Weakly Convergent Sequence Coefficient in Musielak-Orlicz Sequence Spaces

Liying Fan

Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, China frankying@yahoo.com.cn

Yunan Cui*

Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, China yunan_cui@yahoo.com.cn

Henryk Hudzik

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznan, Poland hudzik@amu.edu.pl

Received: August 22, 2006 Revised manuscript received: March 5, 2008

A formula for the weakly convergent sequence coefficient of Musielak-Orlicz sequence spaces l_{Φ} equipped with the Luxemburg norm is calculated. As a consequence of this result the cofficient for Nakano sequence spaces $l^{(p_i)}$ is found. Criteria for weakly uniformly normal structure of Musielak-Orlicz sequence spaces equipped with the Luxemburg are also given.

Keywords: Fixed point property, Musielak-Orlicz sequence spaces, weak convergent sequence coefficient

2000 Mathematics Subject Classification: 46B20, 47H10

1. Introduction

Let X be a Banach space. A mapping $T : C \subseteq X \to X$ is called nonexpansive if $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in C$. The set of fixed points of T is $Fix(T) := \{x \in C : Tx = x\}$. We say that the space X has the fixed point property (FPP) if for every nonempty closed, bounded and convex subset C of X and every nonexpansive mapping $T : C \to C$ we have $Fix(T) \neq \phi$.

Similarly, X is said to have the weak fixed point property (WFPP) if for every nonempty, weakly compact and convex subset C of X and every nonexpansive mapping $T: C \to C$ we have $Fix(T) \neq \phi$.

It is well known that one of the central goals in the fixed point theory is obtaining a full characterization of those Banach spaces which have *FPP* or *WFPP*.

A Banach space X, or more generally, a closed convex subset K of X, is said to have

*Supported by Chinese National Science Foundation Grant (10570137).

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

normal structure if any bounded convex subset H of X (resp. of K) which has more than one point, contains a nondiametral point, i.e., there exists a point $x_0 \in H$ such that

$$\sup \{ ||x_0 - x|| : x \in H \} < \operatorname{diam}(H) := \sup \{ ||x - y|| : x, y \in H \}.$$

For $D \subset X$, $D \neq \phi$, let

$$r_x(D) = \sup \{ ||x - y|| : y \in D \},\$$

 $r(D) = \inf \{ r_x(D) : x \in D \}.$

If X is reflexive and if D is a non-empty bounded closed subset of X, then weak compactness of the closed balls in X yields that the set

$$C(D) = \{ z \in D : r_z(D) = r(D) \}$$

is a nonempty closed convex subset of D. The number r(D) and the set C(D) are called the *Chebyshev* radius and *Chebyshev* center of D, respectively.

We recall the following theorem proved by W. A. Kirk in [11] for reflexive Banach spaces, although clearly weak compactness of K suffices:

Let X be a reflexive Banach space and K be a non-empty bounded closed convex subset of X which has normal structure. Then any nonexpansive mapping $T: K \to K$ has a fixed point. In particular, if X has normal structure, then X has WFPP, and if X is reflexive and has normal structure, then X has FPP.

In order to know which kind of Banach spaces have normal structure, W. L. Bynum introduced in [3] geometric cofficients WCS(X) and N(X), and established their relationships to normal structure.

We set

$$N(X) = \inf\left\{\frac{\operatorname{diam}(A)}{r(A)}\right\},\$$

where the infimum is taken over all bounded convex closed sets A in X with diam (A) > 0. The number N(X) is called the normal structure coefficient of X. A Banach space X has the uniformly normal structure iff N(X) > 1.

For a Banach space X without Schur property, the weakly convergent sequence coefficient (WCS(X)) is defined by

$$WCS(X) = \inf\left\{\frac{A(\lbrace x_i \rbrace)}{r(\lbrace x_i \rbrace)} : \lbrace x_i \rbrace \subset X\right\}$$

is a sequence weakly but not strongly convergent to zero $\Big\rangle$,

where $A(\{x_i\})$ is the asymptotic diameter of $\{x_i\}$, i.e.

$$A(\{x_i\}) = \lim_{n \to \infty} \{\sup [||x_i - x_j|| : i, j \ge n]\},\$$

and $r(\{x_i\})$ is the Chebyshev radius of the set $\overline{co}(\{x_i\})$.

G. L. Zhang proved in [16] that if X does not have the Schur property, then

$$WCS(X) = \inf \left\{ A(\{x_i\}) : x_i \in S(X) \text{ for all } i \in \mathbb{N}, x_i \xrightarrow{w} 0 \right\},\$$

where S(X) is the unit sphere of X, as usual.

A Banach space X has weakly uniformly normal structure (so the weak fixed point property as well) whenever WCS(X) > 1. For the notions concerning the fixed point property and the weak fixed point property as well as the coefficients N(X) and WCS(X) we refer to [1], [2], [3], [4], [5], [11], [12], [16] and [18]. In this paper, we will give a formula how to compute the coefficient WCS(X) for Musielak-Orlicz sequence spaces.

A map $\Phi : R \to [0, \infty]$ is said to be an Orlicz function if Φ is vanishing only at 0, even, left continuous in the extended sense (which means that infinite limits are admitted) on $[0, \infty)$ and convex.

A sequence $\Phi = (\Phi_i)$ of Orlicz functions is called a *Musielak-Orlicz* function. By $\Psi = (\Psi_i)$ we denote the complementary function of Φ in the sense of Young, that is,

$$\Psi_i(v) = \sup \{ |v| \, u - \Phi_i(u) : u \ge 0 \}, \ i = 1, 2, \cdots, v \in \mathbb{R}.$$

Given a Musielak-Orlicz function Φ , we define a convex modular by $I_{\Phi}(x) = \sum_{i=1}^{\infty} \Phi_i(x(i))$ for any $x \in l^0$ (the space of all real sequences). The linear space l_{Φ} defined by

$$l_{\Phi} = \left\{ x \in l^0 : \ I_{\Phi}(kx) < \infty \text{ for some } k > 0 \right\}$$

is called the *Musielak-Orlicz sequence space* generated by Φ . We consider l_{Φ} equipped with the *Luxemburg norm*

$$||x|| = \inf \left\{ k > 0 : I_{\Phi}\left(\frac{x}{k}\right) \le 1 \right\}.$$

To simplify notations, we put $l_{\Phi} = (l_{\Phi}, \|\cdot\|)$. The space l_{Φ} is a Banach space (see [10], [13], [14], [15] and [17]).

We say a Musielak-Orlicz function Φ satisfies the δ_2 -condition ($\Phi \in \delta_2$ for short) if there exist constants $k \geq 2$ and a > 0, and a sequence (c_i) of positive numbers such that $\sum_{i=i_0}^{\infty} c_i < \infty$ for some natural i_0 and the inequality

$$\Phi_i(2u) \le k\Phi_i(u) + c_i$$

holds for every $i \in \mathcal{N}$ and $u \in \mathbb{R}$ satisfying $\Phi_i(u) \leq a$ (see [8] and [15]).

2. Results

Lemma 2.1. A set B in a Musielak-Orlicz space ℓ_{Φ} is l_{Ψ} -weakly sequentially compact if and if $\lim_{j\to\infty} \sup_{x\in B} \sum_{i>j} |x(i)y(i)| = 0$ for any $y \in l_{\Psi}$.

Proof. This is a general result in Köthe sequence lattices (see [18]).

Another characterization of ℓ_{Ψ} -weakly sequentially compact subsets of ℓ_{Φ} which will be used in the proof of Theorem 2.3 gives the next lemma.

Lemma 2.2. A set B in a Musielak-Orlicz space ℓ_{Φ} is l_{Ψ} -weakly sequentially compact if and only if $\lim_{j\to\infty} \lim_{\xi\to 0} \sup_{x\in B} \sum_{i>j} \frac{1}{\xi} \Phi_i(\xi |x(i)|) = 0.$

Proof. Sufficiency. Take any $y \in l_{\Psi}$ and choose $\eta > 0$ such that $I_{\Psi}(\eta y) < \infty$. For any $\varepsilon > 0$, take $j_0 > 0$ and $\xi_0 > 0$ such that $\sum_{i>j_0} \frac{1}{\xi_0} \Phi_i(\xi_0 |x(i)|) < \frac{\varepsilon \eta}{2}$ for any $x \in B$. Next take $i_0 > j_0$ such that $\sum_{i>i_0} \Psi_i(\eta |y(i)|) < \frac{\xi_0 \eta \varepsilon}{2}$. Then for all $x \in B$,

$$\sum_{i>i_{0}} \frac{1}{\xi_{0}} |x(i) y(i)| = \frac{1}{\xi_{0} \eta} \sum_{i>i_{0}} |\xi_{0} x(i) \eta y(i)|$$

$$\leq \frac{1}{\eta} \sum_{i>i_{0}} \frac{\Phi_{i} (\xi_{0} x(i))}{\xi_{0}} + \frac{1}{\eta \xi_{0}} \sum_{i>i_{0}} \Psi_{i} (\eta y(i)) < \varepsilon.$$

By Lemma 2.1, we conclude that B is l_{Ψ} -weakly sequentially compact.

Necessity. Since B is l_{Ψ} -weakly sequentially compact, so B is norm bounded. Without loss of generality, we may assume that $I_{\Phi}(x) \leq 1$ for any $x \in B$ since if we can prove that

$$\lim_{j \to \infty} \lim_{\xi \to 0} \sup_{x \in B(\ell_{\Phi})} \sum_{i>j} \frac{1}{\xi} \Phi_i(\xi |x(i)|) = 0,$$

then

$$\lim_{j \to \infty} \limsup_{\xi \to 0} \sup_{x \in B} \frac{\|x\|_{\Phi}}{\xi} \sum_{i > j} \Phi_i\left(\xi \frac{|x(i)|}{\|x\|_{\Phi}}\right) = 0,$$

which means that $\lim_{j\to\infty} \lim_{\xi\to 0} \sup_{x\in B} \sum_{i>j} \frac{1}{\xi} \Phi_i(\xi|x(i)|) = 0$. If the necessity does not hold, then there exist $\varepsilon > 0$, $i_k \uparrow \infty$, $\xi_k \downarrow 0$ and a sequence $\{x_k\}$ in B satisfying $\sum_{i>i_k} \frac{1}{\xi_k} \Phi_i(\xi_k |x_k(i)|) > \varepsilon$ (k = 1, 2, ...). We may also assume here that $\xi_1 \leq \frac{1}{2}$ and $\sum_{k=1}^{\infty} \xi_k < \infty$. Put

$$y = (y(i))_{i=1}^{\infty}$$
, where $y(i) = \sup_{k} p_i(\xi_k |x_k(i)|) (i = 1, 2, ...)$

By the Young equality $tp_i(t) = \Phi_i(t) + \Psi_i(p_i(t))$ and the inequality $tp_i(t) \leq \Phi_i(2t)$ for all natural *i* and $t \geq 0$, where p_i denotes the right hand side derivative of Φ_i , we have

$$I_{\Psi}(y) = \sum_{i=1}^{\infty} \Psi_i \Big(\sup_k \left(p_i \left(\xi_k \left| x_k \left(i \right) \right) \right| \right) \Big) \le \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \Psi_i \left(p_i \left(\xi_k \left| x_k \left(i \right) \right| \right) \right) \\ \le \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \xi_k \left| x_k \left(i \right) \right| p_i \left(\xi_k \left| x_k \left(i \right) \right| \right) \le \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \Phi_i \left(2\xi_k \left| x_k \left(i \right) \right| \right) \\ \le 2 \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \xi_k \Phi_i \left(x_k \left(i \right) \right) = 2 \sum_{k=1}^{\infty} \xi_k I_{\Phi} \left(x_k \right) \le 2 \sum_{k=1}^{\infty} \xi_k < \infty.$$

This shows that $y \in l_{\Psi}$. By Lemma 2.1, we get the following contradiction:

$$0 \leftarrow \sum_{i > i_{k}} x_{k}(i) y(i) \ge \sum_{i > i_{k}} |x_{k}(i)| p_{i}(\xi_{k} |x_{k}(i)|)$$

=
$$\sum_{i > i_{k}} \frac{1}{\xi_{k}} \xi_{k} |x_{k}(i)| p_{i}(\xi_{k} |x_{k}(i)|) \ge \sum_{i > i_{k}} \frac{\Phi_{i}(\xi_{k} |x_{k}(i)|)}{\xi_{k}} > \varepsilon.$$

If $\Phi \notin \delta_2$, then $WCS(l_{\Phi}) = 1$ because in this case $(\ell_{\Phi})^+$ contains a sequence $(x_n)_{n=1}^{\infty}$ with pairwise disjoint supports and with $||x_n|| = 1$ for any $n \in \mathbb{N}$ and $||\sup_n x_n|| = 1$. So we assume in the following that $\Phi \in \delta_2$.

Theorem 2.3. If Φ is an Orlicz function satisfying condition δ_2 , we have the following formula

$$WCS(l_{\Phi}) = \liminf_{n \to \infty} \left\{ \inf \left[c_{x,n} > 0 : x \in S(l_{\Phi}), \text{ supp } (x) \text{ is finite,} \right. \\ m(x) \ge n, \ I_{\Phi}\left(\frac{x}{c_{x,n}}\right) \le \frac{1}{2}, \lim_{\lambda \to 0} \frac{I_{\Phi}(\lambda x)}{\lambda} \le \frac{1}{n} \right] \right\},$$

where $m(x) = \min\{n : n \in \operatorname{supp}(x)\}$.

Proof. Let us denote the right hand side of the equality in Theorem 2.3 by d.

First, we will show that $WCS(l_{\Phi}) \leq d$. Given any $\varepsilon > 0$, by the definition of the lower limit, there exists $n_1 \in N$ with

$$\inf \left[c_{x,2x_1} > 0 : x \in S(l_{\Phi}), \text{ supp } (x) \text{ is finite, } m(x) \ge 2x_1, \\ I_{\Phi}\left(\frac{x}{c_{x,2x_1}}\right) \le \frac{1}{2}, \lim_{\lambda \to 0} \frac{I_{\Phi}(\lambda x)}{\lambda} \le \frac{1}{2x_1} \right] \\ \le d + \varepsilon \quad (\forall \ n \ge n_1).$$

Then by the definition of the infimum, there exists $x_1 \in S(l_{\Phi})$ with finite $\operatorname{supp}(x_1)$ and $m(x_1) \geq n_1$ such that $\lim_{\lambda \to 0} \frac{I_{\Phi}(\lambda x_1)}{\lambda} \leq \frac{1}{n_1}$ and

$$\inf\left\{c_{x_1,n_1} > 0: I_{\Phi}\left(\frac{x_1}{c_{x_1,n_1}}\right) \le \frac{1}{2}\right\} \le d + \varepsilon.$$

Since supp (x_1) is finite, there exists $n_2 > n_1$ satisfying supp $(x_1) \cap [n_2, +\infty) = \emptyset$.

Now we can get $x_2 \in S(l_{\Phi})$ with finite $\operatorname{supp}(x_2)$, $m(x_2) \ge n_2$ and $\lim_{\lambda \to 0} \frac{I_{\Phi}(\lambda x_2)}{\lambda} \le \frac{1}{n_2}$, satisfying $\inf \left[c_{x_2,2x_2} > 0 : I_{\Phi}\left(\frac{x_2}{c_{x_2,2x_2}}\right) \le \frac{1}{2} \right] \le d + \varepsilon$ for all $n \ge n_2$.

Continuing the above process, we get that there exist a sequence of natural numbers $n_1 < n_2 < \cdots$, satisfying for all $i \in N$:

(1)
$$x_i \in S(l_\Phi);$$

(2) $\operatorname{supp}(x_i)$ is finite, and $\operatorname{supp}(x_i) \cap \operatorname{supp}(x_j) = \phi$;

(3)
$$m(x_i) \ge n_i$$
, and $\lim_{\lambda \to 0} \frac{I_{\Phi}(\lambda x_i)}{\lambda} \le \frac{1}{n_i}$;

(4)
$$\inf \left\{ c_{x_i,n_i} > 0 : I_{\Phi}\left(\frac{x_i}{c_{x_i,n_i}}\right) \leq \frac{1}{2} \right\} \leq d + \varepsilon.$$

We claim that

$$\lim_{j \to \infty} \lim_{\lambda \to 0} \sup_{i \in \mathbb{N}} \frac{1}{\lambda} I_{\Phi}(\lambda x_i \chi_{\{j+1, j+2, \dots\}}) = 0.$$

158 L. Fan, Y. Cui, H. Hudzik / Weakly Convergent Sequence Coefficient in ...

Take any $\varepsilon > 0$. Since $1/n_i \searrow 0$ as $i \to \infty$, there is i_{ε} such that $1/n_i < \varepsilon/3$ for all $i > i_{\varepsilon}$. Since $\lim_{\lambda \to 0} (I_{\Phi}(\lambda x_i)/\lambda) \le 1/n_i$ for all $i \in \mathbb{N}$, there is $\lambda_{\varepsilon} > 0$ such that

$$\frac{1}{\lambda}I_{\Phi}(\lambda x_i) < \frac{\varepsilon}{2}$$

for all $i > i_{\varepsilon}$ and $0 < \lambda \leq \lambda_{\varepsilon}$. Since $\Phi \in \delta_2$, we have that $I_{\Phi}(\lambda x_i) < \infty$ for any $\lambda > 0$ and $i \in \mathbb{N}$. Consequently, there is $j_{\varepsilon} \in \mathbb{N}$ such that

$$\frac{1}{\lambda_{\varepsilon}}I_{\Phi}(\lambda_{\varepsilon}x_{i}\chi_{\{j+1,j+2,\ldots\}}) < \frac{\varepsilon}{2}$$

for any $i \in \{1, \ldots, i_{\varepsilon}\}$ and all natural $j \ge j_{\varepsilon}$. Since the function $\Phi(u)/u$ is nondecreasing, we have that

$$\frac{1}{\lambda}I_{\Phi}(\lambda x_{i}\chi_{\{j+1,j+2,\ldots\}}) \leq \frac{1}{\lambda_{\varepsilon}}I_{\Phi}(\lambda_{\varepsilon}x_{i}\chi_{\{j+1,j+2,\ldots\}}) < \frac{\varepsilon}{2}$$

for all $j \ge j_{\varepsilon}$, $0 < \lambda \le \lambda_{\varepsilon}$ and $i \in \{1, \ldots, i_{\varepsilon}\}$. In consequence,

$$\frac{1}{\lambda}I_{\Phi}(\lambda x_i\chi_{\{j+1,j+2,\ldots\}}) < \frac{\varepsilon}{2}$$

for all $i \in \mathbb{N}, j \geq j_{\varepsilon}$ and $0 < \lambda \leq \lambda_{\varepsilon}$, whence

$$\frac{1}{\lambda} \sup_{i \in \mathbb{N}} |I_{\Phi}(\lambda x_i \chi_{\{j+1,j+2,\ldots\}}) \le \frac{\varepsilon}{2} < \varepsilon$$

for all $j \ge j_{\varepsilon}$ and $0 < \lambda \le \lambda_{\varepsilon}$, and the claim is proved.

Therefore, by Lemma 2.2, we have that $x_i \xrightarrow{w} 0$.

It is obvious that

$$I_{\Phi}\left(\frac{x_i + x_j}{d + \varepsilon}\right) = I_{\Phi}\left(\frac{x_i}{d + \varepsilon}\right) + I_{\Phi}\left(\frac{x_j}{d + \varepsilon}\right) \le \frac{1}{2} + \frac{1}{2} = 1,$$

whence $||x_i - x_j|| = ||x_i + x_j|| \le d + \varepsilon$. This shows that $A(\{x_n\}) \le d + \varepsilon$, so $WCS(l_{\Phi}) \le d$, by the arbitrariness of $\varepsilon > 0$.

In the following, we will prove that $WCS(l_{\Phi}) \geq d$. Let us take any sequence $\{x_n\}$ in $S(\ell_{\Phi})$ that is weakly convergent to zero. Since $x_n \xrightarrow{w} 0$ we have that $x_n \to 0$ coordinatewise and, by Lemma 2.2,

$$\lim_{i \to \infty} \lim_{\lambda \to 0} \sup_{n} \frac{1}{\lambda} I_{\Phi} \left(x_n \chi_{\{i_1+1, i_1+2, \dots\}} \right) = 0.$$
(1)

By $\Phi \in \delta_2$, we have for any $x \in \ell_{\Phi}$ that

$$\|(0,...,0,x(i),x(i+1),...)\|_{\Phi} \to 0 \text{ as } i \to \infty.$$
 (2)

Moreover, since $x_n \to 0$ coordinatewise, we have for any natural *j*:

$$\left\| \sum_{i=1}^{j} x_n(i) e_i \right\|_{\Phi} \to 0 \text{ as } n \to \infty.$$
(3)

On the base of (1), (2) and (3), there are natural numbers n_1, i_1 and j_1 such that $i_1 < j_1$ and the element $y_{n_1} := \sum_{i=i_1+1}^{j_1} x_{n_1}(i) e_i$ satisfies the inequalities

$$1 \ge ||y_{n_1}||_{\Phi} \ge 1 - \frac{1}{2}$$
 and $\lim_{\lambda \to 0} \frac{1}{\lambda} I_{\Phi}(\lambda y_{n_1}) \le \frac{1}{i_1}$.

Next, we can find natural numbers n_2, i_2 and j_2 such that $n_2 > n_1, j_1 < i_2 < j_2$ and the element $y_{n_2} := \sum_{i=i_2+1}^{j_2} x_{n_2}(i) e_i$ satisfies the inequalities

$$1 \ge \|y_{n_2}\|_{\Phi} \ge 1 - \frac{1}{3} \quad \text{and} \quad \lim_{\lambda \to 0} \frac{1}{\lambda} I_{\Phi}(\lambda y_{n_2}) \le \frac{1}{i_2}$$

Continuing this construction by induction, one can find three sequences $\{n_k\}$, $\{i_k\}$ and $\{j_k\}$ of natural numbers such that $n_{k+1} > n_k$, $i_k < j_k < i_{k+1}$ and the elements $y_{n_k} := \sum_{i=i_k+1}^{j_k} x_{n_k}(i) e_i$ satisfy the equalities

$$1 \ge \|y_{n_k}\|_{\Phi} \ge 1 - \frac{1}{k+1} \quad \text{and} \quad \lim_{\lambda \to 0} \frac{1}{\lambda} I_{\Phi}(\lambda y_{n_k}) \le \frac{1}{i_k}$$

for any k. It is obvious that $m(y_{n_k}) > i_k$ for any k.

By the definition of d, there exists $n_0 \in N$ such that

$$\inf \left[c_{x,n} > 0 : x \in S(l_{\Phi}), \text{ supp } (x) \text{ is finite, } m(x) \ge n, \\ I_{\Phi}\left(\frac{x}{c_{x,n}}\right) \le \frac{1}{2}, \lim_{\lambda \to 0} \frac{I_{\Phi}(\lambda x)}{\lambda} \le \frac{1}{n} \right] > d - \varepsilon,$$

whenever $n > n_0$.

Hence

$$I_{\Phi}\left(\frac{y_{n_k} - y_{n_l}}{d - \varepsilon}\right) = I_{\Phi}\left(\frac{y_{n_k}}{d - \varepsilon}\right) + I_{\Phi}\left(\frac{y_{n_l}}{d - \varepsilon}\right) > \frac{1}{2} + \frac{1}{2} = 1$$

for $k \neq l$; k, l being large enough.

Consequently, $||y_{n_k} - y_{n_l}|| > d - \varepsilon$ for $k \neq l$; k and l being large enough, that is, $A(\{y_{n_k}\}) > d - \varepsilon$. Since $||x_{n_k} - x_{n_l}|| \ge ||y_{n_k} - y_{n_l}|| - \frac{1}{k} - \frac{1}{l}$, so $A(\{x_{n_k}\}) = A(y_{n_k}) > d - \varepsilon$. Hence $WCS(l_{\Phi}) > d - \varepsilon$. By the arbitrariness of $\varepsilon > 0$, we have $WCS(l_{\Phi}) \ge d$ and the proof of the theorem is finished. \Box

Example 2.4. Take for example the l^p space $(1 and caculate <math>WCS(l^p)$. Take any $x \in S(\ell^p)$. If c > 0 satisfies the equality $I_{\Phi}\left(\frac{x}{c}\right) = \frac{1}{2}$, i.e. $\frac{1}{c^p}\sum_{i=1}^{\infty}|x(i)|^p = \frac{1}{2}$, then $c^p = 2$, and so $c = 2^{\frac{1}{p}}$. Therefore $WCS(l^p) = 2^{\frac{1}{p}}$. This is the result that has been proved originally by Bynum in [4].

In the following let $\{p_k\}_{k=1}^{\infty}$ be an increasing sequence of real numbers with $p_1 > 1$ and $\lim_{n\to\infty} p_n = p < \infty$.

Example 2.5. Let $l^{(p_i)}$ be the Nakano sequence space equipped with the Luxemburg norm. Then $WCS(l^{(p_i)}) = 2^{\frac{1}{p}}$.

160 L. Fan, Y. Cui, H. Hudzik / Weakly Convergent Sequence Coefficient in ...

Proof. For any weakly null sequence $\{x_n\}$ in $S(l^{(p_i)})$ and any $x \in S(l^{(p_i)})$ with finite m(x), we may assume without loss of generality that $m(x) \cap m(x_n) = \emptyset$ for any $n \in N$. We now consider the equation

$$I_{\Phi}\left(\frac{x}{c}\right) + I_{\Phi}\left(\frac{x_n}{c}\right) = 1,$$

that is,

$$\sum_{i=1}^{\infty} \left| \frac{x(i)}{c} \right|^{p_i} + \sum_{i=1}^{\infty} \left| \frac{x_n(i)}{c} \right|^{p_i} = 1.$$

Since c > 0 satisfying the last equality is greater than 1, we have

$$\frac{1}{c^p} \sum_{i=1}^{\infty} |x(i)|^{p_i} + \frac{1}{c^p} \sum_{i=1}^{\infty} |x_n(i)|^{p_i} = \frac{2}{c^p} \le 1,$$

i.e. $c \ge 2^{\frac{1}{p}}$. This shows the inequality $WCS\left(l^{(p_i)}\right) \ge 2^{\frac{1}{p}}$.

Take the sequence $\{e_n\}$, where $e_n = (\underbrace{0, \ldots, 0}_{n-1} 1, 0, 0, \ldots)$. Then $e_n \in l^{(p_i)}$ for any

 $n \in N \text{ and } \lim_{\lambda \to 0} \frac{I_{\Phi}(\lambda e_n)}{\lambda} = 0 < \frac{1}{n}. \text{ Since } I_{\Phi}\left(e_n/2^{\frac{1}{p}}\right) = \left(2^{-\frac{1}{p}}\right)^{p_i} = 2^{-\frac{p_i}{p}} \le \frac{1}{2}, \text{ we get}$ $\inf\left\{c > 0: I_{\Phi}\left(\frac{x}{c}\right) \le \frac{1}{2}\right\} \le 2^{\frac{1}{p}}. \text{ Consequently } WCS\left(l^{(p_i)}\right) \le 2^{\frac{1}{p}}, \text{ whence } WCS\left(l^{(p_i)}\right) = 2^{\frac{1}{p}}.$

Theorem 2.6. A Musielak-Orlicz sequence space l_{Φ} corresponding to a finitely valued and vanishing only at zero Musielak-Orlicz function Φ with $\sup_{i \in \mathbb{N}} \Phi_i(2a_i) < \infty$, where a_i are the positive numbers satisfying $\Phi_i(a_i) = 1$ for all $i \in \mathbb{N}$, has the weakly uniformly normal structure if and only if $\Phi \in \delta_2$.

Proof. We need only to prove that if $\Phi \in \delta_2$, then the Musielak-Orlicz sequence space l_{Φ} has the weakly uniformly normal structure because if $\Phi \notin \delta_2$, then l_{Φ} contains a linearly isometric copy of l_{∞} and so l_{Φ} has not the weakly uniformly normal structure. By virtue of the Kamińska considerations in [9], we may assume that $\Phi_i(1) = 1$ for all $i \in \mathcal{N}$. We will divide our proof into two steps.

Step 1. We will prove that if $I_{\Phi}(x_n) \to 0$ then $||x_n|| \to 0$ as $n \to \infty$. Although the proof of this implication was given in [6] we present here another proof. Suppose that the implication does not hold. Then passing to a subsequence if necessary we may assume that there exists $\varepsilon_0 > 0$ such that $\lim_{n\to\infty} ||x_n|| = \varepsilon_0$. Hence there exists $n_0 \in N$ such that

$$||x_n|| > \frac{\varepsilon_0}{2} \quad \text{for } n > n_0.$$

By using $\Phi \in \delta_2$, we have

$$I_{\Phi}\left(\frac{x_n}{||x_n||}\right) = 1 \text{ for all } n \in N.$$

Using again $\Phi \in \delta_2$ and the fact that all Φ_i vanish only at zero, we get that there exist a > 0, k > 0 and $c_i > 0$ such that $\sum_{i=1}^{\infty} c_i < \frac{1}{3}$ and

$$\Phi_i\left(\frac{2u}{\varepsilon_0}\right) \le k\Phi_i(u) + c_i$$

for all $i \in N$ and $u \in R$ satisafying $\Phi_i(u) \leq a$.

Hence, we have for all $n > n_0$,

$$1 = I_{\Phi}\left(\frac{x_n}{||x_n||}\right) \le I_{\Phi}\left(\frac{2x_n}{\varepsilon_0}\right)$$
$$= \sum_{\Phi_i(x_n(i))\le a} \Phi_i(\frac{2x_n(i)}{\varepsilon_0}) + \sum_{\Phi_i(x_n(i))>a} \Phi_i(\frac{2x_n(i)}{\varepsilon_0})$$
$$\le \sum_{i=1}^{\infty} k \Phi_i(x_n(i)) + \sum_{i=1}^{\infty} c_i + \sum_{\Phi_i(x_n(i))>a} \Phi_i(\frac{2x_n(i)}{\varepsilon_0})$$
$$= k I_{\Phi}(x_n) + \sum_{i=1}^{\infty} c_i + \sum_{\Phi_i(x_n(i))>a} \Phi_i(\frac{2x_n(i)}{\varepsilon_0}).$$

Since $I_{\Phi}(x_n) \to 0$ as $n \to \infty$ by the assumption, there exists $n_1 \ge n_0$ such that $kI_{\Phi}(x_n) < \frac{1}{3}$ for $n > n_1$. Therefore, we have the inequality

$$1 \le \frac{1}{3} + \frac{1}{3} + \sum_{\Phi_i(x_n(i)) > a} \Phi_i(\frac{2x_n(i)}{\varepsilon_0})$$

for $n > n_1$, which gives that the value of the last sum is $\geq \frac{1}{3}$ for any $n > n_1$.

This shows that for each $n > n_1$ there exists $i \in N$ such that $\Phi_i(x_n(i)) > a$, i.e., $I_{\Phi}(x_n) > a$ for any $n > n_1$. A contradiction, which finishes the proof of the implication. Step 2. Suppose that the assumptions about Φ are satisfied but l_{Φ} has not the weakly uniformly normal structure, i.e. $WCS(l_{\Phi}) = 1$. Then there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in $S(l_{\Phi})$ for which the sets $\operatorname{supp}(x_n)$ are finite, $m(x_n) > n$, $\lim_{\lambda \to 0} \frac{I_{\Phi}(\lambda x_n)}{\lambda} < \frac{1}{n}$ and $\bar{c}_{x_n} \searrow 1$, where $\bar{c}_{x_n} = c_{x_n,n}$ and $c_{x_n,n}$ are from the formula for $WCS(\ell_{\Phi})$ in Theorem 2.3. By $\Phi \in \delta_2$, there are a constant K > 0 and a sequence (c_i) of nonnegative numbers such that

$$\sum_{i=1}^{\infty} \Phi_i(c_i) < \infty \quad \text{and} \quad \Phi_i(2u) \le K \Phi_i(u) \tag{(*)}$$

for $u \in [c_i, 1]$, $n \in \mathcal{N}$. Condition (*) follows from condition δ_2 for Φ and the assumption that $\sup_{i \in N} \Phi_i(2) < \infty$. Namely, condition δ_2 is equivalent to the fact that there exist constants $a \in (0, 1)$ and $K \ge 2$ and two sequences of positive numbers $(c_i)_{i=1}^{\infty}$ and $(d_i)_{i=1}^{\infty}$ with $\Phi_i(d_i) = a$ and $c_i < d_i$ for all $i \in N$ such that

$$\sum_{i=1}^{\infty} \Phi_i(c_i) < \infty \quad \text{and} \quad \Phi_i(2u) \le K_1 \Phi_i(u)$$

162 L. Fan, Y. Cui, H. Hudzik / Weakly Convergent Sequence Coefficient in ...

for all $i \in N$ and $u \in [c_i, d_i]$. Then for all $i \in N$ and $u \in [d_i, 1]$, we have

$$\Phi_i(2u) \le \Phi_i(2) = \frac{\Phi_i(2)}{\Phi_i(d_i)} \Phi_i(d_i) \le \frac{\Phi_i(2)}{a} \Phi_i(u).$$

So, it is enough to define $K = \max(K_1, \sup_i \Phi_i(2))$.

Put $\overline{x}_n = (\overline{x}_n(1), \overline{x}_n(2), \dots, \overline{x}_n(i), \dots)$, where $\overline{x}_n(i) = x_n(i)$ if $|x_n(i)| \leq \overline{c}_{x_n}c_i$ and $\overline{x}_n(i) = \overline{c}_{x_n}c_i \operatorname{sgn}(x_n(i))$ if $|x_n(i)| > \overline{c}_{x_n}c_i$ for each $i \in \mathcal{N}$. Then $I_{\Phi}\left(\frac{\overline{x}_n}{\overline{c}_{x_n}}\right) \to 0$ as $n \to \infty$. By the result from Step 1, we have that $||\overline{x}_n|| \to 0$. Moreover, we also have $||x_n - \overline{x}_n|| \to 1$.

Notice that thanks to condition (*), we have $I_{\Phi}(2\frac{(x_n-\overline{x}_n)}{\overline{c}_{x_n}}) \leq KI_{\Phi}(\frac{x_n}{\overline{c}_{x_n}}) + k\sum_{i=1}^{\infty} c_i \leq K + k\sum_{i=1}^{\infty} c_i < \infty$ for all $n \in N$. Let us introduce the following function $g: \mathbb{R}^+ \to [0, \infty]$:

$$g(\lambda) = \sup\left\{I_{\Phi}\left(\lambda \frac{x_n - \overline{x}_n}{\overline{c}_{x_n}}\right) : n = 1, 2, \cdots\right\}$$

for $\lambda \in R^+$. Then g is convex, g(0) = 0, $g(1) \leq \frac{1}{2}$ and $g(2) \leq k + \sum_{i=1}^{\infty} c_i < \infty$. Therefore, g is continuous on the interval [0, 2). Thus, by the Darboux property of g, there exists $\lambda_0 \in (1, 2)$ such that $g(\lambda_0) \leq 1$. This means that $I_{\Phi}\left(\lambda_0 \frac{x_n - \overline{x}_n}{\overline{c}x_n}\right) \leq 1$ for all $n \in N$, whence we have $||x_n - \overline{x}_n|| \leq \overline{c}_{x_n}/\lambda_0$ for all $n \in N$. Since $\overline{c}_{x_n} \searrow 1$ and $1 < \lambda_0 < 2$, we conclude that there exists $m \in N$ such that $\sup_{n \geq m} (\overline{c}_{x_n}/\lambda_0) < 1$, which, by the above inequality, contradicts the condition $||x_n - \overline{x}_n|| \to 1$ as $n \to \infty$.

Acknowledgements. The authors thank the Referee for valuable suggestions concerning the redaction of the paper.

References

- J. M. Ayerbe, T. Domíngues Benavides: Connections between some Banach space coefficients concerning normal structure, J. Math. Anal. Appl. 172(1) (1993) 53-61.
- T. Domíngues Benavides: Weak uniform normal structure in direction sum spaces, Stud. Math. 103(3) (1992) 293–299.
- [3] W. L. Bynum: Normal structure coefficient for Banach spaces, Pacific J. Math. 86 (1980) 427–436.
- [4] K. Deimling: Nonlinear Functional Analysis, Springer, Berlin (1985).
- [5] J. Diestel: Sequences and Series in a Banach Space, Graduate Texts in Math. 92, Springer, New York (1984).
- [6] P. Foralewski, H. Hudzik: On some geometrical and topological properties of generalized Calderón-Lozanovskiĭ sequence spaces, Houston J. Math. 25(3) (1999) 523–543.
- [7] H. Hudzik: Banach lattices with order isometric copies of ℓ[∞], Indag. Math., New Ser. 9(4) (1998) 521–527.
- [8] H. Hudzik, A. Kamińska: On uniformly convexitiable and B-convex Musielak-Orlicz spaces, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 25 (1985) 59–75.

- H. Kamińska: Uniform rotundity of Musielak-Orlicz sequence spaces, J. Approximation Theory 47 (1986) 302–322.
- [10] L. V. Kantorovich, G. P. Akilov. Functional Analysis, Nauka, Moscow (1977) (in Russian).
- [11] W. A. Kirk: A fixed point theorem for mappings which do not increase distances, Amer. Math. Mon. 72 (1965) 1004–1006.
- [12] W. A. Kirk, B. Sims (eds.): Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht (2001).
- [13] M. A. Krasnoselskiĭ, Ya. B. Rutitskiĭ: Convex Functions and Orlicz Spaces, Noordhoff, Groningen (1961).
- [14] L. Maligranda: Orlicz Spaces and Interpolation, Seminars in Mathematics 5, Departamento de Matemática, Universidade Estadual de Campinas, Campinas (1989).
- [15] J. Musielak: Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin (1983).
- [16] E. Maluta: Uniformly normal structure and related coefficients, Pacific J. Math. 111 (1984) 357–369.
- [17] M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces, Marcel Dekker, New York (1991).
- [18] G. L. Zhang: Weakly convergent sequence coefficient of product space, Proc. Amer. Math. Soc. 117(3) (1992) 637–643.