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This paper generalizes the proximal point method using Bregman distances to solve convex and qua-
siconvex optimization problems on Hadamard manifolds. We will proved that the sequence generated
by our method is well defined and converges to an optimal solution of the problem. Also, we obtain
the same convergence properties for the classical proximal method, applied to quasiconvex problems.
Finally, we give some examples of Bregman distances in non-Euclidean spaces.

Keywords: Proximal point algorithms, Hadamard manifolds, Bregman distances, Bregman functions

1. Introduction

Let consider the problem
min
x∈X

f(x),

where f : IRn → IR is a convex function on a closed convex set X of IRn. The prox-
imal point algorithm with Bregman distance, henceforth abbreviated PBD algorithm,
generates a sequence {xk} defined by

Given x0 ∈ S,

xk = arg min
x∈X∩S̄

{f(x) + λkDh(x, x
k−1)},

where h is a Bregman function with zone S, such that X ∩ S̄ 6= φ, λk is a positive
parameter and Dh is a Bregman distance defined as

Dh(x, y) = h(x)− h(y)− 〈∇f(y), x− y〉,

where 〈, 〉 denotes the usual inner product on IRn. Convergence and rate of conver-
gence results, under appropriate assumptions on the problem, have been proved by sev-
eral authors for certain choices of the regularization parameters λk, (see, for example,
[5, 7, 19, 20]). That algorithm has also been generalized for variational inequalities
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problems in Hilbert and Banach spaces, see [3, 4, 16]. Variational Inequalities Problems
arise naturally in several Engineering applications and recover optimization problems as
a particular case.
On the other hand, generalization of known methods in optimization from Euclidean
space to Riemannian manifolds is in a certain sense natural, and advantageous in some
cases. For example, we can consider the intrinsic geometry of the manifold, and con-
strained problems can be seen as unconstrained ones. Another advantage is that certain
non convex optimization problems become convex or quasiconvex through the introduc-
tion of an adequate Riemannian metric on the manifold, so we can use more efficient
optimization techniques, see [10, 13, 15, 21, 27, 31, 33], and the references therein.
Besides we can use Riemannian metrics to introduce new algorithms in interior point
methods, (see, for example, [8, 12, 26, 28, 30]).

In this paper we generalize the PBD algorithm to solve quasiconvex and convex opti-
mization problems on Hadamard manifolds. Our approach is new but it is related to the
work of Ferreira and Oliveira [14]. In that paper, the authors generalized the proximal
point method using the intrinsic Riemannian distance for those manifolds. Here, we work
with Bregman distances and consider the following regularization parameter conditions

lim
k→+∞

λk = 0, with λk > 0, (1)

0 < λk < λ̄. (2)

For λk satisfying (1), we obtain the convergence of the PBD algorithm for quasiconvex
optimization problems and for λk satisfying (2) we obtain the convergence of the PBD
algorithm for convex optimization problems. The notion of quasiconvexity appears in
the value theory in economics [1, 17, 32], in control theory [2] and, recently, in dynamical
systems [18].

The paper is divided as follows. In Section 2 we give the notation and some results on Rie-
mannian geometry that we will use along the paper. In Section 3, we recall some facts on
convex analysis on Hadamard manifolds. In Section 4 the definition of Bregman function
is introduced, besides some properties. Section 5 presents the Moreau-Yosida regular-
ization applied to continuous quasiconvex functions, by considering Bregman distances.
In Section 6 we introduce the PDB algorithm with Bregman Distances to solve mini-
mization problems on Hadamard manifolds; we prove the convergence of the sequence
generated by the algorithm, for continuous quasiconvex functions, under the condition
(1) and for convex functions, when the regularization parameter verifies (2). Section 7
is an application of the precedent developments to the classical proximal algorithm for
continuous quasiconvex functions, based on the Riemannian distance, thus extending the
convex results of [14]. In Section 8 are presented some examples of Bregman distances in
non Euclidean spaces, in the following section we give our conclusions and future works.

2. Some Tools of Riemannian Geometry

In this section we recall some fundamental properties and notation on Riemannian man-
ifolds. Those basic facts can be seen, for example, in [11] and [29].

Let M be a differential manifold of finite dimension n. We denote by TxM the tangent
space of M at x and TM =

⋃

x∈M TxM . TxM is a linear space and has the same
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dimension of M . Because we restrict ourselves to real manifolds, TxM is isomorphic to
IRn. If M is endowed with a Riemannian metric g, then M is a Riemannian manifold
and we denote it by (M,G) or only by M when no confusion can arise, where G denotes
the matrix representation of the metric g. The inner product of two vectors u, v ∈ TxS
is written 〈u, v〉x := gx(u, v), where gx is the metric at the point x. The norm of a vector

v ∈ TxS is defined by ||v||x := 〈v, v〉
1/2
x . The metric can be used to define the length

of a piecewise smooth curve α : [t0, t1] → S joining α(t0) = p′ to α(t1) = p through
L(α) =

∫ t1
t0

‖α′(t)‖dt. Minimizing this length functional over the set of all curves we
obtain a Riemannian distance d(p′, p) which induces the original topology on M .

Given two vector fields V andW inM (a vector field V is an application ofM in TM), the
covariant derivative of W in the direction V is denoted by ∇VW . In this paper ∇ is the
Levi-Civita connection associated to (M,G). This connection defines an unique covariant
derivative D/dt, where for each vector field V , along a smooth curve α : [t0, t1] → M ,
another vector field is obtained, denoted by DV/dt. The parallel transport along α
from α(t0) to α(t1), denoted by Pα,t0,t1 , is an application Pα,t0,t1 : Tα(t0)M → Tα(t1)M
defined by Pα,t0,t1(v) = V (t1) where V is the unique vector field along α such that
DV/dt = 0 and V (t0) = v. Since that ∇ is a Riemannian connection, Pα,t0,t1 is a linear
isometry, furthermore P−1

α,t0,t1 = Pα,t1,t0 and Pα,t0,t1 = Pα,t,t1Pα,t0,t, for all t ∈ [t0, t1]. A
curve γ : I →M is called a geodesic if Dγ′/dt = 0. A Riemannian manifold is complete
if its geodesics are defined for any value of t ∈ IR. Let x ∈ M , the exponential map
expx : TxM → M is defined as expx(v) = γ(1). If M is complete, then expx is defined
for all v ∈ TxM. Besides, there is a minimal geodesic (its length is equal to the distance
between the extremes).

Given the vector fields X, Y, Z on M, we denote by R the curvature tensor defined by
R(X, Y )Z = ∇Y∇XZ−∇X∇YZ+∇[X,Y ]Z, where [X, Y ] := XY −Y X is the Lie bracket.
Now, the sectional curvature with respect to X and Y is defined by

K(X, Y ) =
〈R(X, Y )Y,X〉

‖X‖2‖Y ‖2 − 〈X, Y 〉2
.

The complete simply connected Riemannian manifolds with non positive curvature are
denominated Hadamard manifolds.

Theorem 2.1. LetM be a Hadamard manifold. ThenM is diffeomorphic to the Euclid-
ian space IRn, n = dimM. More precisely, at any point x ∈M, the exponential mapping
expx : TxM →M is a global diffeomorphism.

Proof. See [29], Theorem 4.1, page 221.

A consequence of the preceding theorem is that Hadamard manifolds have the property of
uniqueness of geodesic between any two points. Another useful property is the following.
Let [x, y, z] a geodesic triangle, which consists of vertices and the geodesics joining them.
We have:

Theorem 2.2. Given a geodesic triangle [x, y, z] in a Hadamard manifold, it holds that:

d2(x, z) + d2(z, y)− 2〈exp−1
z x, exp−1

z y〉z ≤ d2(x, y) (3)

Proof. See [29], Proposition 4.5, page 223.
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The gradient of a differentiable function f : M → IR, grad f , is a vector field on M
defined through df(X) = 〈grad f,X〉 = X(f), where X is also a vector field on M . The
Hessian of a twice differentiable function f at x with direction v ∈ TxM is given by

Hf
x (v) =

D

dt
(grad f) (x) = ∇v grad f (x).

3. Convex Analysis on Hadamard Manifolds

In this section we give some definitions and results of Convex Analysis on Hadamard
manifolds. We refer the reader to [14] and [33] for more details.

Definition 3.1. Let M be a Hadamard manifold. A subset A is said convex in M if,
for any pair of points the geodesic joining these points is contained in A, that is, given
x, y ∈ A and γ : [0, 1] → M , the geodesic curve such that γ(0) = x, γ(1) = y verifies
γ(t) ∈ A, for all t ∈ [0, 1].

Definition 3.2. Let A be a convex set in a Hadamard manifold M and f : A → IR be
a real function. f is called convex on A if for all x, y ∈ A, t ∈ [0, 1], it holds that

f(γ(t)) ≤ tf(y) + (1− t)f(x),

where γ : [0, 1] → IR is the geodesic curve such that γ(0) = x and γ(1) = y. When the
preceding inequality is strict, for x 6= y and t ∈ (0, 1), the function f is said to be strictly
convex.

Theorem 3.3. Let M be a Hadamard manifold and A be a convex set in M . The
function f : A → IR is convex if and only if ∀x, y ∈ A and γ : [0, 1] → M (the geodesic
joining x to y) the function f(γ(t)) is convex on [0, 1].

Proof. See [33], page 61, Theorem 2.2.

A function f : A→ IR is called concave if −f is convex. Furthermore, if f is both convex
and concave then f is said to be linear affine on A. Observe that a twice differentiable
function f on an open convex set A is linear affine if and only if 〈Hf

x (v), v〉x = 0, for
all x ∈ A and v ∈ TxM. Indeed, 〈Hf

x (v), v〉x = 0, if and only if 〈Hf
x (v), v〉x ≥ 0 and

〈Hf
x (v), v〉x ≤ 0, equivalently f is convex and concave. In other words, f is linear affine

if and only if the vector field grad f is parallel.

Proposition 3.4. Let M be a Hadamard manifold and h : M → IR a differentiable
function. Let y ∈M and define g :M → IR such that

g(x) = 〈grad h(y), exp−1
y x〉y,

for x ∈M. Then the following statements are true:

i. grad g(x) = Pγ,0,1 grad h(y), where γ : [0, 1] → M is the geodesic curve such that
γ(0) = y and γ(1) = x.

ii. g is an affine linear function in M.
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Proof. i. Let v ∈ TxM (arbitrary). Consider the variation of the geodesic α : [0, 1] ×
(−ǫ, ǫ) →M such that

α(t, s) = expy(tu(s)),

where u(s) = exp−1
y x+ sPγ,1,0 v. Then

(dg)xv =
d

ds
(g(α(1, s))) |s=0

=
d

ds
〈gradh(y), u(s)〉 |s=0

= 〈gradh(y), u′(0)〉

= 〈gradh(y), Pγ,1,0v〉

= 〈Pγ,0,1 gradh(y), v〉.

Therefore,
grad g(x) = Pγ,0,1 gradh(y).

ii. The result follows from i.

Let M be a Hadamard manifold and let f :M → IR be a convex function. Take y ∈M,
the vector s ∈ TyM is said to be a subgradient of f at y if

f(x) ≥ f(y) + 〈s, exp−1
y x〉y, (4)

for all x ∈M . The set of all subgradients of f at y is called the subdifferential of f at y
and is denoted by ∂f(y).

Theorem 3.5. LetM be a Hadamard manifold and let f :M → IR be a convex function.
Then, for any y ∈M, there exists s ∈ TyM such that ∀x ∈M (4), is true.

Proof. See [14], Theorem 3.3.

From the previous theorem the subdifferential ∂f(x) of a convex function f at x ∈M is
nonempty.

Theorem 3.6. Let M be a Hadamard manifold and f : M → IR be a convex function.
Then 0 ∈ ∂f(x) if and only if x is a minimum point of f in M.

Proof. Immediate.

Definition 3.7. Let A be a convex set in a Hadamard manifold M and f : A → IR be
a real function. f is called quasiconvex on A if for all x, y ∈ A, t ∈ [0, 1], it holds that

f(γ(t)) ≤ max{f(x), f(y)},

for the geodesic γ : [0, 1] → IR, such that γ(0) = x and γ(1) = y.

Theorem 3.8. Let A be a convex set in a Hadamard manifold M . The function f :
A → IR is quasiconvex if and only if the set {x ∈ A : f(x) ≤ c} is convex for each
c ∈ IR.

Proof. See [33], page 98, Theorem 10.2.
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Theorem 3.9. Let C be a closed convex set in a Hadamard manifold M . Take y ∈ M
arbitrary, then there exists a unique projection z = PCy. Furthermore, the following
inequality holds

〈exp−1
z y, exp−1

z x〉 ≤ 0, (5)

for all x ∈ C.

Proof. See in [14], Propositions 3.1 and 3.2.

4. Bregman Distances and Functions on Hadamard Manifolds

To construct generalized proximal point algorithms with Bregman distances for solving
optimization problems on Hadamard manifolds, it is necessary to extend the definitions
of Bregman distances and Bregman functions to that framework. Starting from Censor
and Lent [6] definition, we propose the following.
Let M be a Hadamard manifold and h :M → IR be a strictly convex and differentiable
function. Then, the Bregman distance associated to h, denoted by Dh, is defined as a
function Dh(., .) :M ×M → IR such that

Dh(x, y) := h(x)− h(y)− 〈gradh(y), exp−1
y x〉y. (6)

Notice that the expression of the Bregman distance depends on the definition of the
metric. Some examples for different manifolds will be given in Section 8. Let us adopt
the following notation for the partial level sets of Dh. For α ∈ IR, take

Γ1(α, y) := {x ∈M : Dh(x, y) ≤ α},

Γ2(x, α) := {y ∈M : Dh(x, y) ≤ α}.

Definition 4.1. Let M be a Hadamard manifold. A real function h :M → IR is called
a Bregman function with zone M if:

a. h is continuous differentiable on M ;

b. h is strictly convex on M ;

c. For all α ∈ IR the partial level sets Γ1(α, y) and Γ2(x, α) are bounded for every
y ∈M and x ∈M , respectively.

We denote the family of Bregman functions by B.

Lemma 4.2. Let h ∈ B. Then

i. gradDh(., y)(x) = gradh(x)−Pγ,0,1 grad h(y), for all x, y ∈M , where γ : [0, 1] →
M is the geodesic curve such that γ(0) = y and γ(1) = x.

ii. Dh(., y) is strictly convex on M for all y ∈M .

iii. For all x, y ∈M , Dh(x, y) ≥ 0 and Dh(x, y) = 0 if and only if x = y.

Proof. i. From Proposition 3.4, i, we obtain the result.

ii. As h is strictly convex in M and 〈gradh(y), exp−1
y x〉y, is a linear affine function

(Proposition 3.4 ii ) then the result follows.

iii. Use, again, the strict convexity of h.
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Observe thatDh is not a distance in the usual sense of the term. In general, the triangular
inequality is not valid, as the symmetry property.
From now on, we use the notation gradDh(x, y) to mean gradDh(., y)(x). So, if γ is the
geodesic curve such that γ(0) = y and γ(1) = x, from Lemma 4.2 i, we obtain

gradDh(x, y) = gradh(x)− Pγ,0,1 gradh(y).

Proposition 4.3. Let h ∈ B, then

i. If limk→+∞ yk = y∗ ∈M, then limk→+∞Dh(y
∗, yk) = 0;

ii. If limk→+∞Dh(z
k, yk) = 0, limk→+∞ yk = y∗ ∈ M and {zk} is bounded then

limk→+∞ zk = y∗.

Proof. i. Let y, y∗ ∈ M, then Dh(y
∗, yk) = h(y∗) − h(yk) − 〈gradh(yk), exp−1

yk
y∗〉yk .

Taking k → +∞ and using Definition 4.1 a, we obtain the result.

ii. Let z̄ ∈M an arbitrary limit point of {zk}, then there exists {zkj} such that zkj → z̄,
when j → +∞. Therefore Dh(z

kj , ykj) = h(zkj) − h(ykj) − 〈gradh(ykj), exp−1

ykj
zkj〉ykj .

Taking j → +∞ and using Definition 4.1 a, we obtain that Dh(z̄, y
∗) = 0. From Lemma

4.2 iii, we get z̄ = y∗. Thus, there exists an unique limit point of {zk} and therefore the
aimed result is obtained.

Definition 4.4. Let Ω ⊂M , and let y ∈M . A point Py ∈ Ω for which

Dh(Py, y) = min
x∈Ω

Dh(x, y) (7)

is called a Dh−projection of the point y on the set Ω.

The next Lemma furnishes the existence and uniqueness ofDh−projection for a Bregman
function, under an appropriate assumption on Ω.

Lemma 4.5. Let Ω ⊂ M a nonempty closed convex set and h ∈ B. Then, for any
y ∈M, there exists a unique Dh−projection Py of the point y on Ω.

Proof. For any x ∈ Ω, the set

B := {z ∈M : Dh(z, y) ≤ Dh(x, y)}

is bounded (from Definition 4.1 c) and closed (because Dh(., y) is continuous in M , due
to Definition 4.1 a). Therefore, the set

T := Ω ∩B

is nonempty and bounded. Now, as the intersection of two closed sets is closed, then T
is also closed, hence compact. Consequently, Dh(z, y), a continuous function in z, takes
its minimum on the compact set T at some point, let denote it by x∗. For every z ∈ Ω
which lies outside B

Dh(x, y) < Dh(z, y);

hence, x∗ satisfies (7). The uniqueness follows from the strict convexity of Dh(., y),
therefore

x∗ = Py.
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Lemma 4.6. Let h ∈ B and y ∈ M . Let Py the Dh−projection on some nonempty
closed convex set Ω. Then, the function

G(x) := Dh(x, y)−Dh(x, Py)

is linear affine on M .

Proof. From (6)

G(x) = h(Py)− h(y) + 〈gradh(Py), exp−1
Py x〉Py − 〈gradh(y), exp−1

y x〉y.

Due to the affine linearity of the functions 〈gradh(Py), exp−1
Py x〉Py and 〈gradh(y),

exp−1
y x〉y in x the result follows.

Proposition 4.7. Let h ∈ B and Ω ⊂M a nonempty closed convex set. Let y ∈M and
Py denotes the Dh−projection of y on Ω. Then, for any x ∈ Ω, the following inequality
is true

Dh(Py, y) ≤ Dh(x, y)−Dh(x, Py).

Proof. Let γ : [0, 1] → M be the geodesic curve such that γ(0) = Py and γ(1) = x.
Due to Lemma 4.6 the function

G(x) = Dh(x, y)−Dh(x, Py)

is linear affine on M. Then in particular G(γ(t)) is convex for t ∈ (0, 1) (see Theorem
3.3). Thus,

G(γ(t)) ≤ tG(x) + (1− t)G(Py),

which gives,

Dh(γ(t), y)−Dh(γ(t), Py) ≤ t(Dh(x, y)−Dh(x, Py)) +Dh(Py, y)− tDh(Py, y),

where we took in account that Dh(Py, Py) = 0. The above inequality is equivalent to

(1/t) (Dh(γ(t), y)−Dh(Py, y))− (1/t)Dh(γ(t), Py)

≤ Dh(x, y)−Dh(x, Py)−Dh(Py, y).
(8)

As Ω is convex, and x, Py ∈ Ω, we have γ(t) ∈ Ω for all t ∈ (0, 1). Then, use the fact
that Py is the projection to get

(1/t)(Dh(γ(t), y)−Dh(Py, y)) ≥ 0.

Using this inequality in (8) we obtain

−(1/t)Dh(γ(t), Py) ≤ Dh(x, y)−Dh(x, Py)−Dh(Py, y).

Now, as Dh(., z) is differentiable for all z ∈M , we can take the limit in t, obtaining

−〈gradDh(Py, Py), exp
−1
Py x〉Py ≤ Dh(x, y)−Dh(x, Py)−Dh(Py, y).

Clearly, the left side is null, leading to the aimed result.
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5. Regularization

Let M be a Hadamard manifold and f : M → IR a real function. Let h : M → IR a
differentiable function in M . For λ > 0, the Moreau-Yosida regularization fλ : M → IR
of f is defined by

fλ(y) = inf
x∈M

{f(x) + λDh(x, y)} (9)

where Dh(x, y) is given in (6). Now, we prove the existence of a (non necessarily unique)
solution to (9), under some conditions on h and f .

Proposition 5.1. If f : M → IR is a bounded below quasiconvex and continuous func-
tion and h ∈ B then, for every y ∈M and λ > 0 there exists a point, denoted by xf (y, λ),
such that

fλ(y) = f(xf (y, λ)) + λDh(xf (y, λ), y). (10)

Proof. Let β a lower bound for f on M , then

f(x) + λDh(x, y) ≥ β + λDh(x, y),

for all x ∈ M. It follows from Definition 4.1 c, that the level sets of the function f(.) +
λDh(., y) are bounded. Also, this function is continuous on M , due to Definition 4.1 a,
and the hypothesis on f . So, the level sets of (f(.)+λDh(., y)) are closed, hence compact.
Now, from continuity and compactness arguments, f(.) + λDh(., y) has a minimum on
M. The equality (10) follows from (9).

Now, we let a different condition on h that also ensures the existence of solution to (9).
Let us introduce the following definition.

Definition 5.2. A function g :M → IR is 1−coercive at y ∈M if

lim
d(x,y)→+∞

g(x)

d(x, y)
= +∞.

Note that if g : M → IR is a continuous 1−coercive function at y ∈ M , then it is easy
to show that the minimizer set of g on M is nonempty.

Lemma 5.3. If f : M → IR is bounded below, λ > 0, and h : M → IR is 1−coercive at
y ∈M , then the function f(.) + λDh(., y) :M → IR is 1−coercive at y ∈M .

Proof. As above, let β a lower bound for f . Then:

f(x) + λDh(x, y)

d(x, y)
≥

β

d(x, y)
+ λ

Dh(x, y)

d(x, y)

=
β

d(x, y)
+ λ

h(x)

d(x, y)
− λ

h(y)

d(x, y)
− λ

〈

gradh(y),
exp−1

y x

d(x, y)

〉

y

≥
β

d(x, y)
+ λ

h(x)

d(x, y)
− λ

h(y)

d(x, y)
− λ|| gradh(y)||,
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where the equality comes from the definition of Dh, and the last inequality results from
the application of Cauchy inequality, and the fact that || exp−1

y x|| = d(x, y). Taking
d(x, y) → +∞, we use the 1-coercivity assumption of h at y, to get

lim
d(x,y)→+∞

(f(.) + λDh(., y))(x)

d(x, y)
= +∞.

Proposition 5.4. Let h : M → IR be a 1−coercive strictly convex function at y ∈ M ,
f : M → IR a continuous quasiconvex function and bounded below. Then, there exists
some point xf (y, λ) such that

fλ(y) = f(xf (y, λ)) + λDh(xf (y, λ), y)

Proof. The result follows from the Lemma above.

6. Proximal Point Algorithm with Bregman Distances

We are interested in solving the optimization problem:

(p) min
x∈M

f(x)

where M is a Hadamard manifold. The main convergence results will be given when f
is a continuous quasiconvex or a convex function on M . The PBD algorithm is defined
as

x0 ∈M, (11)

xk ∈ argmin
x∈M

{f(x) + λkDh(x, x
k−1)}, (12)

where h is a Bregman function with zoneM ,Dh is as in (6) and λk is a positive parameter.
Observe that if f is a bounded below quasiconvex and continuous function, the above
iteration exists, see Proposition 5.1.
In the particular case where M is the Euclidean space IRn, and h(x) = (1/2)xTx, we
have

xk ∈ arg min
x∈IRn

{f(x) + (λk/2)||x− xk−1||2}.

Therefore, the PBD algorithm is another natural generalization of the proximal point
algorithm on IRn, see [14].
We will use the following parameter conditions to the PBD algorithm:

0 < λk < λ̄, (13)

or lim
k→+∞

λk = 0, with λk > 0, (14)

Note that (13) implies
+∞
∑

k=1

(1/λk) = +∞.

Observe that the above condition is a minimal assumption in Euclidean and in Banach
spaces in proximal point methods. Next, we assume the following assumption.

Assumption 6.1. The optimal set of the problem (p), denoted by X∗, is nonempty.
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6.1. Convergence Results

In this subsection we prove the convergence of the proposed algorithm. Our results are
motivated by the works [19, 7, 5].

6.1.1. The quasiconvex case

Theorem 6.2. Assume Assumption 6.1 and that f is a continuous quasiconvex function.
Then, the sequence {xk}, generated by the PBD algorithm, is bounded.

Proof. Since xk satisfies (12) we have

f(xk) + λkDh(x
k, xk−1) ≤ f(x) + λkDh(x, x

k−1), ∀x ∈M. (15)

Hence, ∀x ∈M such that f(x) ≤ f(xk) is true that

Dh(x
k, xk−1) ≤ Dh(x, x

k−1).

Therefore xk is the unique Dh−projection of xk−1 on the closed convex set (see Theorem
3.8)

Ω := {x ∈M : f(x) ≤ f(xk)}.

Using Proposition 4.7 and the fact that X∗ ⊂ Ω we have

0 ≤ Dh(x
k, xk−1) ≤ Dh(x

∗, xk−1)−Dh(x
∗, xk) (16)

for every x∗ ∈ X∗. Thus
Dh(x

∗, xk) ≤ Dh(x
∗, xk−1). (17)

This means that {xk} is Dh− Fejér monotone with respect to set X∗. We can now apply
Definition 4.1 d, to see that xk is bounded, because

xk ∈ Γ2(x
∗, α),

with α = Dh(x
∗, x0).

Proposition 6.3. Under the assumptions of the precedent theorem, the following facts
are true

a. For all x∗ ∈ X∗ the sequence {Dh(x
∗, xk)} is convergent;

b. limk→+∞Dh(x
k, xk−1) = 0;

c. {f(xk)} is nonincreasing;

d. If limj→+∞ xkj = x̄ then, limj→+∞ xkj+1 = x̄.

Proof. a. From (17), {Dh(x
∗, xk)} is a bounded below nondecreasing sequence and

hence convergent.

b. Taking limit when k goes to infinity in (16) and using the previous result we obtain
limk→+∞Dh(x

k, xk−1) = 0, as desired.

c. Considering x = xk−1 in (15) it follows that

0 ≤ Dh(x
k, xk−1) ≤ (1/λk)(f(x

k−1)− f(xk)),

since Dh(x
k−1, xk−1) = 0. Thus {f(xk)} is nondecreasing. d. Taking zk = xkj+1 and

yk = xkj in Proposition 4.3 ii, we obtain the result.
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Theorem 6.4. Under Assumption 6.1 and that f is a continuous quasiconvex function,
any limit point of {xk} generated by the PBD algorithm with λk satisfying (14) is an
optimal solution of (p).

Proof. Let x∗ ∈ X∗ and let x̄ ∈ M be a cluster point of {xk} then, there exists a
subsequence {xkj} such that

lim
j→+∞

xkj = x̄.

As xkj is a solution of (12) we have

f(xkj) + λkjDh(x
kj , xkj−1) ≤ f(x∗) + λkjDh(x

∗, xkj−1).

This rewrites

λkj(Dh(x
kj , xkj−1)−Dh(x

∗, xkj−1)) ≤ f(x∗)− f(xkj).

Using the differential characterization of convex functions for Dh(., x
kj−1) gives:

λkj〈gradDh(x
∗, xkj−1), exp−1

x∗ xkj〉x∗ ≤ f(x∗)− f(xkj).

Taking, above, j → +∞, considering the hypothesis (14) and using the continuity of
gradDh(x

∗, .) and exp−1
x∗ we obtain

f(x̄) ≤ f(x∗).

Therefore, any limit point is an optimal solution of the problem (p).

Theorem 6.5. Under Assumption 6.1 and that f is a quasiconvex and continuous func-
tion, the sequence {xk} generated by the PBD algorithm, with λk satisfying (14), con-
verges to an optimal solution of (p).

Proof. From Theorem 6.2 {xk} is bounded so there exists a convergent subsequence.
Let {xkj} be a subsequence of {xk} such that limj→+∞ xkj = x∗. From Proposition 4.3 i,
it is true that

lim
j→+∞

Dh(x
∗, xkj) = 0.

Now, from Theorem 6.4, x∗ is an optimal solution of (p), so from Proposition 6.3 a,
Dh(x

∗, xk) is a convergent sequence, with the subsequence converging to 0, hence the
overall sequence converges to 0, that is,

lim
k→+∞

Dh(x
∗, xk) = 0.

To prove that {xk} has a unique limit point let x̄ ∈ X∗ be another limit point of {xk}.
Then liml→+∞Dh(x

∗, xkl) = 0 with liml→+∞ xkl = x̄. So, from Proposition 4.3 ii, x∗ = x̄.
It follows that {xk} cannot have more than one limit point and therefore,

lim
k→+∞

xk = x∗ ∈ X∗.
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6.1.2. The convex case

Theorem 6.6. Suppose that Assumption 6.1 is satisfied and that f is convex. If λk
satisfies (13) then, any limit point of {xk} is an optimal solution of the problem (p).

Proof. Let x̄ ∈M be a limit point of {xk} then, there exists a subsequence {xkj} such
that

lim
j→+∞

xkj = x̄.

From (12) and Theorem 3.6

0 ∈ ∂[f(.) + λkj+1Dh(., x
kj)](xkj+1),

or,
−λkj+1 gradDh(x

kj+1, xkj) ∈ ∂f(xkj+1).

Let γkj be the geodesic curve such that γkj(0) = xkj and γkj(1) = xkj+1. By Lemma
4.2 i, we obtain

λkj+1[Pγkj ,0,1
gradh(xkj)− gradh(xkj+1)] ∈ ∂f(xkj+1).

Let x∗ be an optimal solution of (p). Using (4) for x = x∗ and y = xkj+1 we have

f(x∗)− f(xkj+1) ≥ 〈ykj , exp−1

xkj+1 x
∗〉xkj+1 (18)

where,
ykj := λkj+1[Pγkj ,0,1

gradh(xkj)− gradh(xkj+1)].

On the other hand, from Cauchy inequality

|〈ykj , exp−1

xkj+1 x
∗〉xkj+1| ≤ ||ykj ||xkj+1|| exp−1

xkj+1 x
∗||xkj+1 .

We have || exp−1

xkj+1 x
∗||xkj+1 = d(x∗, xkj+1), also, from Theorem 6.2, there exists M > 0

such that
|〈ykj , exp−1

xkj+1 x
∗〉xkj+1| ≤M ||ykj ||xkj+1 .

Using this fact in the inequality (18) we obtain

f(x∗)− f(xkj+1) ≥ −M ||ykj ||xkj+1 . (19)

To conclude the proof we will show that

lim
j→+∞

||ykj ||xkj+1 = 0.

Indeed, using the continuity of the parallel transport, continuity of the gradient field,
Proposition 6.3 d, and the boundedness of {λk} we obtain limj→+∞ ||ykj ||xkj+1 = 0, as
wanted. Finally, taking j → +∞ in (19), use the continuity of f to get

f(x∗) ≥ f(x̄).

Therefore, any limit point is an optimal solution of the problem (p).

Theorem 6.7. Under Assumptions 6.1 and that f is convex, the sequence {xk} gener-
ated by the PBD algorithm, with λk satisfying (13), converges to an optimal solution of
(p).

Proof. Analogous to the proof of Theorem 6.5.
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7. Proximal Methods with Riemannian Distances

In this section we adapt the previous results to (classical) proximal methods on Hadamard
manifolds, based on the Riemannian distance function. Observe that in these manifolds
the distance function is convex (see [29]). Our results are an extension of [14], who
considered the convex case.

7.1. The quasiconvex case

We consider, at first, the Moreau-Yosida regularization. For λ > 0, let:

ϕλ(y) = inf
x∈M

{f(x) +
λ

2
d2(x, y)}

We have:

Proposition 7.1. If f : M → IR is a bounded below continuous quasiconvex function,
then, for every y ∈M and λ > 0, there exists some point, denoted by x(y, λ), such that

ϕλ(y) = f(x(y, λ)) +
λ

2
d2(x(y, λ), y).

Proof. Clearly, the function d2(., .) is 1-coercive. Therefore, Lemma 5.3 and Proposition
5.4 are easily adaptable.

Now, we will present the convergence results, for the PPA algorithm, defined by

x0 ∈M, (20)

xk ∈ argmin
x∈M

{f(x) + (λk/2)d
2(x, xk−1)}. (21)

Observe, analogously to the PBD algorithm, that if f is a bounded below quasiconvex
and continuous function, the above iteration exists.

Theorem 7.2. Assume Assumption 6.1 and that f is a continuous quasiconvex function.
Then, the sequence {xk}, generated by the PPA algorithm, is bounded.

Proof. Regarding Theorem 6.2, and letting Dh(., .) as d
2(., .), we see that all the steps of

the proof can be copied, the unique point that deserves a justification being the inequality
(16), which writes here

0 ≤ d2(xk, xk−1) ≤ d2(x∗, xk−1)− d2(x∗, xk) (22)

for every x∗ ∈ X∗. Indeed, it is a consequence of Theorem 2.2 and Theorem 3.9: take,
in (3), x = x∗, y = xk−1 and z = xk, and using (5) we obtain (22).

Proposition 7.3. Under the assumptions of the precedent theorem, the following facts
are true

a. For all x∗ ∈ X∗ the sequence {d2(x∗, xk)} is convergent;

b. limk→+∞ d2(xk, xk−1) = 0;

c. {f(xk)} is non increasing;

d. If limj→+∞ xkj = x̄ then, limj→+∞ xkj+1 = x̄.
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Proof. For a, b and c, see, respectively, the proof of a, b and c, in Proposition 6.3,
with the obvious substitution of Dh(., .) by d

2(., .). For d, take the triangular inequality
property, applied to the Riemannian distance d, which gives, particularly

d(xkj+1, x) ≤ d(xkj+1, xkj) + d(xkj , x).

Taking j → ∞ and using b, we obtain the result.

Theorem 7.4. Under Assumption 6.1 and that f is a continuous quasiconvex function,
any limit point of {xk} generated by the PPA algorithm with λk satisfying (14) is an
optimal solution of (p).

Proof. The adaptation of the corresponding proof of Theorem 6.4 is immediate.

Theorem 7.5. Under Assumption 6.1 and that f is a continuous quasiconvex function,
the sequence {xk} generated by the PPA algorithm, with λk satisfying (14), converges to
an optimal solution of (p).

Proof. As in Theorem 6.5.

7.2. The convex case

Convergence results for the convex case, using λk such that
∑n

k=1(1/λk) = +∞, have
been proved in [14]. Here we present a rate estimative for the residual f(xk) − f(x∗),
where x∗ is an optimal solution of (p).

Theorem 7.6. Let f a convex function. Under Assumption 6.1 and λk such that
∑n

k=1(1/λk) = +∞. Then the sequence {xk}, generated by the PPA algorithm, con-
verges to a solution of (p) and satisfies

f(xn)− f(x∗) ≤
d(x∗, x0)

2
n
∑

k=1

(1/λk)
.

Proof. The convergence proof has been given in [14], so we will prove the second part.
From (21) we have

f(xk) + (λk/2)d
2(xk, xk−1) ≤ f(x) + (λk/2)d

2(x, xk−1),

for all x ∈M. Taking x = xk−1 gives

(λk/2)d
2(xk, xk−1) ≤ f(xk−1)− f(xk).

Define σk = (1/λk) + σk−1 with σ0 = 0. From the last inequality we have

(λk/2)σk−1d
2(xk, xk−1) ≤ σk−1(f(x

k−1)− f(xk))

= σk−1f(x
k−1)− (σk − (1/λk))f(x

k)

= σk−1f(x
k−1)− σkf(x

k) + (1/λk)f(x
k).
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Taking the sum over k, from 1 to n and multiplying by 2 we have

n
∑

k=1

λkσk−1d
2(xk, xk−1) ≤ −2σnf(x

n) +
n

∑

k=1

(2/λk)f(x
k) (23)

On the other hand, it can be proved (see [14], Lemma 6.2) that

(2/λk)(f(x
k)− f(x)) ≤ d2(x, xk−1)− d2(xk, xk−1)− d2(x, xk).

Then,

n
∑

k=1

(2/λk)(f(x
k)− f(x)) ≤

n
∑

k=1

(

d2(x, xk−1)− d2(xk, xk−1)− d2(x, xk)
)

.

This implies that

n
∑

k=1

(2/λk)f(x
k) ≤ 2σnf(x) + d2(x, x0)− d2(x, xn)−

n
∑

k=1

d2(xk, xk−1).

The above inequality and (23) give

n
∑

k=1

λkσk−1d
2(xk, xk−1) + 2σnf(x

n)

≤ 2σnf(x) + d2(x, x0)− d2(x, xn)−
n

∑

k=1

d2(xk, xk−1).

Thus

2σn(f(x
n)− f(x)) ≤ d2(x, x0)− d2(x, xn)−

n
∑

k=1

(1 + λkσk−1)d
2(xk, xk−1).

As 1 + λkσk−1 = λkσk then

2σn(f(x
n)− f(x)) ≤ d2(x, x0)− d2(x, xn)−

n
∑

k=1

λkσkd
2(xk, xk−1).

Therefore

f(xn)− f(x) ≤
d2(x, x0)

2σn
.

Taking x∗ ∈ X∗ in the previous inequality we conclude the proof.

8. Examples

Examples 8.1 to 8.4 are Hadamard manifolds with zero sectional curvature. In Example
8.5, it is negative. In all examples, we present the general Bregman distance formulation,
depending on the h function, and, due to possible using of the classical proximal method,
the Riemannian distance.
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Example 8.1. The Euclidean space is a Hadamard manifold with the metric G(x) = I
(its sectional curvature is null). Its geodesic curves are the straight lines and the Bregman
distance has the form

Dh(x, y) = h(x)− h(y)−
n

∑

i=1

(xi − yi)
∂h(y)

∂yi
.

The distance is given by

d(x, y) =

[

n
∑

i=1

(xi − yi)
2

]1/2

.

Example 8.2. Let IRn with the metric

G(x) =



















1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . .. . . .. . .. . . .. . .
0 . . . 1 0 0
0 . . . 1 + 4x2n−1 −2xn−1

0 0 −2xn−1 1



















.

Thus (IRn, G(x)) is a Hadamard manifold isometric to (IRn, I) through the application
φ : IRn → IRn defined by Φ(x) = (x1, x2, . . . , xn−1, x

2
n−1−xn), see [9]. The geodesic curve,

joining the points γ(0) = y and γ(1) = x is γ(t) = (γ1, . . . , γn), where γi(t) = yi + t(xi −
yi),∀i = 1, . . . n− 1 and γn(t) = yn + t((xn − yn)− 2(xn−1 − yn−1)

2) + 2t2(xn−1 − yn−1)
2.

Then the Bregman distance is

Dh(x, y) = h(x)− h(y)−
n

∑

i=1

(xi − yi)
∂h(y)

∂yi
+ 2

∂h(y)

∂yn
(xn − yn).

The Riemannian distance, see [9], is

d(x, y) =

[

n−1
∑

i=1

(xi − yi)
2 + (x2n−1 − xn − y2n−1 + yn)

2

]1/2

Example 8.3. M = IRn
++ with the Dikin metric X−2 is a Hadamard manifold. Defining

π : M → IRn such that π(x) = (− lnx1, . . . ,− lnxn), it can be proved that π is an
isometry. It is well known, see for example [27], that the geodesic curve joining the
points γ(0) = y and γ(1) = x is

γ(t) =
(

xt1y
1−t
1 , . . . , xtny

1−t
n

)

,

with
γ′(t) =

(

xt1y
1−t
1 (lnx1 − ln y1), . . . , x

t
ny

1−t
n (lnxn − ln yn)

)

.

Then the Bregman distance is:

Dh(x, y) = h(x)− h(y)−
n

∑

i=1

yi ln(xi/yi)
∂h(y)

∂yi
.
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The Riemannian distance is

d(x, y) =

[

n
∑

i=1

(

ln
yi
xi

)2
]1/2

Example 8.4. Let M = (0, 1)n. We will consider three metrics.

1. (M,X−2(I−X)−2) is a Hadamard manifold; it is isometric to IRn through the function

π(x) =
(

ln
(

x1

1−x1

)

, . . . , ln
(

xn

1−xn

))

. The geodesic curve, see [24], joining the points

γ(0) = y and γ(1) = x is γ(t) = (γ1, . . . , γn) such that

γi(t) =
1

2
+

1

2
tanh

[

(1/2)

{

ln

(

xi
1− xi

)

− ln

(

yi
1− yi

)}

t+ (1/2) ln

(

yi
1− yi

)]

,

with

γ′i(t) =
ln (xi/(1− xi))− ln (yi/(1− yi))

4 cosh ((1/2)t+ (1/2) ln(yi/(1− yi)))
.

Then, the Bregman distance is

Dh(x, y) = h(x)− h(y)−
n

∑

i=1

(1− yi)
2

4y2i cosh
2(1/2)

{

ln

(

xi
1− xi

)

− ln

(

yi
1− yi

)}

∂h(y)

∂yi
.

The Riemannian distance is given by:

d(x, y) =

[

n
∑

i=1

(

ln

(

yi
1− yi

)

− ln

(

xi
1− xi

))2
]

1

2

.

2. (M, csc4(πx)) is a Hadamard manifold, isometric to IRn, through the function π(x) =
1
π
(cot(πx1), . . . , cot(πxn)). The geodesic curve, see [23], joining the points γ(0) = y and

γ(1) = x is γ(t) = (γ1, . . . , γn) such that

γi(t) =
1

π
arg cot[(cotπxi − cotπyi)t+ cot(πyi)],

with
γ′i(t) = (1/π) (cot(πyi)− cot(πxi)) sin

2(πγi(t)),

and the Bregman distance is

Dh(x, y) = h(x)− h(y)−
n

∑

i=1

1

π
(cot(πyi)− cot(πxi)) sin

2(πyi)
∂h(y)

∂yi
.

The Riemannian distance is

d(x, y) =

[

n
∑

i=1

[cot(πyi)− cot(πxi)]
2

]1/2

.
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3. Finally, we consider (M, csc2(πx)). It is a Hadamard manifold isometric to IRn, see
[22]. The geodesic curve joining the points γ(0) = y and γ(1) = x is γ(t) = (γ1, . . . , γn)
such that

γi(t) = ψ−1 (ψ(yi) + t(ψ(xi)− ψ(yi))) ,

where
ψ(τ) := ln (csc(πτ)− cot(πτ)) .

So,

γ′i(t) = (1/π) ln

(

csc(πxi)− cot(πxi)

csc(πyi)− cot(πyi)

)

sin(πγi(t)).

Therefore, the Bregman distance is

Dh(x, y) = h(x)− h(y)−
1

π

n
∑

i=1

ln

(

csc(πxi)− cot(πxi)

csc(πyi)− cot(πyi)

)

sin(πyi)
∂h(y)

∂yi
.

The Riemannian distance is

d(x, y) =

[

n
∑

i=1

(ψ(yi)− ψ(xi))
2

]1/2

.

Example 8.5. M = Sn
++, the set of the n×n positive definite symmetric matrices, with

the metric given by the Hessian of − ln det(X), is a Hadamard manifold with nonpositive
curvature. The geodesic curve joining the points γ(0) = Y and γ(1) = X, see [22], is
given by

γ(t) = Y 1/2(Y −1/2XY −1/2)tY 1/2,

with
γ′(t) = Y 1/2 ln(Y −1/2XY −1/2)(Y −1/2XY −1/2)tY 1/2.

Then, the Bregman distance is

Dh(X, Y ) = h(X)− h(Y )− tr[∇h(Y )Y 1/2 ln(Y −1/2XY −1/2)Y 1/2].

The Riemannian distance is

d2(X, Y ) =
n

∑

i=1

ln2 λi(X
−

1

2Y X−
1

2 ),

where λ(A) denotes the eigenvalue of the symmetric matrix A.

9. Conclusion and Future Works

We generalize the PBD algorithm to solve optimization problems defined on Hadamard
manifolds. We observe that none of our proofs need further than the uniqueness of the
minimal geodesic (which is true in Hadamard manifolds). So, we conclude that our
approach can be extended to more general manifolds, specifically to manifolds without
focal points. The generalization of this method to solve zeros of monotone operators on
those manifolds are in order in our working paper [25].
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