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1. Introduction

Let X be a Banach space. A mapping T : C ⊆ X → X is called nonexpansive if
||Tx − Ty|| ≤ ||x − y|| for all x, y ∈ C. The set of fixed points of T is Fix(T ) :=
{x ∈ C : Tx = x} . We say that the space X has the fixed point property (FPP ) if for
every nonempty closed, bounded and convex subset C of X and every nonexpansive
mapping T : C → C we have Fix(T ) 6= φ.

Similarly, X is said to have the weak fixed point property (WFPP ) if for every nonempty,
weakly compact and convex subset C of X and every nonexpansive mapping T : C → C
we have Fix(T ) 6= φ.

It is well known that one of the central goals in the fixed point theory is obtaining a full
characterization of those Banach spaces which have FPP or WFPP.

A Banach space X, or more generally, a closed convex subset K of X, is said to have
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normal structure if any bounded convex subset H of X (resp. of K) which has more than
one point, contains a nondiametral point, i.e., there exists a point x0 ∈ H such that

sup {||x0 − x|| : x ∈ H} < diam (H) := sup {||x− y|| : x, y ∈ H} .

For D ⊂ X, D 6= φ, let
rx (D) = sup {||x− y|| : y ∈ D} ,

r(D) = inf {rx (D) : x ∈ D} .

If X is reflexive and if D is a non-empty bounded closed subset of X, then weak com-
pactness of the closed balls in X yields that the set

C (D) = {z ∈ D : rz (D) = r (D)}

is a nonempty closed convex subset of D. The number r(D) and the set C (D) are called
the Chebyshev radius and Chebyshev center of D, respectively.

We recall the following theorem proved by W. A. Kirk in [11] for reflexive Banach spaces,
although clearly weak compactness of K suffices:

Let X be a reflexive Banach space and K be a non-empty bounded closed convex subset
of X which has normal structure. Then any nonexpansive mapping T : K → K has a
fixed point. In particular, if X has normal structure, then X has WFPP , and if X is
reflexive and has normal structure, then X has FPP .

In order to know which kind of Banach spaces have normal structure, W. L. Bynum
introduced in [3] geometric cofficients WCS(X) and N(X), and established their rela-
tionships to normal structure.

We set

N(X) = inf

{
diam(A)

r(A)

}

,

where the infimum is taken over all bounded convex closed setsA inX with diam (A) > 0.
The number N(X) is called the normal structure coefficient of X. A Banach space X
has the uniformly normal structure iff N(X) > 1.

For a Banach spaceX without Schur property, the weakly convergent sequence coefficient
(WCS(X)) is defined by

WCS (X) = inf

{
A ({xi})

r ({xi})
: {xi} ⊂ X

is a sequence weakly but not strongly convergent to zero

}

,

where A ({xi}) is the asymptotic diameter of {xi}, i.e.

A ({xi}) = lim
n→∞

{sup [||xi − xj|| : i, j ≥ n]} ,

and r ({xi}) is the Chebyshev radius of the set co ({xi}) .

G. L. Zhang proved in [16] that if X does not have the Schur property, then

WCS (X) = inf
{

A ({xi}) : xi ∈ S (X) for all i ∈ N, xi
w
→ 0

}

,
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where S (X) is the unit sphere of X, as usual.

A Banach space X has weakly uniformly normal structure (so the weak fixed point
property as well) whenever WCS(X) > 1. For the notions concerning the fixed point
property and the weak fixed point property as well as the coefficientsN(X) andWCS(X)
we refer to [1], [2], [3], [4], [5], [11], [12], [16] and [18]. In this paper, we will give a formula
how to compute the coefficient WCS (X) for Musielak-Orlicz sequence spaces.

A map Φ : R→ [0,∞] is said to be an Orlicz function if Φ is vanishing only at 0, even,
left continuous in the extended sense (which means that infinite limits are admitted) on
[0,∞) and convex.

A sequence Φ = (Φi) of Orlicz functions is called a Musielak-Orlicz function. By Ψ =
(Ψi) we denote the complementary function of Φ in the sense of Young, that is,

Ψi(v) = sup {|v|u− Φi(u) : u ≥ 0} , i = 1, 2, · · · , v ∈ R.

Given aMusielak-Orlicz function Φ, we define a convex modular by IΦ(x)=
∑∞

i=1 Φi(x(i))
for any x ∈ l0 (the space of all real sequences). The linear space lΦ defined by

lΦ =
{
x ∈ l0 : IΦ(kx) <∞ for some k > 0

}

is called the Musielak-Orlicz sequence space generated by Φ. We consider lΦ equipped
with the Luxemburg norm

‖x‖ = inf
{

k > 0 : IΦ

(x

k

)

≤ 1
}

.

To simplify notations, we put lΦ = (lΦ, ‖·‖). The space lΦ is a Banach space (see [10],
[13], [14], [15] and [17]).

We say a Musielak-Orlicz function Φ satisfies the δ2-condition (Φ ∈ δ2 for short) if there
exist constants k ≥ 2 and a > 0, and a sequence (ci) of positive numbers such that
∑∞

i=i0
ci <∞ for some natural i0 and the inequality

Φi(2u) ≤ kΦi(u) + ci

holds for every i ∈ N and u ∈ R satisfying Φi(u) ≤ a (see [8] and [15]).

2. Results

Lemma 2.1. A set B in a Musielak-Orlicz space ℓΦ is lΨ-weakly sequentialy compact if

and if limj→∞ supx∈B

∑

i>j |x (i) y (i)| = 0 for any y ∈ lΨ.

Proof. This is a general result in Köthe sequence lattices (see [18]).

Another characterization of ℓΨ-weakly sequentially compact subsets of ℓΦ which will be
used in the proof of Theorem 2.3 gives the next lemma.

Lemma 2.2. A set B in a Musielak-Orlicz space ℓΦ is lΨ-weakly sequentialy compact if

and only if limj→∞ limξ→0 supx∈B

∑

i>j
1
ξ
Φi (ξ |x (i)|) = 0.
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Proof. Sufficiency. Take any y ∈ lΨ and choose η > 0 such that IΨ (ηy) <∞. For any
ε > 0, take j0 > 0 and ξ0 > 0 such that

∑

i>j0

1
ξ0
Φi (ξ0 |x (i)|) <

εη

2
for any x ∈ B. Next

take i0 > j0 such that
∑

i>i0
Ψi (η |y (i)|) <

ξ0ηε

2
. Then for all x ∈ B,

∑

i>i0

1

ξ0
|x (i) y (i)| =

1

ξ0η

∑

i>i0

|ξ0x (i) ηy (i)|

≤
1

η

∑

i>i0

Φi (ξ0x (i))

ξ0
+

1

ηξ0

∑

i>i0

Ψi (ηy (i)) < ε.

By Lemma 2.1, we conclude that B is lΨ-weakly sequentialy compact.

Necessity. Since B is lΨ-weakly sequentialy compact, so B is norm bounded. Without
loss of generality, we may assume that IΦ (x) ≤ 1 for any x ∈ B since if we can prove
that

lim
j→∞

lim
ξ→0

sup
x∈B(ℓΦ)

∑

i>j

1

ξ
Φi(ξ|x(i)|) = 0,

then

lim
j→∞

lim
ξ→0

sup
x∈B

‖x‖Φ
ξ

∑

i>j

Φi

(

ξ
|x(i)|

‖x‖Φ

)

= 0,

which means that limj→∞ limξ→0 supx∈B

∑

i>j
1
ξ
Φi(ξ|x(i)|) = 0. If the necessity does

not hold, then there exist ε > 0, ik ↑ ∞, ξk ↓ 0 and a sequence {xk} in B satisfying
∑

i>ik

1
ξk
Φi (ξk |xk (i)|) > ε (k = 1, 2, ...). We may also assume here that ξ1 ≤

1
2
and

∑∞
k=1 ξk <∞. Put

y = (y(i))∞i=1, where y (i) = sup
k

pi (ξk |xk (i)|) (i = 1, 2, ...) .

By the Young equality tpi(t) = Φi(t) + Ψi(pi(t)) and the inequality tpi(t) ≤ Φi(2t) for
all natural i and t ≥ 0, where pi denotes the right hand side derivative of Φi, we have

IΨ (y) =
∞∑

i=1

Ψi

(

sup
k

(pi (ξk |xk (i))|)
)

≤
∞∑

i=1

∞∑

k=1

Ψi (pi (ξk |xk (i)|))

≤
∞∑

i=1

∞∑

k=1

ξk |xk (i)| pi (ξk |xk (i)|) ≤
∞∑

i=1

∞∑

k=1

Φi (2ξk |xk (i)|)

≤ 2
∞∑

i=1

∞∑

k=1

ξkΦi (xk (i)) = 2
∞∑

k=1

ξkIΦ (xk) ≤ 2
∞∑

k=1

ξk <∞.

This shows that y ∈ lΨ. By Lemma 2.1, we get the following contradiction:

0←
∑

i>ik

xk (i) y (i) ≥
∑

i>ik

|xk (i)| pi (ξk |xk (i)|)

=
∑

i>ik

1

ξk
ξk |xk (i)| pi (ξk |xk (i)|) ≥

∑

i>ik

Φi (ξk |xk (i)|)

ξk
> ε.
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If Φ /∈ δ2, then WCS (lΦ) = 1 because in this case (ℓΦ)
+ contains a sequence (xn)

∞
n=1

with pairwise disjoint supports and with‖xn‖ = 1 for any n ∈ N and ‖ supn xn‖ = 1. So
we assume in the following that Φ ∈ δ2.

Theorem 2.3. If Φ is an Orlicz function satisfying condition δ2, we have the following

formula

WCS (lΦ) = lim inf
n→∞

{

inf
[

cx,n > 0 : x ∈ S (lΦ) , supp (x) is finite,

m (x) ≥ n, IΦ

(
x

cx,n

)

≤
1

2
, lim
λ→0

IΦ (λx)

λ
≤

1

n

]}

,

where m (x) = min {n : n ∈ supp (x)} .

Proof. Let us denote the right hand side of the equality in Theorem 2.3 by d.

First, we will show that WCS (lΦ) ≤ d. Given any ε > 0, by the definition of the lower
limit, there exists n1 ∈ N with

inf

[

cx,2x1
> 0 : x ∈ S (lΦ) , supp (x) is finite, m (x) ≥ 2x1,

IΦ

(
x

cx,2x1

)

≤
1

2
, lim

λ→0

IΦ (λx)

λ
≤

1

2x1

]

≤ d+ ε (∀ n ≥ n1).

Then by the definition of the infimum, there exists x1 ∈ S (lΦ) with finite supp(x1) and

m (x1) ≥ n1 such that limλ→0
IΦ(λx1)

λ
≤ 1

n1
and

inf

{

cx1,n1
> 0 : IΦ

(
x1

cx1,n1

)

≤
1

2

}

≤ d+ ε.

Since supp(x1) is finite, there exists n2 > n1 satisfying supp(x1) ∩ [n2,+∞) = ∅.

Now we can get x2 ∈ S (lΦ) with finite supp(x2), m (x2) ≥ n2 and limλ→0
IΦ(λx2)

λ
≤ 1

n2
,

satisfying inf
[

cx2,2x2
> 0 : IΦ

(
x2

cx2,2x2

)

≤ 1
2

]

≤ d+ ε for all n ≥ n2.

Continuing the above process, we get that there exist a sequence of natural numbers
n1 < n2 < · · ·, satisfying for all i ∈ N :

(1) xi ∈ S (lΦ) ;

(2) supp(xi) is finite, and supp(xi)∩ supp (xj) = φ;

(3) m (xi) ≥ ni, and limλ→0
IΦ(λxi)

λ
≤ 1

ni
;

(4) inf
{

cxi,ni
> 0 : IΦ

(
xi

cxi,ni

)

≤ 1
2

}

≤ d+ ε.

We claim that

lim
j→∞

lim
λ→0

sup
i∈N

1

λ
IΦ(λxiχ{j+1,j+2,...}) = 0.
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Take any ε > 0. Since 1/ni ց 0 as i→∞, there is iε such that 1/ni < ε/3 for all i > iε.
Since limλ→0(IΦ(λxi)/λ) ≤ 1/ni for all i ∈ N, there is λε > 0 such that

1

λ
IΦ(λxi) <

ε

2

for all i > iε and 0 < λ ≤ λε. Since Φ ∈ δ2, we have that IΦ(λxi) < ∞ for any λ > 0
and i ∈ N. Consequently, there is jε ∈ N such that

1

λε

IΦ(λεxiχ{j+1,j+2,...}) <
ε

2

for any i ∈ {1, . . . , iε} and all natural j ≥ jε. Since the function Φ(u)/u is nondecreasing,
we have that

1

λ
IΦ(λxiχ{j+1,j+2,...}) ≤

1

λε

IΦ(λεxiχ{j+1,j+2,...}) <
ε

2

for all j ≥ jε, 0 < λ ≤ λε and i ∈ {1, . . . , iε}. In consequence,

1

λ
IΦ(λxiχ{j+1,j+2,...}) <

ε

2

for all i ∈ N, j ≥ jε and 0 < λ ≤ λε, whence

1

λ
sup
i∈N
|IΦ(λxiχ{j+1,j+2,...}) ≤

ε

2
< ε

for all j ≥ jε and 0 < λ ≤ λε, and the claim is proved.

Therefore, by Lemma 2.2, we have that xi
w
→ 0.

It is obvious that

IΦ

(
xi + xj

d+ ε

)

= IΦ

(
xi

d+ ε

)

+ IΦ

(
xj

d+ ε

)

≤
1

2
+

1

2
= 1,

whence ||xi − xj|| = ||xi + xj|| ≤ d+ε. This shows that A ({xn}) ≤ d+ε, so WCS (lΦ) ≤
d, by the arbitrariness of ε > 0.

In the following, we will prove that WCS (lΦ) ≥ d. Let us take any sequence {xn} in
S(ℓΦ) that is weakly convergent to zero. Since xn

w
→ 0 we have that xn → 0 coordinate-

wise and, by Lemma 2.2,

lim
i→∞

lim
λ→0

sup
n

1

λ
IΦ

(
xnχ{i1+1, i1+2,...}

)
= 0. (1)

By Φ ∈ δ2, we have for any x ∈ ℓΦ that

‖(0, ..., 0, x(i), x(i+ 1), ...)‖Φ → 0 as i→∞. (2)

Moreover, since xn → 0 coordinatewise, we have for any natural j:

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

j
∑

i=1

xn (i) ei

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Φ

→ 0 as n→∞. (3)
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On the base of (1), (2) and (3), there are natural numbers n1, i1 and j1 such that i1 < j1
and the element yn1

:=
∑j1

i=i1+1 xn1
(i) ei satisfies the inequalities

1 ≥ ‖yn1
‖Φ ≥ 1−

1

2
and lim

λ→0

1

λ
IΦ(λyn1

) ≤
1

i1
.

Next, we can find natural numbers n2, i2 and j2 such that n2 > n1, j1 < i2 < j2 and the
element yn2

:=
∑j2

i=i2+1 xn2
(i) ei satisfies the inequalities

1 ≥ ‖yn2
‖Φ ≥ 1−

1

3
and lim

λ→0

1

λ
IΦ(λyn2

) ≤
1

i2
.

Continuing this construction by induction, one can find three sequences {nk}, {ik} and
{jk} of natural numbers such that nk+1 > nk, ik < jk < ik+1 and the elements ynk

:=
∑jk

i=ik+1 xnk
(i) ei satisfy the equalities

1 ≥ ‖ynk
‖Φ ≥ 1−

1

k + 1
and lim

λ→0

1

λ
IΦ(λynk

) ≤
1

ik

for any k. It is obvious that m (ynk
) > ik for any k.

By the definition of d, there exists n0 ∈ N such that

inf [cx,n > 0 : x ∈ S (lΦ) , supp (x) is finite, m (x) ≥ n,

IΦ

(
x

cx,n

)

≤
1

2
, lim

λ→0

IΦ (λx)

λ
≤

1

n

]

> d− ε,

whenever n > n0.

Hence

IΦ

(
ynk
− ynl

d− ε

)

= IΦ

(
ynk

d− ε

)

+ IΦ

(
ynl

d− ε

)

>
1

2
+

1

2
= 1

for k 6= l; k, l being large enough.

Consequently, ||ynk
− ynl

|| > d − ε for k 6= l; k and l being large enough, that is,
A ({ynk

}) > d−ε. Since ‖xnk
− xnl

‖ ≥ ‖ynk
− ynl

‖− 1
k
− 1

l
, so A ({xnk

}) = A (ynk
) > d−ε.

Hence WCS (lΦ) > d− ε. By the arbitrariness of ε > 0, we have WCS(lΦ) ≥ d and the
proof of the theorem is finished.

Example 2.4. Take for example the lp space (1 < p <∞) and caculateWCS (lp) . Take
any x ∈ S(ℓp). If c > 0 satisfies the equality IΦ

(
x
c

)
= 1

2
, i.e. 1

cp

∑∞
i=1 |x (i)|

p = 1
2
, then

cp = 2, and so c = 2
1

p . Therefore WCS (lp) = 2
1

p . This is the result that has been proved
originally by Bynum in [4].

In the following let {pk}
∞
k=1 be an increasing sequence of real numbers with p1 > 1 and

limn→∞pn = p <∞.

Example 2.5. Let l(pi) be the Nakano sequence space equipped with the Luxemburg

norm. Then WCS
(
l(pi)

)
= 2

1

p .
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Proof. For any weakly null sequence {xn} in S
(
l(pi)

)
and any x ∈ S

(
l(pi)

)
with finite

m (x), we may assume without loss of generality that m (x)∩m (xn) = ∅ for any n ∈ N.
We now consider the equation

IΦ

(x

c

)

+ IΦ

(xn

c

)

= 1,

that is,
∞∑

i=1

∣
∣
∣
∣

x (i)

c

∣
∣
∣
∣

pi

+
∞∑

i=1

∣
∣
∣
∣

xn (i)

c

∣
∣
∣
∣

pi

= 1.

Since c > 0 satisfying the last equality is greater than 1, we have

1

cp

∞∑

i=1

|x (i)|pi +
1

cp

∞∑

i=1

|xn (i)|
pi =

2

cp
≤ 1,

i.e. c ≥ 2
1

p . This shows the inequality WCS
(
l(pi)

)
≥ 2

1

p .

Take the sequence {en}, where en = (0, . . . , 0
︸ ︷︷ ︸

n−1

1, 0, 0, . . .). Then en ∈ l(pi) for any

n ∈ N and limλ→0
IΦ(λen)

λ
= 0 < 1

n
. Since IΦ

(

en/2
1

p

)

=
(

2−
1

p

)pi

= 2−
pi
p ≤ 1

2
, we get

inf
{
c > 0 : IΦ

(
x
c

)
≤ 1

2

}
≤ 2

1

p . Consequently WCS
(
l(pi)

)
≤ 2

1

p , whence WCS
(
l(pi)

)
=

2
1

p .

Theorem 2.6. A Musielak-Orlicz sequence space lΦ corresponding to a finitely valued

and vanishing only at zero Musielak-Orlicz function Φ with supi∈N Φi(2ai) < ∞, where

ai are the positive numbers satisfying Φi(ai) = 1 for all i ∈ N, has the weakly uniformly

normal structure if and only if Φ ∈ δ2.

Proof. We need only to prove that if Φ ∈ δ2, then the Musielak-Orlicz sequence space lΦ
has the weakly uniformly normal structure because if Φ 6∈ δ2, then lΦ contains a linearly
isometric copy of l∞ and so lΦ has not the weakly uniformly normal structure. By virtue
of the Kamińska considerations in [9], we may assume that Φi(1) = 1 for all i ∈ N . We
will divide our proof into two steps.

Step 1. We will prove that if IΦ(xn)→ 0 then ||xn|| → 0 as n→∞. Although the proof
of this implication was given in [6] we present here another proof. Suppose that the
implication does not hold. Then passing to a subsequence if necessary we may assume
that there exists ε0 > 0 such that limn→∞||xn|| = ε0. Hence there exists n0 ∈ N such
that

||xn|| >
ε0
2

for n > n0.

By using Φ ∈ δ2, we have

IΦ

(
xn

||xn||

)

= 1 for all n ∈ N.
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Using again Φ ∈ δ2 and the fact that all Φi vanish only at zero, we get that there exist
a > 0, k > 0 and ci > 0 such that

∑∞
i=1 ci <

1
3
and

Φi

(
2u

ε0

)

≤ kΦi(u) + ci

for all i ∈ N and u ∈ R satisafying Φi(u) ≤ a.

Hence, we have for all n > n0,

1 = IΦ

(
xn

||xn||

)

≤ IΦ

(
2xn

ε0

)

=
∑

Φi(xn(i))≤a

Φi(
2xn(i)

ε0
) +

∑

Φi(xn(i))>a

Φi(
2xn(i)

ε0
)

≤
∞∑

i=1

kΦi(xn(i)) +
∞∑

i=1

ci +
∑

Φi(xn(i))>a

Φi(
2xn(i)

ε0
)

= kIΦ(xn) +
∞∑

i=1

ci +
∑

Φi(xn(i))>a

Φi(
2xn(i)

ε0
).

Since IΦ(xn)→ 0 as n→∞ by the assumption, there exists n1 ≥ n0 such that kIΦ(xn) <
1
3
for n > n1. Therefore, we have the inequality

1 ≤
1

3
+

1

3
+

∑

Φi(xn(i))>a

Φi(
2xn(i)

ε0
)

for n > n1, which gives that the value of the last sum is ≥ 1
3
for any n > n1.

This shows that for each n > n1 there exists i ∈ N such that Φi(xn(i)) > a, i.e.,
IΦ(xn) > a for any n > n1. A contradiction, which finishes the proof of the implication.

Step 2. Suppose that the assumptions about Φ are satisfied but lΦ has not the weakly
uniformly normal structure, i.e. WCS(lΦ) = 1. Then there exists a sequence {xn}

∞
n=1 in

S(lΦ) for which the sets supp(xn) are finite, m(xn) > n, limλ→0
IΦ(λxn)

λ
< 1

n
and cxn

ց 1,
where cxn

= cxn,n and cxn,n are from the formula for WCS(ℓΦ) in Theorem 2.3. By
Φ ∈ δ2, there are a constant K > 0 and a sequence (ci) of nonnegative numbers such
that

∞∑

i=1

Φi(ci) <∞ and Φi(2u) ≤ KΦi(u) (∗)

for u ∈ [ci, 1], n ∈ N . Condition (∗) follows from condition δ2 for Φ and the assumption
that supi∈N Φi(2) < ∞. Namely, condition δ2 is equivalent to the fact that there exist
constants a ∈ (0, 1) and K ≥ 2 and two sequences of positive numbers (ci)

∞
i=1 and (di)

∞
i=1

with Φi(di) = a and ci < di for all i ∈ N such that

∞∑

i=1

Φi(ci) <∞ and Φi(2u) ≤ K1Φi(u)
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for all i ∈ N and u ∈ [ci, di]. Then for all i ∈ N and u ∈ [di, 1], we have

Φi(2u) ≤ Φi(2) =
Φi(2)

Φi(di)
Φi(di) ≤

Φi(2)

a
Φi(u).

So, it is enough to define K = max(K1, supiΦi(2)).

Put xn = (xn(1), xn(2), · · · · ··, xn(i), · · · · · · ·), where xn(i) = xn(i) if |xn(i)| ≤ cxn
ci

and xn(i) = cxn
ci sgn(xn(i)) if |xn(i)| > cxn

ci for each i ∈ N . Then IΦ

(
xn

cxn

)

→ 0 as

n → ∞. By the result from Step 1, we have that ||xn|| → 0. Moreover, we also have
||xn − xn|| → 1.

Notice that thanks to condition (∗), we have IΦ(2
(xn−xn)

cxn
) ≤ KIΦ(

xn

cxn
) + k

∑∞
i=1 ci ≤

K + k
∑∞

i=1 ci <∞ for all n ∈ N . Let us introduce the following function g : R+ → [0,
∞]:

g(λ) = sup

{

IΦ

(

λ
xn − xn

cxn

)

: n = 1, 2, · · ·

}

for λ ∈ R+. Then g is convex, g(0) = 0, g(1) ≤ 1
2
and g(2) ≤ k+

∑∞
i=1 ci <∞. Therefore,

g is continuous on the interval [0, 2). Thus, by the Darboux property of g, there exists

λ0 ∈ (1, 2) such that g(λ0) ≤ 1. This means that IΦ

(

λ0
xn−xn

cxn

)

≤ 1 for all n ∈ N ,

whence we have ||xn − xn|| ≤ cxn
/λ0 for all n ∈ N . Since cxn

ց 1 and 1 < λ0 < 2, we
conclude that there exists m ∈ N such that supn≥m(cxn

/λ0) < 1, which, by the above
inequality, contradicts the condition ‖xn − xn‖ → 1 as n→∞.
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