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A formula for the weakly convergent sequence coefficient of Musielak-Orlicz sequence spaces l¢ equipped
with the Luxemburg norm is calculated. As a consequence of this result the cofficient for Nakano se-
quence spaces [P is found. Criteria for weakly uniformly normal structure of Musielak-Orlicz sequence
spaces equipped with the Luxemburg are also given.
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1. Introduction

Let X be a Banach space. A mapping 7' : C € X — X is called nonexpansive if
| Tz — Ty|| < ||z — y|| for all x, y € C. The set of fixed points of T is Fix(T) :=
{z € C: Tz =x}. We say that the space X has the fixed point property (FPP) if for
every nonempty closed, bounded and convex subset C' of X and every nonexpansive
mapping 7" : C' — C we have Fix(T') # ¢.

Similarly, X is said to have the weak fixed point property (W F P P) if for every nonempty,
weakly compact and convex subset C' of X and every nonexpansive mapping 7' : C' — C'
we have Fix(T') # ¢.

It is well known that one of the central goals in the fixed point theory is obtaining a full
characterization of those Banach spaces which have FPP or WF PP.

A Banach space X, or more generally, a closed convex subset K of X, is said to have
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normal structure if any bounded convex subset H of X (resp. of K) which has more than
one point, contains a nondiametral point, i.e., there exists a point x¢y € H such that

sup{||zo — z|| : x € H} < diam (H) := sup{||lx — y|| : x,y € H}.
For D C X, D # ¢, let
1o (D) = sup{[|lz —yl| : y € D},
r(D) =inf{r, (D) : 2z € D}.

If X is reflexive and if D is a non-empty bounded closed subset of X, then weak com-
pactness of the closed balls in X yields that the set

C(D)={z€D:r,(D)=r(D)}
is a nonempty closed convex subset of D. The number (D) and the set C'(D) are called
the Chebyshev radius and Chebyshev center of D, respectively.

We recall the following theorem proved by W. A. Kirk in [11] for reflexive Banach spaces,
although clearly weak compactness of K suffices:

Let X be a reflexive Banach space and K be a non-empty bounded closed convex subset
of X which has normal structure. Then any nonexpansive mapping T : K — K has a
fixed point. In particular, if X has normal structure, then X has WF PP, and if X is
reflexive and has normal structure, then X has F'PP.

In order to know which kind of Banach spaces have normal structure, W. L. Bynum
introduced in [3] geometric cofficients WCS(X) and N(X), and established their rela-
tionships to normal structure.

We set '
V) =int{ I

where the infimum is taken over all bounded convex closed sets A in X with diam (A) > 0.
The number N(X) is called the normal structure coefficient of X. A Banach space X
has the uniformly normal structure iff N(X) > 1.

For a Banach space X without Schur property, the weakly convergent sequence coefficient
(WCS(X)) is defined by

Wes (X) = inf{% Arc X

is a sequence weakly but not strongly convergent to zero},
where A ({z;}) is the asymptotic diameter of {z;}, i.e.
A{z:}) = lim {sup(|lz — ;]| 6. > n]}

and r ({z;}) is the Chebyshev radius of the set co ({z;}) .
G. L. Zhang proved in [16] that if X does not have the Schur property, then

WOS (X) = inf{A({xm Lz € S(X) foralli € N,a; o} ,
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where S (X) is the unit sphere of X, as usual.

A Banach space X has weakly uniformly normal structure (so the weak fixed point
property as well) whenever WCS(X) > 1. For the notions concerning the fixed point
property and the weak fixed point property as well as the coefficients N (X) and WC'S(X)
we refer to [1], 2], [3], [4], [5], [11], [12], [16] and [18]. In this paper, we will give a formula
how to compute the coefficient WC'S (X) for Musielak-Orlicz sequence spaces.

A map & : R — [0, 00] is said to be an Orlicz function if ® is vanishing only at 0, even,
left continuous in the extended sense (which means that infinite limits are admitted) on
[0, 00) and convex.

A sequence ® = (®;) of Orlicz functions is called a Musielak-Orlicz function. By ¥ =
(U;) we denote the complementary function of ® in the sense of Young, that is,

U;(v) =sup{|v|u — P;j(u) :u >0}, i=1,2,--- ,veER

Given a Musielak-Orlicz function @, we define a convex modular by Is(z) =2, ®;(x(i))
for any = € [V (the space of all real sequences). The linear space Iy defined by

lp = {:1: €l Iy(kr) < oo for some k > 0}

is called the Musielak-Orlicz sequence space generated by ®. We consider lg equipped
with the Luzemburg norm

||| :inf{k >0: Iy (%) < 1}.

To simplify notations, we put le = (lo, ||-|]]). The space lgp is a Banach space (see [10],
[13], [14], [15] and [17]).

We say a Musielak-Orlicz function ® satisfies the do-condition (@ € d, for short) if there
exist constants k& > 2 and a > 0, and a sequence (c¢;) of positive numbers such that

Zf;.o ¢; < oo for some natural iy and the inequality

holds for every i € N and u € R satisfying ®;(u) < a (see [8] and [15]).

2. Results
Lemma 2.1. A set B in a Musielak-Orlicz space g is ly-weakly sequentialy compact if
and if ;o SUP,ep D ie; 2 (1) y (i) =0 for any y € ly.

Proof. This is a general result in Kothe sequence lattices (see [18]). O

Another characterization of /y-weakly sequentially compact subsets of £ which will be
used in the proof of Theorem 2.3 gives the next lemma.

Lemma 2.2. A set B in a Musielak-Orlicz space g is ly-weakly sequentialy compact if
and only if lim;_,oc limg o SUP,ep D isj %(I)i &z (i)]) = 0.
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Proof. Sufficiency. Take any y € ly and choose 1 > 0 such that Iy (ny) < oo. For any
e > 0, take jo > 0 and & > 0 such that Y, . +®; (§ |z (i)]) < ¢ for any © € B. Next

i>jo &
take 49 > jo such that >, . W; (n]y (i)]) < “4=. Then for all z € B,

1>140
> £ le @l = 2= 3 ko
1>10 z>zo
—Z &)x e Z\If ny (i
z>zo 1>10

By Lemma 2.1, we conclude that B is [g-weakly sequentialy compact.

Necessity. Since B is ly-weakly sequentialy compact, so B is norm bounded. Without
loss of generality, we may assume that I (x) < 1 for any € B since if we can prove
that

1
lim lim sup =P, (&|x(1)]) =
oty e Lol

then

lim lim sup —— [lle Z(I)Z- (fM) =0,

ennen € 2\ all

which means that lim;_ limeosup,ep D ; %@Z(§|x(z)|) = 0. If the necessity does

not hold, then there exist ¢ > 0, ix T 00, & | 0 and a sequence {z;} in B satisfying
D isi, é@i (& |zr (1)]) > € (k=1,2,...). We may also assume here that & < I and

2
22021 & < 00. Put

Yy = (y(i))?ilv where y (Z) = Sip Di (gk |xk (Z)l) (Z =1,2, ) .

By the Young equality tp;(t) = ®;(t) + V;(p;(t)) and the inequality tp;(t) < @;(2t) for
all natural 7 and ¢ > 0, where p; denotes the right hand side derivative of ®;, we have

)= 3w (sup (s (6o 6 )<zzwz (b (& | ()

=1 i=1 k=1

< ZZ€k|$k()|pz (&k [z (4) ZZ‘I% (285 | (2)])
i=1 k=1 i=1 k=1
i=1 k=1 k=1 k=1

This shows that y € ly. By Lemma 2.1, we get the following contradiction:

0 «— Zxk >Z|$k ) pi (& |z (0)])

1>y >0

_ i (& ‘xk
Zg & |z (9| pi (&g |z (4) Z >5.
1> >0
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If ® ¢ 0y, then WC'S (Is) = 1 because in this case ()T contains a sequence (x,)%,
with pairwise disjoint supports and with||x,| = 1 for any n € N and || sup,, z,|| = 1. So
we assume in the following that ® € 4,.

Theorem 2.3. If ® is an Orlicz function satisfying condition 02, we have the following
formula

WCS (lg) = lim inf{inf[cxvn >0:x¢€ S (lp), supp (z) is finite,
x 1 Ig(ha) _ 1
> — < —

oo 1 (2) <00 <]}

where m (x) = min{n : n € supp (z)}.

Proof. Let us denote the right hand side of the equality in Theorem 2.3 by d.

First, we will show that WCS (I3) < d. Given any £ > 0, by the definition of the lower
limit, there exists n; € N with

inf {cx,gxl >0:2 € S(lp), supp (z) is finite, m (z) > 2x1,

() <L a0 L
Cx,221 2 A— A 2{1)1

<d+e (Vn>n).

Then by the definition of the infimum, there exists z; € S (lp) with finite supp(z;) and

Ip (A1) 1
= < - and

1
inf{cxhn1 >0:1p ( al ) < 5} <d-+e.
Cxy,ny

Since supp(z) is finite, there exists ny > ny satisfying supp(x1) N [ng, +00) = 0.

m (z1) > ny such that limy_

Now we can get xo € S (lp) with finite supp(zz), m (x2) > ny and limy,_o 2 (i 2 < n%,

satisfying inf [cm 22, > 01 Ip <T> < %} < d+ e for all n > no.

Continuing the above process, we get that there exist a sequence of natural numbers
ny < ng < - - -, satisfying for all + € N:

(1) z;, €8 (l:;p) ;

(2) supp(z;) is finite, and supp(x;) N supp (x;) = ¢;
(3) m(x;) > n,, and limxﬁow < nii;

(4) inf{c%m. >0: Iy (ﬁ) < %} <d+e.

We claim that

1
lim 1i Is(A = 0.
Jim, fmsup S le(ATixgsege2..y) =0
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Take any € > 0. Since 1/n; N\, 0 as i — oo, there is i, such that 1/n; < /3 for all i > i..
Since limy_o(lo(Ax;)/A) < 1/n; for all i € N, there is A. > 0 such that

1 €
“Is(\r; <
eln) <35
for all ¢ > i, and 0 < A < A.. Since ® € J,, we have that Io(A\z;) < oo for any A > 0
and ¢ € N. Consequently, there is j. € N such that

Do M

1
)\_Id)()\a-riX{j+1,j+2,...}) <

3

foranyi € {1,...,i.} and all natural j > j.. Since the function ®(u)/u is nondecreasing,

we have that
1

1
Xltb(/\xz’X{j—i-l,j-i—Q,...}) < /\_Ifb(/\exiX{j—&—l,j—&—Q,...}) <

€

IR

forall j > j.,,0 <A< A andi€ {l,...,i.}. In consequence,

1 €
XI@(/\xiX{j+1,j+2,...}) < B
foralli € N7 > j. and 0 < A < ., whence
1 €
~sup [Io(Azix(j11j42.1) < 5 <€
A ieN 2

for all j > j. and 0 < A < A, and the claim is proved.
Therefore, by Lemma 2.2, we have that z; — 0.

It is obvious that

T+ x;j T Z; 1 1
Lo (B8 (2 ) 4 e (- ) <242 =1
q)(d—ke?) ‘b(d+€)+¢(d+€)_2+2 ’
whence ||z; — z;|| = ||z; + x;|| < d+e¢. This shows that A ({z,}) < d+¢,s0 WCS (Ip) <
d, by the arbitrariness of € > 0.

In the following, we will prove that WC'S (lg) > d. Let us take any sequence {z,} in
S(le) that is weakly convergent to zero. Since z, “ 0 we have that z,, — 0 coordinate-
wise and, by Lemma 2.2,

o 1
lim lim supXLp (.:Enx{ilﬂ,iﬁz,m}) =0. (1)

i—0o0 A—=0 p
By ® € 65, we have for any x € {g that
10,...,0,z(i), (i + 1),...)|| — 0 asi— oo. (2)

Moreover, since x,, — 0 coordinatewise, we have for any natural j:

Z x, (1) €

— 0 asn — oo. (3)

(o]
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On the base of (1), (2) and (3), there are natural numbers ny,7; and j; such that i; < j;

and the element y,,, := il i1 T (1) e; satisfies the inequalities

1

1 o1
1 > ”yn1”<1> - 5 and }\E% XLIJ()‘ynl) S i

=

Next, we can find natural numbers ns, 75 and j5 such that no > ny, j; < iy < jo and the

element y,,, == Y72, | &n, (i) ¢; satisfies the inequalities

1 1 1
1> ||yn2||<1> >1- g and hm )\LP()‘ynz) < -
A—0 'L

o

Continuing this construction by induction, one can find three sequences {n}, {ix} and

{jk} of natural numbers such that ng.; > ng, i < ji < k41 and the elements y,, =

i1 Tny, (1) € satisfy the equalities

1 o1 1
1> |lynllg = 1 — el and /1\111(1) XLb()\ynk) < — i

for any k. It is obvious that m (y,, ) > i\ for any k.
By the definition of d, there exists ng € N such that

inflc,, >0:2 € S (lo), supp (z) is finite, m (z) > n,

I (<) <2 tim Icp(*””)gl Sd—e,
Cem) — 27 2> A n

whenever n > ny.

Ynyp — Yny Yny, Yny 1 1
Ip (T ) g (e ) o (I} s 222
q’( d—e ) ¢(d—5)+¢<d—e)>2+2

for k # 1; k, [l being large enough.

Hence

Consequently, ||yn, — yn,|| > d — ¢ for k # [; k and [ being large enough, that is,

A({yn.}) > d—e. Since [[zn, — 2|l = [lyn, = Y| =5 =7, 50 A({2n, }) = A(yn,) > d—e.
Hence WC'S () > d — €. By the arbitrariness of € > 0, we have WCS(lg) > d and the
proof of the theorem is finished. n

Example 2.4. Take for example the {7 space (1 < p < c0) and caculate WC'S (IP) . Take
any x € S(f). If ¢ > 0 satisfies the equality Is (£) = 1, ie. 23 [z (i)’ = 1, then
=2 andsoc= 2v. Therefore WC'S (IP) = 25 This is the result that has been proved

originally by Bynum in [4].

In the following let {py},-, be an increasing sequence of real numbers with p; > 1 and
lim,,_oopn = p < 00.

Example 2.5. Let [’ be the Nakano sequence space equipped with the Luxemburg
norm. Then WCS (l(pi)) — 2 .
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Proof. For any weakly null sequence {z,} in S (l i ) and any © € S (l(pi)) with finite
m (x), we may assume without loss of generality that m (z) Nm (z,) = 0 for any n € N.
We now consider the equation

that is,

Since ¢ > 0 satisfying the last equality is greater than 1, we have

1 — , 1 — ,
C—pZ|$(l)p +gZ|$n(@)p
=1 =1

ie.c> 27 This shows the inequality WC'S (l ) > 2%

Take the sequence {e,}, where e, = (0,...,01,0,0,...). Then e, € (®) for any
——

n—1
i

n € N and lim,\aolé(’\en) =0< % Since I <en/2%) < ) <

)\ _—

N[ —=

, we get

1

inf{c>0:15 (%) <1} < 2. Consequently WC'S (%)) < 2», whence WCS (1?9)) =

2% O

Theorem 2.6. A Musielak-Orlicz sequence space lg corresponding to a finitely valued
and vanishing only at zero Musielak-Orlicz function ® with sup,cy ®i(2a;) < oo, where
a; are the positive numbers satisfying ®;(a;) = 1 for all i € N, has the weakly uniformly
normal structure if and only if ® € 5.

Proof. We need only to prove that if ® € 95, then the Musielak-Orlicz sequence space lg
has the weakly uniformly normal structure because if ® ¢ d,, then lg contains a linearly
isometric copy of [, and so lg has not the weakly uniformly normal structure. By virtue
of the Kaminska considerations in [9], we may assume that ®;(1) =1 for all i € N'. We
will divide our proof into two steps.

Step 1. We will prove that if I¢(x,) — 0 then ||z,|| — 0 as n — oo. Although the proof
of this implication was given in [6] we present here another proof. Suppose that the
implication does not hold. Then passing to a subsequence if necessary we may assume
that there exists g9 > 0 such that lim, _..||z,|| = 9. Hence there exists no € N such

that
£
[|zn|| > 30 for n > ny.

By using ® € d2, we have

[q,( n )—1 for all n € N.
||nl|
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Using again ® € 0, and the fact that all ®; vanish only at zero, we get that there exist
a>0,k>0and ¢; >0 such that Y >° ¢ < % and

€0

for all i € N and u € R satisafying ®;(u) < a.

Hence, we have for all n > ny,

D;(zn(i))<a Di(zn(i))>a

S IICHUIND SN SR ICL

> aln)
T (1)

1)) >a

= k]@(ﬂ?n) + ZCZ‘ +
i=1 P(

Since Ip(x,) — 0 as n — oo by the assumption, there exists ny > ng such that klg(z,) <
% for n > ny. Therefore, we have the inequality

2x,(7)

€o

1 1
1 S -+ g + Z CI)z(
Di(zn(i))>a

)

for n > ny, which gives that the value of the last sum is > % for any n > n;.

This shows that for each n > n; there exists i € N such that ®;(z,(i)) > a, ie.,
Is(xy,) > a for any n > n;. A contradiction, which finishes the proof of the implication.

Step 2. Suppose that the assumptions about ® are satisfied but I has not the weakly
uniformly normal structure, i.e. WCS(lg) = 1. Then there exists a sequence {x,} —, in

S(lg) for which the sets supp(z,) are finite, m(z,) > n, lim,\_@w < % and ¢, \, 1,
where ¢,, = ¢, and ¢, , are from the formula for WCS({g) in Theorem 2.3. By
® € 4y, there are a constant K > 0 and a sequence (¢;) of nonnegative numbers such
that

ZCI)Z-(CZ-) <oo and D;(2u) < KP;(u) (%)
i=1
for u € [¢;, 1], n € N. Condition (x) follows from condition d, for ® and the assumption
that sup,;cy ®i(2) < co. Namely, condition d, is equivalent to the fact that there exist

constants a € (0,1) and K > 2 and two sequences of positive numbers (¢;)$2, and (d;)5,
with ®;(d;) = a and ¢; < d; for all i € N such that

i@i(ci) <oo and D;(2u) < K19P;(u)

=1
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for all i € N and u € [¢;,d;]. Then for all i € N and u € [d;, 1], we have

D;(2) D;(2)
(I)i(di)q)i(di> < o

B;(2u) < B,(2) = ;i (w).

So, it is enough to define K = max (K7, sup; ®;(2)).

Put 7, = (Tn(1),Tn(2), - - - - T (1), e ), where T, (1) = x,(i) if |z,(i)| < &,
and T, (i) = ¢, ¢; sgn(x, (7)) if |2,(i)| > ¢, c; for each i € N. Then Ig (i—”) — 0 as

n — oo. By the result from Step 1, we have that ||Z,|| — 0. Moreover, we also have
||z, — Tnl| — 1.

Notice that thanks to condition (x), we have 1};(2@) < Klgp(22) + kY22 e <
K+EkY 2 ¢ <ooforallne N. Let us introduce the following function g : Rt — [0,

o)
g(A) = sup {Lp (A@) n=1,2,-- }

for A € R*. Then g is convex, g(0) =0, g(1) < 1 and ¢(2) < k+>.:2, ¢; < co. Therefore,
g is continuous on the interval [0, 2). Thus, by the Darboux property of g, there exists

Ao € (1,2) such that g(Ag) < 1. This means that Ig (Ao‘”"’f“) < 1lforalneN,

Cxp

whence we have ||z, — T,|| < €, /Ao for all n € N. Since ¢, \, 1 and 1 < Ay < 2, we
conclude that there exists m € N such that sup,,, (G, /M) < 1, which, by the above
inequality, contradicts the condition ||z, — Z,|| — 1 as n — oo. O
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