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1. Introduction

A mathematical program with equilibrium constraints (MPEC) is a constrained opti-
mization problem in which the essential constraints are defined by a parametric varia-
tional inequality or complementarity system. These problems are particularly important
for various applications in operational research, engineering, mechanics and economics.
The reader is referred to [12, 18] for applications and recent developments.

For MPEC problems, it is well known that the usual nonlinear programming constraint
qualifications such as Mangasarian-Fromovitz constraint qualification is violated at every
feasible point.

Various stationary conditions for MPECs exist in literature due to different reformula-
tions. The M-stationary condition [17] is the most appropriate stationary condition for
MPEC.

Ye in [25] showed that an M-stationary condition is a first order necessary condition and
it is sufficient for global or local optimality under some MPEC generalized convexity
and differentiability assumptions. Moreover, in [25] the author proposed a constraint
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qualification for M-stationary conditions to hold. Later, Flegel and Kanzow [4] proved
that M-stationary is a first order necessary condition under a weak Abadi-type constraint
qualification for the case where all the functions involved except the objective function
are smooth. Mordukhovich subdifferential was used for nonsmooth terms in [4].

In this paper, we introduce nonsmooth M-stationary condition via Michel-Penot subd-
ifferential and show that it is a first order necessary condition for MPEC without any
smooth assumptions. The reason for our selection of this subdifferential is that the
Michel-Penot subdifferential is one of the smallest subdifferentials which coincides with
classical derivative when the function is Gateaux differentiable. The multiplier rules
in terms of other bigger generalized gradients follow immediately. For this purpose we
need a suitable Lagrange multiplier rule corresponding with equality, inequality and
closed set constraints based on a subdifferential which is contained in Michel-Penot and
Mordukhovich subdifferentials, and has a useful calculus. It appears that the linear
subdifferential introduced by Treiman, is suitable.

In [22] Treiman introduced the linear generalized gradient. In [21] its nice calculus is
described. Then in [23] Treiman proved a Lagrange multiplier rule for finite dimensional
Lipschitz problems. The result of [23] was based on either both the linear generalized
gradient and the generalized gradient of Mordukhovich or the linear generalized gradient
and a qualification condition involving the pseudo-Lipschitz behavior of the feasible sets
for equality and set constraints under perturbations.

We use a geometric constraint qualification, named in this paper by the distance inter-

section property (DIP), which is weaker than pseudo-Lipschitz condition. This notion
appeared in the papers by Jourani and Thibault [9, 10] and Ioffe [8] to calculus of normal
cones and subdifferentials and obtain multiplier rules. It is worth mentioning that (DIP)
is the nonconvex case of local linear regularity studied in [20]. We derive the Fritz-
John and Karush-Kuhn-Tucker M-stationary conditions for nonsmooth MPEC based on
Michel-Penot subdifferential under (DIP) assumptions without requiring the smoothness
of the objective function and constraints. This result generalizes the results of [25, 4].

The organization of this paper is as follows. In the next section we provide preliminary
definitions and results to be used in the rest of the paper. In Section 3, we propose
the concept of (DIP) as a constraint qualification to obtain a new multiplier rule based
on the linear subdifferential. Then we compare our new constraint qualification with
pseudo-Lipschitz property, calmness [5, 6] and the finite dimensional case of the normal
qualification condition [16].

In Section 4 we give several examples for which (DIP) is satisfied but pseudo-Lipschitz
property does not hold. Section 5 is devoted to the Fritz-John and Karush-Kuhn-Tucker
M-stationary necessary conditions for nonsmooth MPECs based on Michel-Penot subd-
ifferential.

2. Preliminaries

In finite-dimensional space R
n, ‖.‖ is the Euclidean norm and ‖.‖1 is the norm defined

by

‖(x1, . . . , xn)‖1 =
n∑

i=1

|xi|, for (x1, . . . , xn) ∈ R
n.
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For nonempty set C ⊂ R
n, the function dC : Rn −→ R is defined by

dC(x) := inf {‖x− y‖ : y ∈ C} , ∀x ∈ R
n.

For given point x ∈ R
n and positive number r > 0, B(x, r) (B̄(x, r)) is the open (closed)

ball centered at x with radius r. Also, B denotes the unit ball. We recall the definitions
of the linear and Mordukhovich subdifferential from [3, 23]. First we define proximal
normals and proximal subgradients.

Definition 2.1.

(a) Let C ⊆ R
n be a closed set and let f : Rn −→ R be lower semicontinuous (lsc). A

v ∈ R
n is a proximal normal to C at x ∈ C if for some λ > 0,

C ∩ B(x+ λv, λ‖v‖) = {x}.

The set of all such vectors is called the proximal normal cone to C at x and is
denoted by NP (C;x).

(b) A w ∈ R
n is a proximal subgradient of f at x if, for some µ ≥ 0,

f(y) ≥ f(x)+ < w, y − x > −µ ‖ y − x ‖2,

on a neighborhood of x. The set of all such vectors is called the proximal subdif-
ferential of f at x and is denoted by ∂pf(x).

An element of the normal cone of Mordukhovich is defined as the limit of a sequence of
proximal normals [3, 11, 15, 19]. To define the linear normal cone, a restriction in the
convergence of the proximal normals is used [23, 21].

Definition 2.2. A sequence of proximal normals vk −→ v to a closed set C ∈ R
n at

xk −→ x is linear if, either xk 6= x for all k, and for some λ > 0 and all sufficiently large
k,

C ∩ B
(
xk + λ ‖ xk − x ‖ vk, λ ‖ xk − x ‖‖ vk ‖

)
=

{
xk
}

or xk = x for all k.

By using this definition one can define the linear normal cone.

Definition 2.3. Let C be a closed subset of Rn. The linear normal cone to C at x is

Nl(C; x) = cl{v : v is the limit of a linear sequence

of proximal normals to C at xk −→ x}.

The Mordukhovich normal cone to C at x is

NM(C; x) = {v : v is the limit of a sequence

of proximal normals to C at xk −→ x}.

In the sequel the notation ‖ x− y ‖f means ‖ x− y ‖ + | f(x)− f(y) |.
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Definition 2.4. A sequence of proximal subgradients vk −→ v to a lsc function f for x
is linear if either there are xk −→ x, f(xk) −→ f(x) , xk 6= x and µ, δ > 0 such that

f(xk + h) ≥ f(xk)+ < vk, h > − µ

‖ xk − x ‖f
‖ h ‖2,

for xk + h ∈ B(xk, δ ‖ xk − x ‖f ), or vk is a proximal subgradient to f at x for all k.

Note that if f is locally Lipschitz around x with constant L > 0, then for any k large
enough,

‖xk − x‖ ≤ ‖xk − x‖f ≤ (1 + L)‖xk − x‖,
thus ‖xk − x‖f may be replaced by ‖xk − x‖ in Definition 2.4.

Definition 2.5. Let f : Rn −→ R be lsc. The linear subdifferential to f at x is the set

∂lf(x) := cl{v : v is the limit of a linear sequence

of proximal subgradients to f for x}.

The Mordukhovich subdifferential to f at x is the set

∂Mf(x) := {v : v is the limit of a sequence

of proximal subgradients to f at xk −→ x}.

The following result concerning linear and Mordukhovich normal cone is needed in this
paper. We refer the reader to [15, 22] for a proof.

Theorem 2.6. If C be a closed subset of Rn. Then

Nl(C; x) = cl∪λ≥0λ∂ldC(x),

and

NM(C; x) = ∪λ≥0λ∂MdC(x).

We recall the following calculus rules for linear subdifferential which can be found in
[15, 19]. Similar results for Mordukhovich subdifferential can also be found in [7, 14, 22].

Theorem 2.7. Let f be a lsc function from R
n to R and let g be a locally Lipschitz

function from R
n to R . Then if f(x) is finite,

a) ∂l(f + g)(x) ⊆ ∂lf(x) + ∂lg(x),

b) if α ≥ 0, then ∂l(αf)(x) = α∂lf(x),

c) if x is a local minimizer of f then 0 ∈ ∂lf(x).

Theorem 2.8. Let g1, g2, . . . , gk be a finite collection of locally Lipschitz functions from

R
n to R. Then

∂l

((
max

i

)
gi

)
(x) ⊆

{
k∑

i=1

λi∂lgi(x) : λi ≥ 0, λi = 0 if i /∈ I(x) and
k∑

i=1

λi = 1

}
,

where

I(x) =
{
i :

(
max

i

)
gi(x) = gi(x)

}
.
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To state the following chain rule, we recall the notion of the linear co-derivative.

Definition 2.9 ([22]). Let G : Rm −→ R
n be a locally Lipschitz function. The linear

co-derivative of G is the multifunction D∗
l G from R

m × R
n to R

n such that

D∗
l G(x)(y∗) = {v∗ : (v∗,−y∗) ∈ Nl(gphG; (x,G(x)))},

where gphG = {(x,G(x)) ∈ R
m × R

n : x ∈ R
n}.

Theorem 2.10 ([22]). Let G : R
m −→ R

n and f : R
n −→ R be locally Lipschitz

functions. Then

∂lf ◦G(x) ⊆ D∗
l G(x)∂lf(G(x)).

The other result is a “scalarization� formula for the co-derivative.

Theorem 2.11 ([21]). Let F : Rm :−→ R
n be a locally Lipschitz function. Then

D∗
l F (x)(y) = ∂l < y, F > (x), ∀y ∈ R

n.

The same results hold if the linear subdifferential and co-derivative are replaced by those
of Mordukhovich.

The following result proved by Treiman in [23], describes that the linear and also the
Mordukhovich normal cone to a set of the form {x : h(x) = 0 } is contained in the
positive linear combinations of the subdifferential of h, under some conditions.

Theorem 2.12. Suppose h is a locally Lipschitz function from R
n to R with h(x) = 0.

Let C = {x : h(x) = 0}. If 0 /∈ ∂lh(x) ∪ ∂l(−h)(x), then

Nl(C; x) ⊆ ∪α∈R∂l(αh)(x).

If 0 /∈ ∂Mh(x) ∪ ∂M(−h)(x), then

NM(C; x) ⊆ ∪α∈R∂M(αh)(x).

Definition 2.13 ([13]). Let f : Rn −→ R be locally Lipschitz function around x ∈ R
n.

The Michel-Penot directional derivative of f at x is defined by

f ⋄(x;h) = sup
u∈Rn

lim sup
t↓0

f(x+ th+ tu)− f(x+ tu)

t
,

and the Michel-Penot subdifferential of f at x by

∂⋄f(x) := {ξ ∈ R
n : f ⋄(x;h) ≥ 〈ξ, d〉 ∀h ∈ R

n} .

A useful property of Michel-Penot subdifferential is that

∂⋄(−f)(x) = −∂⋄f(x),

whenever f is locally Lipschitz around x. Also, note that for locally Lipschitz functions
on finite-dimensional spaces, the closed convex hull of the linear subdifferential is the
Michel-Penot subdifferential [21].

Now we recall the following results from [3]. Let C be a nonempty subset of Rn and
x /∈ C. The projection set of C at x, denoted by proj C(x), is defined by

proj C(x) := {c ∈ C : dC(x) = ‖x− c‖}.
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Theorem 2.14. Suppose C is a nonempty subset of R
n. Let x ∈ R

n, c ∈ C and

c ∈ proj C(x). Then for all t ∈ (0, 1),

proj C(c+ t(x− c)) = {c}.

Theorem 2.15. Suppose that x is not in the closed subset C of Rn. If the vector ζ
belongs to ∂pdC(x), Then there exists a point c ∈ C such that the following conditions

hold:

(a) proj C(x) = {c}
(b) The Fréchet derivative d′C(x) exists, and

{ζ} = ∂pdC(x) = {d′C(x)} =

{
x− c

‖x− c‖

}

(c) ζ ∈ Np(C; c).

3. Constraint qualifications

To establish the main result of this section we need to prove the following Theorem.

Theorem 3.1. Let C1, C2, . . . , Ck be closed nonempty subsets of Rn and suppose x ∈
C = ∩k

i=1Ci. Suppose that for some ε > 0 and σ > 0,

dC(y) ≤
1

σ

(
max
1≤i≤k

dCi

)
(y), (1)

for all y ∈ x+ εB .Then

∂ldC(x) ⊆
k∑

i=1

Nl(Ci; x).

Proof. Consider the following sets:

A := {v : v is the limit of a linear sequence

of proximal subgradients to dC at x } ,

A′ :=

{
v : v is the limit of a linear sequence

of proximal subgradients to
1

σ
max

i
{dCi

(.)} at x

}
.

It is sufficient to prove that A ⊆ A′. Assume that v ∈ A. Therefore there exist sequences
xk −→ x and vk −→ v, such that vk ∈ ∂pdC(x

k) and either xk = x for all k, or xk 6= x
for all k and for some positive numbers µ, δ > 0, we have

dC(x
k + h) ≥ dC(x

k)+ < vk, h > − µ

‖ xk − x ‖ ‖ h ‖2, (2)

for xk + h ∈ B(xk, δ ‖ xk − x ‖).
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If xk = x for all k, then dC(x) =
1
σ
maxi dCi

(x) = 0. Furthermore for all k, vk ∈ ∂pdC(x),

hence by Definition 2.1 and (1), there exist positive numbers σk, ηk such that for all h
with ‖h‖ ≤ ηk,

1

σ
max

i
dCi

(x+ h) ≥ dC(x+ h)

≥ dC(x)+ < vk, h > −σk‖h‖2

=
1

σ
max

i
dCi

(x)+ < vk, h > −σk‖h‖2.

Therefore vk ∈ ∂p(
1
σ
maxi dCi

(x)) for all k. Thus v is the limit of a linear sequence of

subgradients for 1
σ
maxi dCi

at x. Hence v ∈ A′.

For each k ∈ N, according to Theorem 2.15 there exists zk ∈ C such that, proj C(x
k) =

{zk}. If zk = xk for infinitely many k, then dC(x
k) = 0 = 1

σ
maxi dCi

(xk) and hence (2)

combined with assumption (1) gives that vk is a linear sequence for 1
σ
maxi dCi

at xk,
which ensures that v ∈ A′.

Suppose that zk 6= xk for k large enough. Then according to Theorem 2.15 vk =
(xk−zk)/‖xk−zk‖ and hence by [1, Theorem 4.1], vk ∈ NP (C; zk)∩B = ∂pdC(z

k). Note
that

‖zk − x‖ ≤ ‖zk − xk‖+ ‖xk − x‖ ≤ 2‖xk − x‖. (3)

If ‖h‖ ≤ (δ/2)‖zk − x‖, then by (2)

dC(x
k)+ < vk, h > −(µ‖h‖2)/‖xk − x‖

≤ dC(x
k + h) ≤ dC(z

k + h) + ‖zk − xk‖ = dC(z
k + h) + dC(x

k),

hence combining with (3), we get

1

σ
max

i
dCi

(zk)+ < vk, h > −(2µ‖h‖2)/‖zk − x‖

= < vk, h > −(2µ‖h‖2)/‖zk − x‖ ≤ dC(z
k + h) ≤ 1

σ
max

i
dCi

(zk + h),

where the last inequality being due to the assumption (1). So vk is a linear sequence for
1
σ
maxi dCi

at zk. Deduce that A ⊆ A′ and the proof is complete.

Observe that the assumption (1) has been used by A. Jourani and L. Thibault [10] and
also by A. D. Ioffe [8] to obtain the inclusion

∂MdC(x) ⊆ γ
k∑

i=1

∂MdCi
(x) ⊆

k∑

i=1

NM(Ci; x),

for the Mordukhovich normal cone in Asplund space and the geometric Ioffe normal cone
in general Banach space. Note that in finite dimension those cones coincide, and the
following holds.

Theorem 3.2 ([8, 10]). Let C1, C2, . . . , Ck be closed nonempty subsets of Rn and sup-

pose x ∈ C = ∩k
i=1Ci. Suppose that for some ε > 0 and σ > 0,

dC(y) ≤
1

σ

(
max
1≤i≤k

dCi

)
(y),
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for all y ∈ x+ εB. Then

NM(C; x) ⊆
k∑

i=1

NM(Ci; x).

Now, we introduce a simple but useful geometric property for points which belongs to
intersection of a finite collection of closed sets. We show that this property is equivalent
with calmness [6, 19] and weaker than pseudo-Lipschitz condition (or Aubin property)
(see, e.g., [19]). We also show that this property is weaker than the finite dimensional
case of normal qualification condition employed in [16].

Definition 3.3. Let C1, C2, . . . , Ck be closed subsets of Rn and suppose x ∈ C = ∩k
i=1Ci.

We say that C1, C2, . . . , Ck has the distance intersection property (DIP) at x, if there
exist positive numbers σ, ε such that,

dC(y) ≤
1

σ
max

i
dCi

(y),

for all y ∈ x+ εB.

Remark 3.4. We may assume σ ≤ 1, since maxi dCi
(x) ≤ dC(x).

Now, we recall the definitions of pseudo-Lipschitz property and calmness [5, 6, 19, 23].

Definition 3.5. Let C1, C2, . . . , Ck be closed subsets of Rn. Suppose that Φ(v) is the
set-valued function from R

nk to R
n defined by

Φ(v) := Φ(v1, v2, . . . , vk) = ∩k
i=1(Ci + vi), (4)

for all (v1, v2, . . . , vk) ∈ R
nk.

(a) We say that Φ is calm at (v, x) ∈ gphΦ, if there exist c > 0 and neighborhoods V
of v and Z of x such that for any v ∈ V and x ∈ Φ(v) ∩ Z,

dΦ(v)(x) ≤ c‖v − v‖.
(b) We say that Φ is pseudo-Lipschitz (or has Aubin property) at (v, x) ∈ gphΦ, if

there exist c > 0 and neighborhoods V of v and Z of x such that for any v1, v2 ∈ V
and x ∈ Φ(v2) ∩ Z,

dΦ(v1)(x) ≤ c‖v1 − v2‖.

In the next theorem and its corollary, we prove that (DIP) condition is equivalent with
calmness and weaker than pseudo-Lipschitz property.

Theorem 3.6. Let C1, C2, . . . , Ck be nonempty closed subsets of R
n and x ∈ C =

∩k
i=1Ci. Suppose that Φ is defined as (4). Let 0 = (0, . . . , 0) ∈ R

nk. The multifunc-

tion Φ is calm at (0, x) ∈ gphΦ, if and only if x is a (DIP) point for C1, C2, . . . , Ck.

Proof. In the following argument we consider the ‖.‖∞ in R
n and R

nk. The extension
to an arbitrary norm is trivial since all the norms are equivalent in finite dimensions.

First, we assume that Φ is calm at (0, x) ∈ gphΦ. Therefore, there exist positive numbers
c and ε such that for every v ∈ εB and y ∈ Φ(v) ∩ (x+ εB),

dΦ(0)(y) ≤ c‖v‖∞. (5)
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It is clear that Φ(0) = ∩k
i=1Ci = C. Without loss of generality, we may assume c ≥ 1.

Let y ∈ x + εB. Assume that for each i, ci ∈ proj Ci
(y) and vi := y − ci. Then,

y ∈ ∩k
i=1(Ci + vi) = Φ(v1, v2, . . . , vk). On the other hand,

‖vi‖∞ = dCi
(y) ≤ ‖y − x‖∞ ≤ ε.

Consequently ‖(v1, . . . , vk)‖∞ ≤ ε. By (5), we have,

dC(y) ≤ c‖(v1, . . . , vk)‖∞ = cmax
i

{‖vi‖∞} = cmax
i

{dCi
(y)}.

Setting 1
σ
= c, we deduce that x is a (DIP) point for C1, C2, . . . , Ck.

Conversely, suppose that for some ε > 0 and any y ∈ x + εB, one has dC(y) ≤
1
σ
maxi dCi

(y). Then for y ∈ Φ(v) ∩ (x + εB), dC(y) ≤ 1
σ
maxi ‖vi‖. This concludes

the proof.

It is clear that the Aubin property of Φ at (0, x), implies the calmness of Φ at the same
point. Therefore the following result is a direct consequence of Theorem 3.6.

Corollary 3.7. Let C1, C2, . . . , Ck, x and Φ be as in Theorem 3.6. If Φ is pseudo-

Lipschitz at (0, x) ∈ gphΦ, then x is a (DIP) point for C1, C2, . . . , Ck.

Now we prove a new Fritz-John type necessary condition via linear generalized gradient,
for Lipschitz problems with inequality, equality and nonconvex set constraints. Consider
the following optimization problem (P )

(P ) min f(x) subject to
gi(x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , k
x ∈ U,

where f, gi (i = 1, 2, . . . ,m) and hj (j = 1, . . . k) are locally Lipschitz functions from R
n

to R and U is a closed subset of Rn.

Let for j = 1, 2, . . . , k, Cj = {x ∈ R
n : hj(x) = 0}, and Ck+1 = U . Take x to be a feasible

point of (P ). Treiman in [23] stated a Fritz-John type Lagrange multipliers result via
linear generalized gradient for (P ) under pseudo-Lipschitzness of the function Φ defined
in (4). We derive the result of Treiman based on (DIP) condition.

Theorem 3.8. Let x be a local minimizer for (P ), which is a (DIP) point for C1, C2, . . .,
Ck+1. Then there exist λ0 ≥ 0, λi ≥ 0, αj, not all zero, such that

0 ∈ λ0∂lf(x) +
m∑

i=1

λi∂lgi(x) +
k∑

j=1

∂l(αjhj)(x) +Nl(U ; x).

λigi(x) = 0, i = 1, 2, . . . ,m.

Proof. Let
F (x) = max{f(x)− f(x), g1(x), g2(x), . . . , gm(x)}.

Then x is a local minimizer for the following problem (P ′),

(P ′) minF (x) subject to x ∈ C,
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where C = ∩k+1
j=1Cj . Since f, g1, g2, . . . , gm are locally Lipschitz, it follows that F is

locally Lipschitz. By exact penalty Theorem (see e.g. [3], Theorem 1.6.3), there exists
L > 0 such that x is a local minimizer for the function F + LdC on R

n. Therefore by
Theorem 2.7, 0 ∈ ∂l(F + LdC)(x) and,

0 ∈ ∂lF (x) + ∂l(LdC)(x) = ∂lF (x) + L∂ldC(x). (6)

Since, x is a (DIP) point for C1, C2, . . . , Ck+1, by Theorem 3.1 we have,

L∂ldC(x) ⊆
k+1∑

i=1

Nl(Ci; x). (7)

On the other hand Theorem 2.8 implies

∂lF (x) ⊆
{
λ0∂lf(x) +

m∑

i=1

λi∂lgi(x), λi ≥ 0,
m∑

i=0

λi = 1

}
, (8)

and λi = 0 if gi(x) < 0. From (6)–(8), we obtain

0 ∈ λ0∂lf(x) +
m∑

i=1

λi∂lgi(x) +
k∑

j=1

Nl(Cj; x) +Nl(U ; x).

If 0 ∈ ∂lhj(x) ∪ ∂l(−hj)(x) for some j, then the result holds true. Suppose 0 /∈
∪k

j=1(∂lhj(x)∪∂l(−hj)(x)). Theorem 2.12 implies that there exist λ0 ≥ 0, λi ≥ 0, αj, not

all zero, such that λigi(x) = 0 and

0 ∈ λ0∂lf(x) +
m∑

i=1

λi∂lgi(x) +
k∑

j=1

∂l(αjhj)(x) +Nl(U ; x).

Hence the proof is complete.

The following proposition appears as an exercise in [3]. We provide a short proof for
the reader’s convenience. In fact, the assumption of this proposition is known to entail
a stronger result. (See Remark 3.11 at the end of this section.)

Proposition 3.9. Let C1, C2 be closed subsets of Rn, x ∈ C1 ∩ C2 and

NM(C1; x) ∩ (−NM(C2;x)) = {0}.

Then for some positive numbers ε, σ, and for each y ∈ x+ εB,

dC(y) ≤
1

σ
max{dC1(y), dC2(y)}.

Proof. We proceed by contradiction. Suppose that for each ε > 0 and σ > 0 there
exists a point yε ∈ x+ εB such that

σdC (yε) > max {dC1 (yε) , dC2 (yε)} . (9)
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Claim. There exist sequences ck1 ∈ C1 and ck2 ∈ C2 and vk such that ck1, c
k
2 −→ x and

‖vk‖ = 1, vk ∈ NP (C1 : c
k
1) ∩ (−NP (C2; c

k
2)).

Proof of the Claim. Fix k ∈ N, by (9) for all n ∈ N there exists a point y
(n)
k ∈ B(x; 1

k
)

such that

dC

(
y
(n)
k

)
> nmax

{
dC1

(
y
(n)
k

)
, dC2

(
y
(n)
k

)}
. (10)

Now take c
(n)
k(1) ∈ proj C1

(y
(n)
k ), c

(n)
k(2) ∈ proj C2

(y
(n)
k ). From (10),

∥∥∥∥y
(n)
k − 1

2

(
c
(n)
k(1) + c

(n)
k(2)

)∥∥∥∥ ≤ 1

n
dC

(
y
(n)
k

)
≤ 1

nk
. (11)

Since sequences y
(n)
k , c

(n)
k(1) and c

(n)
k(2) are bounded we can extract convergent subsequences

(without relabelling) y
(n)
k −→ yk,c

(n)
k(1) −→ ck1 and c

(n)
k(2) −→ ck2 as n → ∞. For j = 1, 2,

we have ckj ∈ Cj and dCj
(yk) = ‖yk−ckj‖, which implies that Cj∩B(yk; ‖yk−ckj‖) = {ckj}

or yk − ckj ∈ NP (Cj; c
k
j ). Using (11) we obtain,

∥∥∥∥y
(n)
k − c

(n)
k(j) −

1

2

(
c
(n)
k(i) − c

(n)
k(j)

)∥∥∥∥ ≤ 1

nk
, ∀n ∈ N, ∀i, j ∈ {1, 2}.

By taking limit as n −→ ∞, we obtain yk − ckj = 1
2
(cki − ckj ) for i, j = 1, 2. Thus,

1
2
(cki−ckj ) ∈ NP (Cj; c

k
j ). Take v

k = ck2−ck1
‖ck2−ck1‖

. It follows that ‖vk‖ = 1 and vk ∈ NP (C1; c
k
1)∩

(−NP (C2; c
k
2)). Suppose that vk −→ v as k −→ ∞. Thus ‖v‖ = 1 and v ∈ NM(C1; x) ∩

(−NM(C2; x)), which is a contradiction. Hence the proof is complete.

Theorem 3.10. Suppose that hj is a locally Lipschitz function from R
n to R, for j =

1, 2, .., k and

Cj = {x : hj(x) = 0}, x ∈ ∩k
j=1Cj = C.

Furthermore assume that the following nonsmooth linear independence condition holds

true,

“for any γ1, γ2, . . . , γk with γj ∈ ∂Mhj(x) ∪ ∂M(−hj)(x), if there exists αj ≥ 0 such that∑k

j=1 αjγj = 0 then αj = 0 for j = 1, 2, . . . , k.�

Then x is a (DIP) point for C1, C2, . . . , Ck.

Proof. We prove by induction. For k = 2, by using Theorem 3.9, it is sufficient to prove

NM(C1; x) ∩ (−NM(C2;x)) = {0}.

Let ξ ∈ NM(C1; x) ∩ (−NM(C2; x)) and ξ 6= 0. The nonsmooth linear independence
condition implies that, 0 /∈ ∪2

j=1(∂Mhj(x) ∪ ∂M(−hj)(x)). Theorem 2.12 implies that

there exist some αj ∈ R/{0}, j = 1, 2, such that

ξ ∈ ∂M(α1h1)(x) ∩ (−∂M(α2h2)(x)

= |α1|∂M
(

α1

|α1|
h1

)
∩
(
−|α2|∂M

(
α2

|α2|
h2

)
(x)

)
.
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Thus there exist some γj ∈ ∂Mhj(x)∪∂M(−hj)(x) such that ξ = |α1|γ1 = −|α2|γ2,. Thus∑2
j=1 |αj|γj = 0, and by the nonsmooth linear independence assumption, αj = 0, j = 1, 2,

which implies that ξ = 0. By contradiction, NM(C1; x) ∩ (−NM(C2; x)) = {0}.
Now suppose for j = 1, 2, . . . k − 1 the result holds. Let C ′ = ∩k−1

j=1Cj. Therefore there

exist positive ε′, σ′ with σ′ ≤ 1 (see Remark 3.4) such that for any y ∈ x+ ε′B,

dC′(y) ≤ 1

σ′

(
max

1≤j≤k−1

)
dCj

(y). (12)

By virtue of Theorem 3.2

NM(C ′; x) ⊆
k−1∑

j=1

NM(Cj; x). (13)

By linear independence condition, 0 /∈ ∪k−1
j=1(∂Mhj(x) ∪ ∂M(−hj)(x)). It immediately

follows from Theorem 2.12 that, for each j,

NM(Cj; x) ⊆ ∪α∈R∂M(αhj)(x). (14)

If ξ ∈ NM(C ′; x) ∩ (−NM(Ck; x)) then by similar argument with the first part of proof,

ξ =
∑k−1

j=1 αjγj = −αkγk, for some γj ∈ ∂M(hj)(x) ∪ ∂M(−hj)(x) and αj ≥ 0. It follows

that
∑k

j=1 αjγj = 0, and by the nonsmooth linear independence assumption, αj = 0

for all j. Hence ξ = 0. Proposition 3.9 yields dC(y) ≤ 1
σ
max{dC′(y), dCk

(y)}, for all

y ∈ x+ εB and for some ε, σ > 0. Set σ0 = σσ′ and ε0 = min{ε, ε′}. Then by inequality
(12) we have dC(y) ≤ 1

σ0
max1≤i≤k{dCi

(y)}, for all y ∈ x+ ε0B. Hence x is a (DIP) point

for C1, C2, . . . , Ck.

Remark 3.11. (a) The condition

NM(C1; x) ∩ (−NM(C2;x)) = {0},

for more than two sets takes the form:

[
∑

i

x∗
i = 0, with x∗

i ∈ NM(Ci; x)

]
⇒ x∗

i = 0, ∀i. (15)

In [8, 9, 10] it has been proven that condition (15) ensures that there is some constant
γ ≥ 0 such that for y near x and ui near 0 one has

d∩i(Ci+ui)(y) ≤ γ
(
max

i

)
dCi+ui

(y).

(b) It is obvious that when the sets Ci are the null sets of locally Lipschitz functions,
the condition (15) coincides with nonsmooth linear independence employed in Theorem
3.10.
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4. Examples

The following examples satisfy (DIP) but do not pseudo-Lipschitz condition. For both
of these examples, the normal qualification condition does not hold.

Example 4.1. Define

C1 =
{
(x, y) ∈ R

2 : x2 + (y − 1)2 = 1
}
,

and
C2 =

{
(x, y) ∈ R

2 : x2 + y2 = 1, y ≥ 0
}
∪ {(0, 0)} .

Furthermore define Φ : R4
⇉ R

2 as

Φ(v1, v2) = (C1 + v1) ∩ (C2 + v2).

Take 0 = (0, 0) and (v
(n)
1 , v

(n)
2 ) = (0, 0, 0, 1

n2 ), for each n ∈ N. Then (0, 0) ∈ Φ(0, 0)

and Φ(v
(n)
1 , v

(n)
2 ) contains only two points with the same distance of the origin, i.e. the

intersection points of two circles with centers (0, 1) and (0, 1
n2 ), and of radius one, and

it is easy to see that

d
Φ
(
v
(n)
1 ,v

(n)
2

)((0, 0)) =

(
1 +

1

n2

) 1
2

>
1

n
= n

∥∥∥
(
v
(n)
1 , v

(n)
2

)∥∥∥ , ∀n ∈ N.

Since (v
(n)
1 , v

(n)
2 ) −→ (0, 0), Φ is not pseudo-Lipschitz at (0, 0, 0) ∈ gphΦ. Furthermore,

C1, C2 do not satisfy the normal qualification condition at (0, 0), becauseNM(C1; (0, 0)) =
{(x, y) ∈ R

2 : x = 0, y ≤ 0}, while NM(C2; (0, 0)) = R
2.

We show that (0, 0) is a (DIP) point for C1, C2. Let (x, y) ∈ B((0, 0); 1
3
). If y ≥ 0 then

the closest point of C2 to (x, y) is the origin. Therefore dC(x, y) = dC2(x, y). If y < 0
and 0 ≤ x ≤ 1

3
, the closest point of C2 − {(0, 0)} to (x, y) is (1, 0), and we have

‖(x, y)‖ < ‖(1− x,−y)‖ = the distance of (x, y) to (1, 0).

If y < 0 and 0 ≥ x ≥ −1
3
, then the closest point of C2 − {(0, 0)} to (x, y) is (−1, 0), and

we obtain,
‖(x, y)‖ < ‖(1 + x, y)‖ = the distance of (x, y) to (−1, 0).

Deduce that, dC2(x, y) = ‖(x, y)‖ = dC(x, y). Thus

dC(x, y) = max{dC1(x, y), dC2(x, y)},∀(x, y) ∈ B

(
(0, 0);

1

3

)
,

which implies that (0, 0) is a (DIP) point for C1, C2.

Example 4.2. Define:
C1 :=

{
(x, y) ∈ R

2 : y = 0
}

and,

C2 =

{
(x, y) ∈ R

2 : y = − 1√
3
x, x ≤ 0

}
∪
{
(x, y) ∈ R

2 : y =
1√
3
x, x ≥ 0

}
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and,

C3 =
{
(x, y) ∈ R

2 : y = −
√
3x, x ≤ 0

}
∪
{
(x, y) ∈ R

2 : y =
√
3x, x ≥ 0

}
.

Furthermore define Φ : R6
⇉ R

2 as

Φ(v1, v2, v3) = ∩3
i=1(Ci + vi).

Take vn = ((0, 1
n
), (0, 0), (0, 0)). We have Φ(vn) = ∅, and for each y ∈ R

2, dΦ(vn)(y) = ∞.

Therefore Φ is not pseudo-Lipschitz at (0, 0).
Moreover, (0, 1) ∈ NM(C1; (0, 0)) and (0, −1

2
) ∈ NM(C2; (0, 0)) ∩ NM(C3; (0, 0)), and

(0, 1)+ (0, −1
2
)+ (0, −1

2
) = (0, 0). Thus the normal qualification condition is not satisfied

for these sets at (0, 0).

We show that (0, 0) is a (DIP) point for C1, C2, C3 with σ = 1
2
. Take (x, y) ∈ R

2. Let

x ≥ 0. If y ≤ −
√
3x then

dC(x, y) = dC2(x, y) = dC3(x, y) = max
i

dCi
(x, y).

Now, let y ≥ −
√
3x and for j ∈ {1, 2, 3}, denote the angle between the line joining (x, y)

to the origin and the right half-line of Cj by θj. Then for some j, θj > π
6
. We have

dCj
(x, y) = sin θjdC(x, y), which implies that dC(x, y) ≤ 2maxi dCi

(x, y). In the case
x ≤ 0 by symmetry with respect to y-axis, the proof is similar.

Treiman in [21] by a given example showed that the general Lagrange multiplier rule
does not hold with a set constraint and equality constraint even under the smoothness
of functions. We recall this example and show that (DIP) condition is not satisfied for
it.

Example 4.3 ([21]). Consider the problem (P)

(P ) min f(x, y) subject to
g(x, y) = x2 + (y + 2)2 − 4 = 0
(x, y) ∈ B((0, 1); 1) ∪ B((0,−1); 1),

with singleton feasible set {(0, 0)}. Take C = B((0, 1); 1) ∪ B((0,−1); 1) and C1 =
{(x, y) : g(x, y) = 0}. The point (x, y) = (0, 0), is the optimal solution of (P ). It is easy
to verify that g is C∞, ∇g(0, 0) = (0, 4) and Nl(C, (0, 0)) = {(0, 0)}. Suppose that there
exist λ0 ≥ 0 and λ1, not both zero, such that

(0, 0) ∈ λ0∂lf(0, 0) + ∂l(λ1g)(0, 0) +Nl(C, (0, 0)) = λ0∂lf(0, 0) + λ1(0, 4).

Let f(x, y) = x. Then (0, 0) = λ0(1, 0) + λ1(0, 4) and λ0 = λ1 = 0.

Now, we show that (0, 0) is not a (DIP) point for the sets C and C1. Take (xn, yn) =
( 1
n
, 0). Then max{dC(xn, yn), dC1(xn, yn)} < 1

2n2 . Therefore for any σ, ε > 0, if n >

max{ 1
2σ
, 1
ε
} we have,

1

σ
max{dC(xn, yn), dC1(xn, yn)} < ‖(xn, yn)‖ = dC∩C1(xn, yn),

for some (xn, yn) ∈ B((0, 0), ε).
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5. M-stationary necessary conditions for nonsmooth MPEC

In this section we consider the following program, known across the literature as a
mathematical program with complementary-or often also equilibrium-constraints, MPEC
for short:

(1) min f(z) s.t.

g(z) ≤ 0, h(z) = 0,

G(z) ≥ 0, H(z) ≥ 0,

G(z)TH(z) = 0,

where f : Rn −→ R, g : Rn −→ R
m, h : Rn −→ R

p, G : Rn −→ R
l, and H : Rn −→ R

l

are locally Lipschitz functions.

Definition 5.1. Let z∗ be a feasible point of the MPEC (1). We divide the indices of
G and H into three sets:

α := α(z∗) := {i : Gi(z
∗) = 0, Hi(z

∗) > 0},
β := β(z∗) := {i : Gi(z

∗) = 0, Hi(z
∗) = 0},

γ := γ(z∗) := {i : Gi(z
∗) > 0, Hi(z

∗) = 0}.

We call z∗ nonsmooth M-stationary if there exist

λf ≥ 0, λg ∈ R
m, λh ∈ R

p, λG ∈ R
l, λH ∈ R

l,

not all zero, such that

0 ∈ λf∂⋄f(z
∗) +

m∑

i=1

λg
i ∂⋄gi(z

∗) +

p∑

i=1

λh
i ∂⋄hi(z

∗),−
l∑

i=1

[
λG
i ∂⋄Gi(z

∗) + λH
i ∂⋄Hi(z

∗)
]

λG
α free, λG

γ = 0,
(
λG
i > 0 ∧ λH

i > o
)
∨ λG

i λ
H
i = 0, ∀i ∈ β,

λH
γ free, λH

α = 0,

g(z∗) ≤ 0, λg ≥ 0, g(z∗)Tλg = 0.

In this section we will apply results of Section 3 to prove Fritz-John and KKT type
M-stationary results for MPEC involving locally Lipschitz functions, based on Michel-
Penot subdifferential. To get a Fritz-John type result, in addition to Flegel’s condition
we impose an extra assumption. However, the KKT type result is proved just under the
same condition employed by Flegel.

To succeed in dealing with the complementary term in the constraints of the MPEC, we
require a result which investigates the Mordukhovich normal cone to a complementary
set. This result was originally stated in a slightly different format by Outrata in [17],
see also [24].

Theorem 5.2. Let the set

C :=
{
(ξ, η) ∈ R

l × R
l : ξ ≥ 0, η ≥ 0, ξTη = 0

}
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be given. Then, for an arbitrary but fixed (ξ, η) ∈ C, define
Iξ = {i : ξi = 0, ηi > 0},
Iη = {i : ξi > 0, ηi = 0},
Iξη = {i : ξi = 0, ηi = 0}.

Then the Mordukhovich normal cone to C at (ξ, η) is given by

NM(C; (ξ, η)) =
{
(x, y) ∈ R

l × R
l : xIη = 0, yIξ = 0,

(xi < 0 ∧ yi < 0) ∨ xiyi = 0, ∀i ∈ Iξη} .

In order to apply Theorem 3.8, we introduce slack variables ξ and η, in the following
equivalent reformulation of the MPEC,

(P0) min f̃(z, ξ, η) = f(z) subject to

g̃(z, ξ, η) = g(z) ≤ 0,

h̃(z, ξ, η) = h(z) = 0,

Γ(z, ξ, η) :=

(
G(z)− ξ
H(z)− η

)
= 0,

(z, ξ, η) ∈ R
n × C,

where
C =

{
(ξ, η) ∈ R

l × R
l : ξ ≥ 0, η ≥ 0, ξTη = 0

}
.

Also define

Ci :=
{
(z, ξ, η) ∈ R

n × R
l × R

l : h̃i(z, ξ, η) = 0
}
, i = 1, 2, . . . , p,

Ci :=
{
(z, ξ, η) ∈ R

n × R
l × R

l : Gi−p(z) = ξi−p

}
, i = p+ 1, . . . , p+ l,

Ci :=
{
(z, ξ, η) ∈ R

n × R
l × R

l : Hi−p−l(z) = ηi−p−l

}
, i = p+ l + 1, . . . , p+ 2l,

and
Cp+2l+1 := R

n × C.
Theorem 5.3. Let z∗ be a local minimizer of MPEC (1), where all functions are locally

Lipschitz around z∗. Suppose that (z∗, G(z∗), H(z∗)) is a (DIP) point for C1, C2, . . .,
Cp+2l+1. Then z∗ is M-stationary.

Proof. Set ξ∗ := G(z∗) and η∗ := H(z∗). Then applying Theorem 3.8 to (P0), there
exist λf ≥ 0, λg ≥ 0, λh and λΓ = (−λG,−λH) not all zero, such that g(z∗)Tλg = 0 and

0 ∈ λf∂lf̃(z
∗, ξ∗, η∗) +

m∑

i=1

λg
i ∂lg̃i (z

∗, ξ∗, η∗) +

p∑

i=1

∂l

(
λh
i h̃i

)
(z∗, ξ∗, η∗)

+
2l∑

i=1

∂l
(
λΓ
i Γi

)
(z∗, ξ∗, η∗) +Nl((z

∗, ξ∗, η∗),Rn × C)

⊆




λf∂⋄f(z
∗)

0
0


+




∑m

i=1 λ
g
i ∂⋄gi(z

∗)
0
0


+




∑p

i=1 λ
h
i ∂⋄hi(z

∗)
0
0




−




∑1
i=1

[
λG
i ∂⋄Gi(z

∗) + λH
i ∂⋄Hi(z

∗)
]

−λG

−λH


+

(
0

NM((ξ∗, η∗), C)

)
.

(*)
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We now take a closer look at those components pertaining to ξ and η in (*),

(
−λG,−λH

)
∈ NM((ξ∗, η∗), C).

From Theorem 5.2, we obtain the following rules for the components of λG and λH :

(
λG
i , λ

H
i

)
∈





{(a, b) : a free, b = 0}, if ξ∗i = 0, η∗i > 0,

{(a, b) : (a > 0 ∧ b > 0) ∨ ab = 0} if ξ∗i = 0, η∗i = 0,

{(a, b) : a = 0, b free}, if ξ∗i > 0, η∗i = 0.

Taking into account that ξ∗i = Gi(z
∗), that η∗i = Hi(z

∗) and the definitions of α, β and
γ, yield the statement of the theorem.

Now by considering some properties of the sets C1, C2, . . . , Cp+2l+1, we try to shorten the
hypotheses of the above theorem, to facilitate its application in the special cases. First,
we take a closer look at these sets. Set B = ∩p

i=1Ci and

C ′
i = {z ∈ R

n : hi(z) = 0}, for i = 1, 2, . . . , p, B′ = ∩p
i=1C

′
i.

Then Ci = C ′
i × R

l × R
l for i = 1, 2, . . . , p, and B = B′ × R

l × R
l. If (u, v, w) ∈

NM(B; (z∗, ξ∗, η∗)), then v = w = 0. Since Cp+2l+1 = R
n × C, if (u, v, w) ∈ NM(Cp+2l+1;

(z∗, ξ∗, η∗)) then u = 0 and we obtain,

NM(B; (z∗, ξ∗, η∗)) ∩ (−NM(Cp+2l+1; (z
∗, ξ∗, η∗))) = {(0, 0, 0)}. (16)

Now, define

Γi(z, ξ, η) = Gi(z)− ξi, for i = 1, 2, . . . , l

Γi(z, ξ, η) = Hi−l(z)− ηi−l, for i = l + 1, . . . , 2l.

Thus we have,

∂MΓi(z
∗, ξ∗, η∗) =




∂MGi(z
∗)

−ei
0


 , i = 1, . . . , l,

and

∂MΓi(z
∗, ξ∗, η∗) =




∂MHi−l(z
∗)

0
−ei−l


 , i = l + 1, . . . , 2l,

where ei ∈ R
l is the ith unite vector. Suppose

∑2l
i=1 αiγi = 0 with αi ≥ 0 and γi ∈

∂MΓi(z
∗, ξ∗, η∗), for i ∈ {1, . . . , 2l}. Then

l∑

i=1

−αiei =
2l∑

i=l+1

−αiei−l = 0.

It follows that αi = 0 for any i. Theorem 3.10 implies that (z∗, ξ∗, η∗) is a (DIP) point
for Cp+1, . . . , Cp+2l.

Theorem 5.4. Let z∗ be a local minimizer of MPEC (1). Suppose that,
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(a) z∗ is a (DIP) point for C ′
1, . . . , C

′
p,

(b) (z∗, ξ∗, η∗) is a (DIP) point for A1, A2, where

A1 = B ∩ Cp+2l+1, A2 = ∩2l
i=p+1Ci.

Then z∗ is M-stationary.

Proof. By Theorem 5.3, it is sufficient to show that (z∗, ξ∗, η∗) is a (DIP) point for
C1, . . . , CP+2l+1. It is clear that for z

′ ∈ R
n and (ξ′, η′) ∈ R

l × R
l,

dC′

i
(z′) = dCi

(z′, ξ′, η′), dB′(z′) = dB(z
′, ξ′, η′), i = 1, 2, . . . , p.

Since z∗ is a (DIP) point for C ′
1, . . . , C

′
p, therefore there exist σ1, ε1 > 0 with σ1 ≤ 1 such

that for each (z′, ξ′, η′) ∈ B((z∗, ξ∗, η∗); ε1):

dB(z
′, ξ′, η′) ≤ 1

σ1

(
max
1≤i≤p

)
{dCi

(z′, ξ′, η′)}. (17)

From (16) and Theorem 3.9, it follows that for some positive numbers σ2, ε2 with σ2 ≤ 1
and for each (z′, ξ′, η′) ∈ B((z∗, ξ∗, η∗); ε2),

dB∩Cp+2l+1
(z′, ξ′, η′) ≤ 1

σ2

max{dB(z′, ξ′, η′), dCp+2l+1
(z′, ξ′, η′)}. (18)

By the argument before the theorem, (z∗, ξ∗, η∗) is a (DIP) point for Cp+1, . . . , CP+2l,
hence for some positive numbers σ3, ε3 with σ3 ≤ 1 and for each (z′, ξ′, η′) ∈ B((z∗, ξ∗, η∗);
ε3),

dA2(z
′, ξ′, η′) ≤ 1

σ3

(
max

p+1≤i≤p+2l

)
{dCi

(z′, ξ′, η′)}. (19)

Finally, by the assumption (b) there exist some positive numbers σ4, ε4 with σ4 ≤ 1 such
that for all (z′, ξ′, η′) ∈ B((z∗, ξ∗, η∗); ε4),

dA1∩A2(z
′, ξ′, η′) ≤ 1

σ4

max{dA1(z
′, ξ′, η′), dA2(z

′, ξ′, η′)}. (20)

Let ε = (min1≤j≤4){εj} and σ = σ4σ3σ2σ1. If (z
′, ξ′, η′) ∈ B((z∗, ξ∗, η∗); ε),

d∩p+2l+1
i=1 Ci

(z′, ξ′, η′) = dA1∩A2(z
′, ξ′, η′)

≤ 1

σ

(
max

1≤i≤p+2l+1

)
{dCi

(z′, ξ′, η′)}.

According to Theorem 5.3, this assertion completes the proof.

We introduce the multifunction Ψ : Rm × R
p × R

l × R
l
⇉ R

n as follows,

Ψ(t, q, r, s) ={z ∈ R
n : g(z) + t ≤ 0, h(z) + q = 0, G(z) + r ≥ 0,

H(z) + s ≥ 0, (G(z) + r)T (H(z) + s) = 0}.

Note that the feasible set of the MPEC is equal to Ψ = Ψ(0, 0, 0, 0). Flegel [4] used this
multifunction to define an MPEC variant of calmness, for the case where all functions
except the objective function are smooth. Let us recall this definition.
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Definition 5.5 ([4]). The MPEC (1) is said to satisfy MPEC-calmness in z∗, if for some
ε, µ ≥ 0 and for all (t, q, r, s) ∈ B(0; ε) ⊆ R

m×R
p×R

l×R
l and all z ∈ Ψ(t, q, r, s)∩B(z∗; ε)

it holds that
f(z∗) ≤ f(z) + µ‖(t, q, r, s)‖. (21)

Proposition 5.6. Assume that z∗ is a local minimizer of MPEC (1) and that MPEC (1)
is MPEC-calm at z∗. Then there exists µ > 0 such that the vector (z∗, 0, 0) ∈ R

n×R
l×R

l

is a local minimizer of

min(z, r, s) subject to

f(z) + µ(‖(g+1 (z), . . . , g+m(z))‖+ ‖h(z)‖+ ‖(r, s)‖),
G(z) + r ≥ 0, H(z) + s ≥ 0,
(G(z) + r)T (H(z) + s) = 0, (22)

where α+ := max{0, α} for α ∈ R.

Proof. By continuity of h and g there exists 0 < δ ≤ ε
3
such that

‖h(z)‖ ≤ ε

3
, ‖(g+1 (z), . . . , g+m(z))‖ ≤ ε

3
, ∀z ∈ B(z∗; δ).

Let (z, r, s) ∈ B((z∗, 0, 0); δ) be a feasible point for (22). Then set ti := −g+i (z) for
i = 1, . . . ,m and q := −h(z). With this choice of t and q, we have (t, q, r, s) ∈ B(0; ε)
and z ∈ Ψ(t, q, r, s)∩B(z∗; ε). Since z∗ satisfies the MPEC-calmness, the condition (21)
holds and we obtain,

f(z∗) ≤ f(z) + µ‖(t, q, r, s)‖
≤ f(z) + µ(‖(g+1 (z), . . . , g+m(z))‖+ ‖h(z)‖+ ‖(r, s)‖),

for some µ > 0. Thus (z∗, 0, 0) is a local minimizer of (22).

Theorem 5.7. Suppose that all the functions of MPEC (1) are locally Lipschitz and that

z∗ is a local minimizer of MPEC (1) at which the MPEC is MPEC-calm. Furthermore

assume that

NM(C2l+1; (z
∗, 0, 0, ξ∗, η∗)) ∩ (−NM(∩2l

i=1Ci; (z
∗, 0, 0, ξ∗, η∗))) = {(0, 0, 0, 0, 0)},

where

Ci := {(z, r, s, ξ, η) ∈ R
n+2l+2l : Gi(z) + ri = ξi}, i = 1, . . . , l,

and

Ci := {(z, r, s, ξ, η) ∈ R
n+2l+2l : Hi−l(z) + si−l = ηi−l}, i = l + 1, . . . , 2l,

and

C2l+1 := R
n × R

l × R
l × C.

Then z∗ is M-stationary.

Proof. We will prove this theorem in two steps.

Step 1 : Let us show that (z∗, 0, 0, ξ∗, η∗) is a (DIP) point for C1, . . . , C2l+1.
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Define,

ĥi(z, r, s, ξ, η) := Gi(z) + ri − ξi, i = 1, . . . , l,

ĥi(z, r, s, ξ, η) := Hi−l(z) + si−l − ηi−l, i = l + 1, . . . , 2l.

Then

∂M ĥi(z
∗, 0, 0, ξ∗, η∗) =




∂MGi(z
∗)

ei
0

−ei
0




for i = 1, .., l, and

∂M ĥi(z
∗, 0, 0, ξ∗, η∗) =




∂MHi−l(z
∗)

0
ei−l

0
−ei−l




for i = l + 1, .., 2l.

From Theorem 3.10, (z∗, 0, 0, ξ∗, η∗) is a (DIP) point for C1, . . . , C2l. Thus, for some
ε′, σ′ > 0 with σ′ ≤ 1 and for each y ∈ (z∗, 0, 0, ξ∗, η∗) + ε′BR2l+1 ,

dC′(y) ≤ 1

σ′

(
max
1≤j≤2l

)
dCj

(y),

where C ′ = ∩2l
i=1Ci. Also, by Proposition 3.9 and by our second assumption, for some

ε, σ > 0 with σ ≤ 1,

dC(y) ≤
1

σ
max{dC′(y), dC2l+1

(y)},

for all y ∈ (z∗, 0, 0, ξ∗, η∗) + εBRl×Rl×R, where C = ∩2l+1
i=1 Ci. If σ0 = σσ′ and ε0 =

min{ε, ε′}, then
dC(y) ≤

1

σ0

(
max

1≤i≤2l+1

)
{dCi

(y)},

for all y ∈ (z∗, 0, 0, ξ∗, η∗) + ε0BRl×Rl×R. Thus (z∗, 0, 0, ξ∗, η∗) is a (DIP) point for
C1, . . . , C2l+1.

Step 2 : Let us show that z∗ is M-stationary.

Since the MPEC satisfies MPEC-calmness at z∗, therefore by Theorem 5.6, (z∗, 0, 0) is
a local minimizer of (22) for some ρ > 0. Consider (22) as a MPEC with equilibrium

constraints Ĝ(z, r, s) = G(z) + r and Ĥ(z, r, s) = H(z) + s. Then we deduce, by an

argument similar to that of Theorem 5.3, that there exists (λ
f , λG, λH) 6= (0, 0, 0) such

that λ
f ≥ 0, λG and λH satisfies the sign conditions

λG
α free, λG

γ = 0,
(
λG
i > 0 ∧ λH

i > o
)
∨ λG

i λ
H
i = 0, ∀i ∈ β,

λH
γ free, λH

α = 0,
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and

0 ∈ λ
f∂lf̂(z

∗, 0, 0)−
l∑

i=1


 λG

i




∂⋄Gi(z
∗)

ei
0


+ λH

i




∂⋄Hi(z
∗)

0
ei





 ,

where f̂(z, r, s) := f(z) + ρ(‖(g+1 (z), . . . , g+m(z))‖1 + ‖h(z)‖1 + ‖(r, s)‖1), is a locally

Lipschitz function. If we assume λ
f = 0, it follows immediately from the last relation

that λG = λH = 0, which is a contradiction. Therefore, without loss of generality, we

may assume λ
f = 1. By Theorem 2.7, we get

∂lf̂(., 0, 0)(z
∗) ⊆ ∂lf(z

∗) + ρ∂l(‖(g+1 (.), . . . , g+m(.))‖1)(z∗) + ρ∂l(‖h(.)‖1)(z∗).

From Theorems 2.10 and 2.11, we obtain

∂lf̂(., 0, 0)(z
∗) ⊆ ∂lf(z

∗) +
m∑

i=1

ρηgi ∂lgi(z
∗) +

p∑

i=1

ρηhi ∂lhi(z
∗),

for some ηgi ∈ ∂l(g
+
i (z

∗)) and ηhi ∈ ∂l(|.|)(hi(z
∗)). Observe that g(z∗) ≤ 0 and h(z∗) = 0,

so by computing the last subdifferentials and by taking λg = ρηg and λh = ρηh, we have,
g(z∗)Tλg = 0 and,

0 ∈ ∂lf(z
∗) +

m∑

i=1

λg
i ∂lgi(z

∗) +

p∑

i=1

λh
i ∂lhi(z

∗)−
l∑

i=1

λG
i ∂⋄Gi(z

∗) + λH
i ∂⋄Hi(z

∗)

⊆ ∂⋄f(z
∗) +

m∑

i=1

λg
i ∂⋄gi(z

∗) +

p∑

i=1

λh
i ∂⋄hi(z

∗)−
l∑

i=1

λG
i ∂⋄Gi(z

∗) + λH
i ∂⋄Hi(z

∗).

This concludes the proof .

Theorem 5.8. Suppose that all the functions of MPEC (1) are locally Lipschitz and

that z∗ is a local minimizer of MPEC (1) at which the MPEC is MPEC-calm. Then z∗

is M-stationary.

Proof. By Theorem 5.7, it is sufficient to show that the condition

NM(C2l+1; (z
∗, 0, 0, ξ∗, η∗)) ∩ (−NM(C ′; (z∗, 0, 0, ξ∗, η∗))) = {(0, 0, 0, 0, 0)}, (23)

holds true, when C ′ = ∩2l
i=1Ci.

If (u, v, w, x, y) ∈ NM(C2l+1; (z
∗, 0, 0, ξ∗, η∗)), then by [19, Proposition 6.41], u = v =

w = 0 and we have (x, y) ∈ NM(C; (ξ∗, η∗)).
Now suppose that (0, 0, 0, x, y) ∈ NM(C ′; (z∗, 0, 0, ξ∗, η∗). Namely, there exist sequences
{(zn, rn, sn, ξn, ηn)} and {(un, vn, wn, xn, yn)} such that,

(zn, rn, sn, ξn, ηn) ∈ C ′,

(zn, rn, sn, ξn, ηn) −→ (z∗, 0, 0, ξ∗, η∗),

(un, vn, wn, xn, yn) −→ (0, 0, 0, x, y)
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and
(un, vn, wn, xn, yn) ∈ NP (C

′; (zn, rn, sn, ξn, ηn)).

For each n, there exists σn > 0 such that for all (z, r, s, ξ, η) ∈ C ′

< (un, vn, wn, xn, yn), (z − zn, r − rn, s− sn, ξ − ξn, η − ηn) >

≤ σn‖(z, r, s, ξ, η)− (zn, rn, sn, ξn, ηn)‖2. (24)

Let ε > 0 be arbitrary and for each integer i ∈ {1, 2, . . . , l} set

0εi = (0, . . . ,
ith︷︸︸︷
ε , . . . 0)︸ ︷︷ ︸

l times

0−ε
i = (0, . . . ,

ith︷︸︸︷
−ε , . . . 0)︸ ︷︷ ︸

l times

.

Then we have

(zn, rn + 0εi , sn, ξn + 0εi , ηn), (zn, rn + 0−ε
i , sn, ξn + 0−ε

i , ηn) ∈ C ′

Now by (24), it follows that v
(n)
i +x

(n)
i ≤ 2σnε and −(v

(n)
i +x

(n)
i ) ≤ 2σnε, where v

(n)
i and

x
(n)
i are the ith component of v and x. Since ε is arbitrary, then v

(n)
i + x

(n)
i = 0, ∀n. On

the other hand limn−→∞ v
(n)
i = 0, thus xi = limn−→∞ x

(n)
i = 0. By similar argument we

can prove that y = 0 and this completes the proof .

The next example illustrates a nonsmooth MPEC which satisfies assumptions of Theorem
5.4 at a minimizer point and is not MPEC-calm at that point.

Example 5.9. Consider the following problem:

min f(x, y) = x
1
3 s.t.

h(x, y) = sin(‖(x, y)‖) = 0,

G(x, y) = x ≥ 0, H(x, y) = y ≥ 0, G(x, y)H(x, y) = 0,

(x, y) ∈ R
2.

The point (0, 0) is a local minimum for the above problem. For simplicity, let us apply
‖.‖1 in our argument. Since there is only one equality constraint in this system, the
condition 5.4(a) is trivial. We have,

A1 = {(x1, x2, x3, x4) ∈ R
4 : sin(‖(x1, x2)‖) = 0, x3 ≥ 0, x4 ≥ 0, x3x4 = 0},

and

A2 = {(x1, x2, x3, x4) ∈ R
4 : x3 = G(x1, x2), x4 = H(x1, x2)}

= {(x1, x2, x3, x4) ∈ R
4 : x3 = x1, x4 = x2}.

We claim that (0, 0, 0, 0) is a (DIP) point for A1 and A2. If ε < π, then A1∩A2∩ εBR4 =
{(0, 0, 0, 0)}. Suppose that (y1, y2, y3, y4) ∈ εBR4 . We have, dA1∩A2((y1, y2, y3, y4)) =
|y1|+ |y2|+ |y3|+ |y4|. It is easy to verify that,

dA1(y1, y2, y3, y4) =





|y1|+ |y2|+ |y3|+ |y4| if y3 < 0, y4 < 0

|y1|+ |y2|+ |y3| if y3 < 0 ≤ y4 or 0 ≤ y3 ≤ y4

|y1|+ |y2|+ |y4| if y4 < 0 ≤ y3 or 0 ≤ y4 ≤ y3
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and dA2(y1, y2, y3, y4) = |y1 − y3|+ |y2 − y4|. We claim that

dA1∩A2(y1, y2, y3, y4) ≤ 3max{dA1(y1, y2, y3, y4), dA2(y1, y2, y3, y4)}. (25)

If y3 < 0, y4 < 0, then (25) holds. If

dA1(y1, y2, y3, y4) = |y1|+ |y2|+ |y3| ≤ dA2(y1, y2, y3, y4),

then

dA1∩A2(y1, y2, y3, y4) ≤ 3(|y1 − y3|+ |y2 − y4|)
= 3max{dA1(y1, y2, y3, y4), dA2(y1, y2, y3, y4)}.

If dA2(y1, y2, y3, y4) ≤ dA1(y1, y2, y3, y4) = |y1|+ |y2|+ |y3|, then

dA1∩A2(y1, y2, y3, y4) ≤ |y1|+ |y2|+ |y3|+ |y2|+ |y2 − y4|
≤ 3(|y1|+ |y2|+ |y3|)
= 3max{dA1(y1, y2, y3, y4), dA2(y1, y2, y3, y4)}.

The argument is similar in other cases. Now, we prove that the above system is not
MPEC-calm at (0, 0). For n> 2 take (xn, yn)= (−1

n6 , 0) and (qn, rn, sn)= (− sin( 1
n6 ),

1
n6 , 0).

Then (xn, yn) ∈ Ψ(qn, rn, sn) and (xn, yn) −→ (0, 0) and (qn, rn, sn) −→ (0, 0, 0). On the
other hand,

f(xn, yn) + n‖(qn, rn, sn)‖ =
−1

n2
+ n

{
sin(

1

n6
) +

1

n6

}

< 0 = f(0, 0).

Thus this system is not MPEC-calm at (0, 0).
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