞
∑

k=0

‖x∗
k+1 − x∗

k‖ <
√
ε0

∞
∑

k=0

√
θk.

In particular, the sequences {xk} and {x∗
k} are convergent. Let

x̄ = lim
k→∞

xk, x̄∗ = lim
k→∞

x∗
k.

Then, using the previous equation we have

‖x̄− x‖ <

√
ε0

1−
√
θ
, ‖x̄∗ − x∗‖ <

√
ε0

1−
√
θ
.

Since, by (23), ε0 < ε, for θ ∈ (0, 1) sufficiently small,

‖x̄− x‖ <
√
ε, ‖x̄∗ − x∗‖ <

√
ε.

Using (27) we have
lim
k→∞

h(xk, x
∗
k)− 〈xk, x

∗
k〉 = 0.

As h is lower semicontinuous and the duality product is continuous,

h(x̄, x̄∗)− 〈x̄, x̄∗〉 ≤ 0.

Therefore, h(x̄, x̄∗)− 〈x̄, x̄∗〉 = 0, which ends the proof of the first part of the theorem.

To prove the second part of the theorem, use in X the norm

|||x||| =
√
ε

λ
‖x‖,

and apply the first part of the theorem in this re-normed space.

4. Main Result

In this section we present our main result, Theorem 4.2. Before that, we recall a well
known result of theory of convex functions.

Lemma 4.1. Let E be a real topological linear space and f : E → R̄ be a convex function.
If g : E → R is Gateaux differentiable at x0, f(x0) = g(x0) and f ≥ g in a neighborhood
of x0, then g′(x0) ∈ ∂f(x0).
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Theorem 4.2. Suppose that h : X × X∗ → R̄ is proper, convex, lower semicontinuous
and

h (x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

Define

T = {(x, x∗) ∈ X ×X∗ | h (x, x∗) = 〈x, x∗〉}.
Then

1. T = {(x, x∗) ∈ X ×X∗ | h∗ (x∗, x) = 〈x, x∗〉}.
2. T is maximal monotone.

3. Let ϕT be the Fitzpatrick function associated with T , as defined in (1), that is,

ϕT (x, x
∗) = sup

(y,y∗)∈T

〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉.

Then
ϕT (x, x

∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

ϕ∗
T (x

∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.
(28)

4. The maximal monotone operator T satisfies a strict Brøndsted-Rockafellar property:
If η > ε and x∗ ∈ T ε(x), that is,

〈x− y, x∗ − y∗〉 ≥ −ε, ∀(y, y∗) ∈ T,

then, for any λ > 0 there exists (x̄λ, x̄
∗
λ) ∈ X ×X∗ such that

x̄∗
λ ∈ T (x̄λ), ‖x− x̄λ‖ < λ, ‖x∗ − x̄∗

λ‖ <
η

λ
.

Proof. To prove item 1., denote by π : X ×X∗ → R the duality product. This function
is everywhere differentiable and

π′(x, x∗) = (x∗, x).

Suppose that h(x, x∗) = 〈x, x∗〉 = π(x, x∗). Then, by Lemma 4.1

(x∗, x) ∈ ∂h(x, x∗), that is, h(x, x∗) + h∗(x∗, x) = 〈(x, x∗), (x∗, x)〉 ,

which implies h∗(x∗, x) = 〈x, x∗〉. Conversely, if h∗(x∗, x) = 〈x, x∗〉, then by the same rea-
soning h∗∗(x, x∗) = 〈x, x∗〉. As h is proper, convex and lower semicontinuous, h(x, x∗) =
h∗∗(x, x∗), which concludes the proof of item 1.

Take (x, x∗), (y, y∗) ∈ T . Then, as proved above

(x∗, x) ∈ ∂h(x, x∗), (y∗, y) ∈ ∂h(y, y∗).

As ∂h is monotone,

〈(x, x∗)− (y, y∗), (x∗, x)− (y∗, y)〉 ≥ 0,

which gives 〈x− y, x∗ − y∗〉 ≥ 0. Hence, T is monotone.
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To prove maximal monotonicity of T , take (z, z∗) ∈ X ×X∗ and assume that

〈x− z, x∗ − z∗〉 ≥ 0, ∀(x, x∗) ∈ T. (29)

Using Theorem 3.1 and Proposition 3.2 we know that

infh(z,z∗)(u, u
∗) +

1

2
‖u‖2 + 1

2
‖u∗‖2 = 0.

Therefore, there exists a minimizing sequence {(uk, u
∗
k)} such that

h(z,z∗)(uk, u
∗
k) +

1

2
‖uk‖2 +

1

2
‖u∗

k‖2 <
1

k2
, k = 1, 2, . . . (30)

Note that the sequence {(uk, u
∗
k)} is bounded and

h(z,z∗)(uk, u
∗
k)− 〈uk, u

∗
k〉 ≤ h(z,z∗)(uk, u

∗
k) + ‖uk‖ ‖u∗

k‖

≤ h(z,z∗)(uk, u
∗
k) +

1

2
‖uk‖2 +

1

2
‖u∗

k‖2.

Combining the two above inequalities we obtain

h(z,z∗)(uk, u
∗
k) < 〈uk, u

∗
k〉+

1

k2
.

Now applying Theorem 3.4, we conclude that there for each k there exists some (ūk, ū
∗
k)

such that

h(z,z∗)(ūk, ū
∗
k) = 〈ūk, ū

∗
k〉, ‖ūk − uk‖ < 1/k, ‖ū∗

k − u∗
k‖ < 1/k.

Then,
(x̄k, x̄

∗
k) := (ūk + z, ū∗

k + z∗) ∈ T,

and from (29)
〈ūk, ū

∗
k〉 = 〈x̄k − z, x̄∗

k − z∗〉 ≥ 0.

The duality product is uniformly continuous on bounded sets. Since {(uk, u
∗
k)} is bounded

and limk→∞ ‖uk − ūk‖ = limk→∞ ‖u∗
k − ū∗

k‖ = 0 we conclude that

lim inf
k→∞

〈uk, u
∗
k〉 ≥ 0.

Using (30) and the fact that h majorizes the duality product, we have

0 ≤ 〈uk, u
∗
k〉+

1

2
‖uk‖2 +

1

2
‖u∗

k‖2 ≤ h(z,z∗)(uk, u
∗
k) +

1

2
‖uk‖2 +

1

2
‖u∗

k‖2 <
1

k2
.

Hence, 〈uk, u
∗
k〉 < 1/k2 and lim supk→∞ 〈uk, u

∗
k〉 ≤ 0, which implies limk→∞ 〈uk, u

∗
k〉 = 0.

Combining this result with the above inequalities we conclude that

lim
k→∞

(uk, u
∗
k) = 0.

Therefore, limk→∞ (ūk, ū
∗
k) = 0 and {(x̄k, x̄

∗
k)} converges to (z, z∗). As h(x̄k, x̄

∗
k) = 〈x̄k, x̄

∗
k〉

and h is lower semicontinuous,
h(z, z∗) ≤ 〈z, z∗〉.
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which readily implies h(z, z∗) = 〈z, z∗〉. Therefore (z, z∗) ∈ T and T is maximal monotone.

For proving item 3., note that as T is maximal monotone, Fitzpatrick function ϕT is
minimal in the family of functions which majorizes the duality product and at T are
equal to the duality product. In particular, the first inequality in item 3. holds and
h ≥ ϕT . Hence,

ϕ∗
T ≥ h∗,

which readily implies the second inequality in item 3.

For proving item 4., assume that η > ε > 0 and

〈x− y, x∗ − y∗〉 ≥ −ε, ∀(y, y∗) ∈ T.

Fitzpatrick function of T is

ϕT (x, x
∗) = sup

(y,y∗)∈T

〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉

= sup
(y,y∗)∈T

−〈x− y, x∗ − y∗〉+ 〈x, x∗〉.

Therefore
ϕT (x, x

∗) ≤ 〈x, x∗〉+ ε < 〈x, x∗〉+ η.

Now, use item 3. and Theorem 3.4 to conclude that there exists (x̄λ, x̄
∗
λ) such that

ϕT (x̄λ, x̄
∗
λ) = 〈x̄λ, x̄

∗
λ〉, ‖x− x̄λ‖ < λ, ‖x∗ − x̄∗

λ‖ <
η

λ
.

The firs equality above says that (x̄λ, x̄
∗
λ) ∈ T , which ends the proof of the theorem.

Corollary 4.3. Let T : X ⇉ X∗ be maximal monotone. If there exists h ∈ FT , that is,
h : X ×X∗ → R̄ proper, convex, lower semicontinuous and

h(x, x∗) ≥ 〈x, x∗〉 ∀(x, x∗) ∈ X ×X∗

with equality in (x, x∗) ∈ T , such that

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉 ∀(x∗, x∗∗) ∈ X∗ ×X∗∗,

then, T has the strict Brøndsted-Rockafellar property and the conjugate of ϕT , the Fitz-
patrick function associated to T , majorizes the duality product in X∗ ×X∗∗

ϕ∗
T (x

∗, x∗∗) ≥ 〈x∗, x∗∗〉 ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

The duality product is continuous in X ×X∗. Therefore, if a convex function majorizes
the duality product then the convex closure of this function also majorizes the duality
product and has the same conjugate. This fact can be used to remove the assumption of
lower semicontinuity of h in Theorem 4.2.

Corollary 4.4. Suppose that h : X ×X∗ → R̄ is convex and

h (x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

Define
T = {(x, x∗) ∈ X ×X∗ | h∗ (x∗, x) = 〈x, x∗〉}.

Then
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1. T is maximal monotone.

2. Let ϕT be Fitzpatrick function associated with T . Then

ϕT (x, x
∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

ϕ∗
T (x

∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.
(31)

3. The maximal monotone operator T satisfies a strict Brøndsted-Rockafellar property:
If η > ε and x∗ ∈ T ε(x), that is,

〈x− y, x∗ − y∗〉 ≥ −ε, ∀(y, y∗) ∈ T,

then, for any λ > 0 there exists (x̄λ, x̄
∗
λ) ∈ X ×X∗ such that

x̄∗
λ ∈ T (x̄λ), ‖x− x̄λ‖ < λ, ‖x∗ − x̄∗

λ‖ <
η

λ
.
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