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1. Introduction

A mathematical program with equilibrium constraints (MPEC) is a constrained opti-
mization problem in which the essential constraints are defined by a parametric varia-
tional inequality or complementarity system. These problems are particularly important
for various applications in operational research, engineering, mechanics and economics.
The reader is referred to [12, 18] for applications and recent developments.

For MPEC problems, it is well known that the usual nonlinear programming constraint
qualifications such as Mangasarian-Fromovitz constraint qualification is violated at every
feasible point.

Various stationary conditions for MPECs exist in literature due to different reformula-
tions. The M-stationary condition [17] is the most appropriate stationary condition for

MPEC.

Ye in [25] showed that an M-stationary condition is a first order necessary condition and
it is sufficient for global or local optimality under some MPEC generalized convexity
and differentiability assumptions. Moreover, in [25] the author proposed a constraint
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qualification for M-stationary conditions to hold. Later, Flegel and Kanzow [4] proved
that M-stationary is a first order necessary condition under a weak Abadi-type constraint
qualification for the case where all the functions involved except the objective function
are smooth. Mordukhovich subdifferential was used for nonsmooth terms in [4].

In this paper, we introduce nonsmooth M-stationary condition via Michel-Penot subd-
ifferential and show that it is a first order necessary condition for MPEC without any
smooth assumptions. The reason for our selection of this subdifferential is that the
Michel-Penot subdifferential is one of the smallest subdifferentials which coincides with
classical derivative when the function is Gateaux differentiable. The multiplier rules
in terms of other bigger generalized gradients follow immediately. For this purpose we
need a suitable Lagrange multiplier rule corresponding with equality, inequality and
closed set constraints based on a subdifferential which is contained in Michel-Penot and
Mordukhovich subdifferentials, and has a useful calculus. It appears that the linear
subdifferential introduced by Treiman, is suitable.

In [22] Treiman introduced the linear generalized gradient. In [21] its nice calculus is
described. Then in [23] Treiman proved a Lagrange multiplier rule for finite dimensional
Lipschitz problems. The result of [23] was based on either both the linear generalized
gradient and the generalized gradient of Mordukhovich or the linear generalized gradient
and a qualification condition involving the pseudo-Lipschitz behavior of the feasible sets
for equality and set constraints under perturbations.

We use a geometric constraint qualification, named in this paper by the distance inter-
section property (DIP), which is weaker than pseudo-Lipschitz condition. This notion
appeared in the papers by Jourani and Thibault [9, 10] and Ioffe [8] to calculus of normal
cones and subdifferentials and obtain multiplier rules. It is worth mentioning that (DIP)
is the nonconvex case of local linear regularity studied in [20]. We derive the Fritz-
John and Karush-Kuhn-Tucker M-stationary conditions for nonsmooth MPEC based on
Michel-Penot subdifferential under (DIP) assumptions without requiring the smoothness
of the objective function and constraints. This result generalizes the results of [25, 4].

The organization of this paper is as follows. In the next section we provide preliminary
definitions and results to be used in the rest of the paper. In Section 3, we propose
the concept of (DIP) as a constraint qualification to obtain a new multiplier rule based
on the linear subdifferential. Then we compare our new constraint qualification with
pseudo-Lipschitz property, calmness [5, 6] and the finite dimensional case of the normal
qualification condition [16].

In Section 4 we give several examples for which (DIP) is satisfied but pseudo-Lipschitz
property does not hold. Section 5 is devoted to the Fritz-John and Karush-Kuhn-Tucker
M-stationary necessary conditions for nonsmooth MPECs based on Michel-Penot subd-
ifferential.

2. Preliminaries

In finite-dimensional space R", ||.|| is the Euclidean norm and ||.||; is the norm defined
by

n
(1)l = fal, for (z1,...,2,) € R™.
=1
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For nonempty set C' C R", the function d¢ : R — R is defined by

do(z) :=inf{|lz —y|:y € C}, VzeR"

For given point z € R"™ and positive number r > 0, B(x,r) (B(z,r)) is the open (closed)
ball centered at x with radius . Also, B denotes the unit ball. We recall the definitions
of the linear and Mordukhovich subdifferential from [3, 23|. First we define proximal
normals and proximal subgradients.

Definition 2.1.
(a) Let C CR" be a closed set and let f : R® — R be lower semicontinuous (lsc). A
v € R™ is a proximal normal to C at x € C' if for some A > 0,

CNB(x+ M, \||v||) = {z}.

The set of all such vectors is called the proximal normal cone to C' at x and is
denoted by Np(C';x).
(b) A w € R" is a proximal subgradient of f at x if, for some pu > 0,

fW) = fla)+<wy—z>—plly—z |,

on a neighborhood of x. The set of all such vectors is called the proximal subdif-
ferential of f at x and is denoted by 0, f(z).

An element of the normal cone of Mordukhovich is defined as the limit of a sequence of
proximal normals [3, 11, 15, 19]. To define the linear normal cone, a restriction in the
convergence of the proximal normals is used [23, 21].

Definition 2.2. A sequence of proximal normals v¥ — v to a closed set C' € R" at

% — 7T is linear if, either 2% # T for all k, and for some A > 0 and all sufficiently large

k

Y

OB (a4 A 2~ || oF A | 2~ Z || o* ) = {2*}

or zF = Z for all k.

By using this definition one can define the linear normal cone.

Definition 2.3. Let C be a closed subset of R™. The linear normal cone to C at 7 is

Ni(C;7) = cl{v : v is the limit of a linear sequence

of proximal normals to C' at 2% — T}.
The Mordukhovich normal cone to C' at 7T is

Ny (C;T) = {v : v is the limit of a sequence

of proximal normals to C' at z* — T}.

In the sequel the notation || z —y ||; means ||z —y || + | f(z) — f(y) |.
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Definition 2.4. A sequence of proximal subgradients v¥ — v to a lsc function f for T
is linear if either there are 2¥ — @, f(2%) — f(Z) , 2¥ # T and p, § > 0 such that

1
f@* +h) = f(a*)+ < o* b > Tz, I I?,

for z¥ + h € B(z*,6 || 2% — T ||;), or v* is a proximal subgradient to f at T for all k.

Note that if f is locally Lipschitz around ¥ with constant L > 0, then for any k large
enough,
lo" = 7| < |la* — =, < A+ L)|l=" -z,

thus ||2* — Z||; may be replaced by ||z* — Z|| in Definition 2.4.
Definition 2.5. Let f : R® — R be Isc. The linear subdifferential to f at T is the set

O0,f(T) := cl{v : v is the limit of a linear sequence

of proximal subgradients to f for T}.
The Mordukhovich subdifferential to f at T is the set
Ou f(T) := {v : v is the limit of a sequence
of proximal subgradients to f at 2% — T}.

The following result concerning linear and Mordukhovich normal cone is needed in this
paper. We refer the reader to [15, 22] for a proof.

Theorem 2.6. If C be a closed subset of R™. Then
NZ(C;T) =cl U,\Z())\aldc(f),
and

NM<C, f) = UAZO/\aMdc(E).

We recall the following calculus rules for linear subdifferential which can be found in
[15, 19]. Similar results for Mordukhovich subdifferential can also be found in [7, 14, 22].

Theorem 2.7. Let [ be a Isc function from R™ to R and let g be a locally Lipschitz
function from R™ to R . Then if f(T) is finite,

a)  O(f+9)@) COf(@)+0g(T),
b) ifa >0, then O)(af)(T) = ad f(T),
c) if T is a local minimizer of f then 0 € O,f(T).

Theorem 2.8. Let g1, ga, ..., gr be a finite collection of locally Lipschitz functions from
R™ to R. Then

81<(max) ) {Zmlgl N >0, A\ =0ifid I(z) and ZA _1}

where
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To state the following chain rule, we recall the notion of the linear co-derivative.

Definition 2.9 ([22]). Let G : R™ — R™ be a locally Lipschitz function. The linear
co-derivative of G is the multifunction D;G from R™ x R" to R" such that

DiG(x)(y") = {v" : (v7, —y") € Ni(gph G; (z,G(x)))},
where gph G = {(z,G(x)) € R x R" : z € R"}.
Theorem 2.10 ([22]). Let G : R™ — R" and f : R® — R be locally Lipschitz
functions. Then
Oif o G(z) € D/G(7)0,f(G(T)).
The other result is a “scalarization” formula for the co-derivative.
Theorem 2.11 ([21]). Let F : R™ :— R™ be a locally Lipschitz function. Then
DiF(z)(y) =0 <y, F > (x), YyeR"
The same results hold if the linear subdifferential and co-derivative are replaced by those
of Mordukhovich.

The following result proved by Treiman in [23], describes that the linear and also the
Mordukhovich normal cone to a set of the form {z : h(x) = 0 } is contained in the
positive linear combinations of the subdifferential of h, under some conditions.

Theorem 2.12. Suppose h is a locally Lipschitz function from R"™ to R with h(T) = 0.
Let C = {x: h(z) =0}. If 0 ¢ O,h(T) U O)(—h)(T), then

Ni(C57) C Uaer0i(ah)(T).
If 0 ¢ Oph(Z) U Op (—h)(T), then
Nu(C57) C UnerOu (ah)(T).

Definition 2.13 ([13]). Let f : R" — R be locally Lipschitz function around z € R™.
The Michel-Penot directional derivative of f at x is defined by

. flz+th+tu) — f(z + tu)
°(x;h) = sup limsu ,
f ( ) uERP: tl0 P t

and the Michel-Penot subdifferential of f at x by
Duf(x) = {€ € R : fo(x;h) > (€,d) Vh € R"}.

A useful property of Michel-Penot subdifferential is that
Oo(=f)(x) = =0, f(x),

whenever f is locally Lipschitz around x. Also, note that for locally Lipschitz functions
on finite-dimensional spaces, the closed convex hull of the linear subdifferential is the
Michel-Penot subdifferential [21].

Now we recall the following results from [3]. Let C' be a nonempty subset of R" and
x ¢ C. The projection set of C' at x, denoted by proj ~(x), is defined by

proj o(z) == {c e C:do(z) = ||z — ||}
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Theorem 2.14. Suppose C' is a nonempty subset of R*. Let x € R", ¢ € C and
¢ € proj o(x). Then for all t € (0,1),

proj o(c+t(x — ¢)) = {c}.

Theorem 2.15. Suppose that x is not in the closed subset C' of R™. If the vector (
belongs to O0,dc(x), Then there exists a point ¢ € C such that the following conditions
hold:

(a) projeo(z) = {c}
(b)  The Fréchet derivative d(x) exists, and

{¢} = dpdol(@) = {du (@)} = {g}

|z — ]
(c) ¢ E€N(C50).
3. Constraint qualifications

To establish the main result of this section we need to prove the following Theorem.

Theorem 3.1. Let C,C,,...,Cy be closed nonempty subsets of R™ and suppose T €
C =nk_,C;. Suppose that for some e >0 and o > 0,

dofy) < - (max dci) v). 1)

o \1<i<k
for ally € T+ B .Then

k
Adc(T) < Z Ni(Ci; 7).
i=1

Proof. Consider the following sets:

A = {v : v is the limit of a linear sequence

of proximal subgradients to d¢c at T } ,

A = {v : v is the limit of a linear sequence
: : 1 _
of proximal subgradients to — max{d¢,(.)} at T ;.
o 7

It is sufficient to prove that A C A’. Assume that v € A. Therefore there exist sequences
¥ — T and v* — v, such that v* € 9,dc(2*) and either 2% = 7 for all k, or 2% # 7

for all £ and for some positive numbers u,d > 0, we have

1
de(a® + h) > do(a")+ < v* b > T I A%, (2)

for 2% + h € B(z*,6 || 2% — 7 ||).
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If z¥ = T for all k, then do(T) = < max; d¢,(T) = 0. Furthermore for all k, v* € 9,dc (),
hence by Definition 2.1 and (1), there exist positive numbers oy, 7, such that for all h
with ||k <

v

de(T + h)

> do(T)+ < v* h > —ap||h|]?

1
—maxde, (T + h)
o i

1
= —maxdg, (T)+ < v*, h > —o||h]%
g 7

Therefore v* € 9,(L max; d¢, (7)) for all k. Thus v is the limit of a linear sequence of
subgradients for %maxi de, at T. Hence v € A'.

For each k € N, according to Theorem 2.15 there exists 2* € C' such that, proj o (z*) =
{zF}. If 2% = 2* for infinitely many k, then de(2¥) = 0 = £ max; d¢, (2*) and hence (2)
combined with assumption (1) gives that v* is a linear sequence for %maxi dc, at =¥,

which ensures that v € A’.

Suppose that zF # 2% for k large enough. Then according to Theorem 2.15 v* =
(2% —2*%)/||2* — 2¥|| and hence by [1, Theorem 4.1}, v* € Np(C; 2¥)NB = 9,dc(2*). Note
that
125 = 2| < [I2° = 2*|| + |2* - 7| < 2||2" — 7). (3)
If [|n]] < (6/2)[|2" — 7|, then by (2)
de(a®)+ < 0% h > —(u||R]*)/[«* - 7|
< do(a" +h) <dc(2" +h) + |25 = 2¥|| = do(2F + h) + de(2F),

hence combining with (3), we get

1
. max dg, (%) + < v" b > —(2u|[l*)/||2* - 7

1
= <% h > =@ullP)/lI12" = 7] < do(= + h) < —maxde, (2" + h),

where the last inequality being due to the assumption (1). So v* is a linear sequence for
L max; dg, at z*. Deduce that A C A’ and the proof is complete. O

g

Observe that the assumption (1) has been used by A. Jourani and L. Thibault [10] and
also by A. D. Ioffe [8] to obtain the inclusion

k k
Oude(T) €Y Onde, (T) €Y Ny(CisT),
i=1

=1

for the Mordukhovich normal cone in Asplund space and the geometric Ioffe normal cone
in general Banach space. Note that in finite dimension those cones coincide, and the
following holds.

Theorem 3.2 ([8, 10]). Let C1,Cy, ..., Cy be closed nonempty subsets of R™ and sup-
pose T € C = Nk_ C;. Suppose that for some e >0 and o > 0,

dofy) <+ (max dci) v).

o \1<i<k



194 N. Movahedian, S. Nobakhtian / Nondifferentiable Multiplier Rules

for ally € T 4+ eB. Then

Nu(C;7) €Y Nu(Ci; ).

i=1

Now, we introduce a simple but useful geometric property for points which belongs to
intersection of a finite collection of closed sets. We show that this property is equivalent
with calmness [6, 19] and weaker than pseudo-Lipschitz condition (or Aubin property)
(see, e.g., [19]). We also show that this property is weaker than the finite dimensional
case of normal qualification condition employed in [16].

Definition 3.3. Let C1,Cy, ..., C} be closed subsets of R™ and supposeZ € C = N¥_,C;.
We say that C,Cy, ..., Cy has the distance intersection property (DIP) at T, if there
exist positive numbers o, ¢ such that,

1
de(y) < — max de,(y),

for all y € T + ¢B.

Remark 3.4. We may assume o < 1, since max; d¢, (z) < de(x).

Now, we recall the definitions of pseudo-Lipschitz property and calmness [5, 6, 19, 23].

Definition 3.5. Let C},Cs, ..., Ck be closed subsets of R". Suppose that ®(v) is the
set-valued function from R to R™ defined by

B(v) == ®(vy,vg,...,v8) = NE_(C; + vy), (4)
for all (vy,vs,...,v,) € R™,

(a) We say that ® is calm at (v,7) € gph @, if there exist ¢ > 0 and neighborhoods V
of v and Z of T such that for any v € V and =z € ®(v) N Z,

o) < cllo — 7.

(b)  We say that ® is pseudo-Lipschitz (or has Aubin property) at (v,Z) € gph @, if
there exist ¢ > 0 and neighborhoods V' of v and Z of ¥ such that for any vy,vy € V
and x € ®(ve) N Z,
dow,)(7) < cflvr — val|.

In the next theorem and its corollary, we prove that (DIP) condition is equivalent with
calmness and weaker than pseudo-Lipschitz property.

Theorem 3.6. Let C,C5,...,Cy be nonempty closed subsets of R™ and T € C =
NF_,C;. Suppose that ® is defined as (4). Let 0 = (0,...,0) € R"™. The multifunc-
tion ® is calm at (0,7) € gph @, if and only if T is a (DIP) point for Cy,Cy, ..., Cy.

Proof. In the following argument we consider the ||.||o in R™ and R™. The extension
to an arbitrary norm is trivial since all the norms are equivalent in finite dimensions.

First, we assume that ® is calm at (0,7) € gph ®. Therefore, there exist positive numbers
c and ¢ such that for every v € eB and y € ®(v) N (T + B),

do@)(y) < cf|v]oo- (5)
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It is clear that ®(0) = N¥_,C; = C. Without loss of generality, we may assume ¢ > 1.
Let y € T + cB. Assume that for each i, ¢; € proj (y) and v; := y — ¢;. Then,
y € NE_(Ci 4+ v;) = ®(vy,v,...,v:). On the other hand,

villoo = de, (y) < |ly — Tl < e

Consequently |[(vy,...,v) |l < e. By (5), we have,
do(y) < (v, o) [[oo = cmax{|[viloo} = cmax{de, (y)}-

Setting % = ¢, we deduce that T is a (DIP) point for Cy,Cs, ..., Ck.

Conversely, suppose that for some ¢ > 0 and any y € T + B, one has deo(y) <
L max; d,(y). Then for y € ®(v) N (T + eB), de(y) < Lmax;|jv;]|. This concludes
the proof. n

It is clear that the Aubin property of ® at (0, ), implies the calmness of ® at the same
point. Therefore the following result is a direct consequence of Theorem 3.6.

Corollary 3.7. Let C1,Cs,...,Cy, T and ® be as in Theorem 3.6. If ® is pseudo-
Lipschitz at (0,7) € gph ®, then T is a (DIP) point for Cy,Cs, ..., Cy.

Now we prove a new Fritz-John type necessary condition via linear generalized gradient,
for Lipschitz problems with inequality, equality and nonconvex set constraints. Consider
the following optimization problem (P)

gi(x) <0, 1=1,2,....,m
k

(P) min f(z) subject to hi(z) =0, j=1,2,...,

x e U,

where f,¢; (i =1,2,...,m) and h; (j =1,...k) are locally Lipschitz functions from R"
to R and U is a closed subset of R™.

Letfor j =1,2,...,k, C; = {x € R": hj(x) = 0}, and Ci4; = U. Take T to be a feasible
point of (P). Treiman in [23] stated a Fritz-John type Lagrange multipliers result via
linear generalized gradient for (P) under pseudo-Lipschitzness of the function ® defined
in (4). We derive the result of Treiman based on (DIP) condition.

Theorem 3.8. Let T be a local minimizer for (P), which is a (DIP) point for Cy, Cs, . . .,
Ci+1. Then there exist A\g > 0, \; > 0, «;, not all zero, such that

0e )\oalf —|— Z)\ 81g1 + Z@l Oé] + Nl(U x)
)\lgz(f):(), 2:1,2,...,m

Proof. Let
F(QS) = maX{f($) - f(f)’gl(x)aﬁh(x)’ s 7gm(x)}'

Then 7 is a local minimizer for the following problem (P’),

(P min F'(z) subject to z € C,
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where C' = ﬂ;?ille . Since f,91,99,...,9n are locally Lipschitz, it follows that F is
locally Lipschitz. By exact penalty Theorem (see e.g. [3], Theorem 1.6.3), there exists
L > 0 such that ¥ is a local minimizer for the function F' + Lds on R™. Therefore by
Theorem 2.7, 0 € 0,(F + Ld¢)(T) and,

0€ 0, F(T)+ 0(Lde)(T) = 0,F(T) + LOjdc(T). (6)
Since, 7 is a (DIP) point for Cy,Cy, ..., Cyy1, by Theorem 3.1 we have,
k+1

LOde(z) €Y N(C;; ). (7)

On the other hand Theorem 2.8 implies

O F(z) C {Aoalf(f) + Z&algi(f% Ai > 0, Z)\i = 1} ; (8)

and \; = 0 if ¢;(Z) < 0. From (6)—(8), we obtain

m k
0€ X0 f(T)+ Z Ai019:(T) + Z Ni(Cj;T) + N(U; 7).

J=1

If 0 € 0h;(Z) U 9)(—h;)(Z) for some j, then the result holds true. Suppose 0 ¢
Us_1 (O4hy(T) U9y (—hy)(T)). Theorem 2.12 implies that there exist Ao > 0, X; > 0, a;, not
all zero, such that \;¢;(Z) = 0 and

m k
0 X\af(T)+ Z Ai019:(T) + Z A(ajhy)(T) + Ni(U; 7).

Hence the proof is complete. O]

The following proposition appears as an exercise in [3]. We provide a short proof for
the reader’s convenience. In fact, the assumption of this proposition is known to entail
a stronger result. (See Remark 3.11 at the end of this section.)

Proposition 3.9. Let C,Cy be closed subsets of R", © € C7y N Cy and
Ny (Ci;T) N (—=Npy (Co;T)) = {0}.

Then for some positive numbers €, 0, and for each y € T + B,

dely) < = max{do, (), dey ()

Proof. We proceed by contradiction. Suppose that for each ¢ > 0 and ¢ > 0 there
exists a point y. € T + B such that

odc (y:) > max {do, (4z) , de, (y2)} - (9)
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Claim. There exist sequences c¥ € C; and c§ € Cy and v* such that cf, 5 — 7 and

[0 =1, v € Np(Cyx k) 1 (~Np(Coi )

Proof of the Claim. Fix k € N, by (9) for all n € N there exists a point y( " e B(T; 1)

such that
de <y,§”)) > nmax{alc1 ( ) de, (yk )>} . (10)

Now take cgg) € proj ¢, (u), c,(:(g) € proj ¢, (y"). From (10),

Since sequences y,(gn), ((i

w L/ m n) 1
A GHIR H< e () <o (11)

and ck (2) are bounded we can extract convergent subsequences

(without relabelling) y( My ,c,(c(i) — & and c,(;z;) — ckasm — oo. For j = 1,2,

we have ¢ € C; and dg, (y*) = ||y* — ||, which implies that C; NB(y"; [|y* — cF||) = {c}'}
or y* — ¢k € Np(Cj; ). Using (11) we obtain,

By taking limit as n — oo, we obtain y* — & = 2(cF — ¢¥) for i,j = 1,2. Thus,

5(cF—cr) € Np(Cj; cF). Take v = HC% CiH It follows that ||v*]| = 1 and v* € Np(Cy;ch)N

VR
(—Np(Cy;ck)). Suppose that v¥ — v as k — oco. Thus |jv|| =1 and v € Ny (C1;Z) N
(=N (Co; 7)), which is a contradiction. Hence the proof is complete. O

m_ m _Lim  m 1 .
Yo T GG) T g <ck() — ck(j)> H < e Vn eN, Vi, j e {1,2}.

Theorem 3.10. Suppose that h; is a locally Lipschitz function from R"™ to R, for j =
1,2,...k and
Cj = {.’ﬂ : h]<33') = 0}, T € ﬂlec'j =C.

Furthermore assume that the following nonsmooth linear independence condition holds
true,

“for any 1,72, ..., Yk with v; € Ophj(T) U On(—hy)(T), if there exists o; > 0 such that
Z?Zlaﬂj =0 then a; =0 forj=1,2,..., k.7

Then T is a (DIP) point for C1,Cs, ..., Cy.
Proof. We prove by induction. For k& = 2, by using Theorem 3.9, it is sufficient to prove
Ny (C1;T) N (=Npy (Co;T)) = {0}.

Let £ € Ny(C;;7) N (—NM(C’%_)) and ¢ # 0. The nonsmooth linear independence
condition implies that, 0 ¢ U3_,(Oah;(T) U Or(—h;)(T)). Theorem 2.12 implies that
there exist some o; € R/{0}, j = 1,2, such that

§ € Ou(arhy)(T) N (=0 (a2hs)(T)

= |ou|On <|Z—1|h1> N <—|oz2|8M (|Z—z|h2> (f)) .
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Thus there exist some 7, € Oryh;j(Z)U0y(—h;)(T) such that £ = ||y = —|ag|y2,. Thus
2321 |a;]v; = 0, and by the nonsmooth linear independence assumption, o; = 0,5 = 1,2,
which implies that £ = 0. By contradiction, Ny (C1;T) N (—=Ny (Cy;T)) = {0}.

Now suppose for j = 1,2,...k — 1 the result holds. Let C" = ﬂ?;lle. Therefore there
exist positive €/, 0’ with ¢’ <1 (see Remark 3.4) such that for any y € T + £'B,

der(y) < i, ( max ) de; (y)- (12)

0" \1<i<k-1
By virtue of Theorem 3.2
k—1
Nu(C7) € Y Nu(Cy7). (13)
j=1

By linear independence condition, 0 ¢ U?;ll(ﬁth (T) U Om(—h;)(T)). It immediately
follows from Theorem 2.12 that, for each 7,

NM(Cj;f) g UaeRaM(Oéhj)(f). (14)

If £ € Ny(C;T) N (=N (Ck; @) then by similar argument with the first part of proof,
£ = Zf;ll a7y = —Y, for some v; € Oy (hy)(T) U Oy (—h;)(T) and a; > 0. It follows
that Z?zl a;v; = 0, and by the nonsmooth linear independence assumption, a; = 0

for all j. Hence £ = 0. Proposition 3.9 yields de(y) < X max{dc(y),dc,(y)}, for all
y € T+ B and for some €,0 > 0. Set 09 = 00’ and ¢y = min{e,&’}. Then by inequality
(12) we have do(y) < ULO max<;<x{dc,(y)}, for all y € T+ oB. Hence T is a (DIP) point
for 01,02,...,Ck. ]

Remark 3.11. (a) The condition
Ny (Cr; ) N (=N (Cy; 7)) = {0},

for more than two sets takes the form:

fo =0, with 2] € Ny (C;;T)

7

=uz; =0, Vi (15)

In [8, 9, 10] it has been proven that condition (15) ensures that there is some constant
~v > 0 such that for y near  and wu; near 0 one has

v () < 7 (max) e (1),

(b) It is obvious that when the sets C; are the null sets of locally Lipschitz functions,
the condition (15) coincides with nonsmooth linear independence employed in Theorem
3.10.
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4. Examples

The following examples satisfy (DIP) but do not pseudo-Lipschitz condition. For both
of these examples, the normal qualification condition does not hold.

Example 4.1. Define
Cr = {(z,y) GRQ:x2+(y—1)2:1},

and
Co={(z,y) eR*: 2 +y* =1, y >0} U{(0,0)}.

Furthermore define ® : R* = R? as
P (v, v2) = (C1 +v1) N (Cy + ).

Take 0 = (0,0) and (v{", o) = (0,0,0, ), for each n € N. Then (0,0) € ®(0,0)
and @(vl ,vé )) contains only two points with the same distance of the origin, i.e. the

intersection points of two circles with centers (0,1) and (0, ), and of radius one, and
it is easy to see that

1
1\2 1 (n)
d¢,<vgn>7v§n>>((0,0)) = <1 + ﬁ) >—=n H (vl Vs ) . VneN.

Since (Uin),vén)) — (0,0), ® is not pseudo-Lipschitz at (0,0,0) € gph ®. Furthermore,
C1, Cy do not satisfy the normal qualification condition at (0, 0), because Ny (Ch; (0,0)) =
{(x,y) € R? : 2 = 0,y < 0}, while Ny;(Cs;(0,0)) = R

We show that (0,0) is a (DIP) point for C,Cs. Let (2,y) € B((0,0);3). If y > 0 then
the closest point of Cy to (x,y) is the origin. Therefore do(z,y) = de,(z,y). f y < 0
and 0 < z < g, the closest point of Cy — {(0,0)} to (z,y) is (1,0), and we have

eyl < (1 = 2, —y)]| = the distance of (z,y) to (1,0),

If y<0and 0>z > =, then the closest point of Cy — {(0,0)} to (z,y) is (—1,0), and
we obtain,
Iz, y)| < I(1+2,y)|| = the distance of (z,y) to (=1,0).

Deduce that, de, (z,y) = ||(z,y)|| = de(x,y). Thus

doa,) = mx{de, (). deu(e. )} ¥(o) € B (0,00 5).

which implies that (0,0) is a (DIP) point for C}, Cs.
Example 4.2. Define:
C = {(x,y) eER?:y= 0}

and,

Cy = {(x,y) ERQ:yz—%x,xSO}u{(:ﬂ,y) ERQ:yzﬁx,xzo}
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and,

Cy = {(x,y) €R2:y:—\/§x,x§0}u{(1’,y) ER2:y:\/§x,x20}.

Furthermore define ® : R = R? as
D (v, v9,03) = ﬂf’zl(Ci + v;).

Take 7" = ((0, 2), (0,0), (0,0)). We have ®(v") = (), and for each y € R?, dg(m)(y) = oo.
Therefore ® is not pseudo-Lipschitz at (0, 0).

Moreover, (0,1) € Ny /(Cy;(0,0)) and (0,5F) € Nar(Cs;(0,0)) N Npy(Cs;(0,0)), and
(0,1)+(0,5) 4 (0, 51) = (0,0). Thus the normal qualification condition is not satisfied
for these sets at (0,0).

We show that (0,0) is a (DIP) point for Cy,Cs,Cs with 0 = 3. Take (z,y) € R Let
x>0 Ify < —+/32 then

dC(ZE, y) - dC2(x7y) = dc3(ZL’, y) = m?‘XdCi(x7y)'

Now, let y > —+/3z and for j € {1,2,3}, denote the angle between the line joining (z,y)
to the origin and the right half-line of C; by 6;. Then for some j, §; > %. We have
de,(z,y) = sinf;dc(z,y), which implies that do(z,y) < 2max;dc,(7,y). In the case

x < 0 by symmetry with respect to y-axis, the proof is similar.

Treiman in [21] by a given example showed that the general Lagrange multiplier rule
does not hold with a set constraint and equality constraint even under the smoothness
of functions. We recall this example and show that (DIP) condition is not satisfied for
it.

Example 4.3 ([21]). Consider the problem (P)

. . g(z,y) =2°+ (y+2)* —4=0

(P min Tl y) swbIectto () ¢ Bi((0,1):1) UB((0, ~1):),

with singleton feasible set {(0,0)}. Take C' = B((0,1);1) U B((0,—~1);1) and C; =
{(z,y) : g(z,y) = 0}. The point (x,y) = (0,0), is the optimal solution of (P). It is easy
to verify that g is C*°, Vg(0,0) = (0,4) and N;(C, (0,0)) = {(0,0)}. Suppose that there
exist A\g > 0 and A;, not both zero, such that

(0,0) € A0,f(0,0) 4+ Ai(A1g)(0,0) + Ni(C, (0,0)) = X0,f(0,0) + A1 (0, 4).

Let f(z,y) = . Then (0,0) = X\g(1,0) + A;(0,4) and \g = A; = 0.

Now, we show that (0,0) is not a (DIP) point for the sets C' and Cy. Take (z,,y,) =

(£,0). Then max{dc(zn,yn), dc, (Tn,yn)} < 753. Therefore for any o,e > 0, if n >

max{5-, 1} we have,

1
g ma‘X{dC('xn) yn)y dC1 (xn) yn)} < || (Inu yn> || = dCﬂcl (17717 yn)a

for some (z,,,y,) € B((0,0),¢).
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5. Mb-stationary necessary conditions for nonsmooth MPEC

In this section we consider the following program, known across the literature as a
mathematical program with complementary-or often also equilibrium-constraints, MPEC
for short:

Q

(2) <0, h(z) =0,
(1) min f(z) st. G(z) >0 H(z) >0,
G(z)" ( ) =0,

where f :R" — R, g :R* — R™ h:R* — R?, G : R" — R!, and H : R" — R!
are locally Lipschitz functions.

Definition 5.1. Let z* be a feasible point of the MPEC (1). We divide the indices of
G and H into three sets:

We call z* nonsmooth M-stationary if there exist
M >0,M e R™, A e RP, ¢ e R M e R

not all zero, such that

l
0e N, f(z* +Z)\98<>gz +Z/\hah = [MN0,Gi(z") + M0, Hi(2")]
=1
AC free, )ff =0,
(AW >0AM > 0) VSN =0, Viep,
A free, M=,

g(z*) <0,  M=>0, g(z)"N=0.

In this section we will apply results of Section 3 to prove Fritz-John and KKT type
M-stationary results for MPEC involving locally Lipschitz functions, based on Michel-
Penot subdifferential. To get a Fritz-John type result, in addition to Flegel’s condition
we impose an extra assumption. However, the KKT type result is proved just under the
same condition employed by Flegel.

To succeed in dealing with the complementary term in the constraints of the MPEC, we
require a result which investigates the Mordukhovich normal cone to a complementary
set. This result was originally stated in a slightly different format by Outrata in [17],
see also [24].

Theorem 5.2. Let the set

C:={(&n)eR xR :£>0,n>0,n=0}
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be given. Then, for an arbitrary but fized (§,n) € C, define
Ie ={i: & =0,n > 0},
Z,={i:&>0,m =0},
Tey ={i:&=0,m=0}.
Then the Mordukhovich normal cone to C at (§,n) is given by
Ny (C;(&,1m)) = {(x,y) eR xR : vz, = 0,yz, =0,
(s <OANy; <0)Vay; =0, Vi€ gt

In order to apply Theorem 3.8, we introduce slack variables ¢ and 7, in the following
equivalent reformulation of the MPEC,

g(z,§:m) =g(2) <0,
i . — h(z,&1m) = h(z) =0,
(Fo)  min f(2,&,n) = f(2) subject to F(z,&n):(ffgz)):f]):&
(z,€,m) € R" x C,
where
={(&m eR xR :£>0,7>0,"n=0}.
Also define
G, : {(zfn)eR”lexR’ (zgn)_o},z':m,...,p,
={(z,&n) ER" xR xR : =&yt i=p+1,....p+1,
{( &) ER" xR x R H,;_p_l():m_p_l},Z:p—l—l—i-l,...,p—l—QZ,
and

Cp+21+1 =R" xC.

Theorem 5.3. Let z* be a local minimizer of MPEC (1), where all functions are locally
Lipschitz around z*. Suppose that (z*,G(z*), H(z*)) is a (DIP) point for Cy,Cs,..
Cproi41- Then z* is M-stationary.

*)

Proof. Set & := G(z*) and n* := H(z*). Then applying Theorem 3.8 to (F,), there
exist A/ > 0,09 > 0, \" and \I' = (=AY —\) not all zero, such that g(z*)T\ = 0 and

m p
0e Mo f(=*,¢ ) + Z Nog: (=, 0") +>_ 0 (A?hi) (=%,€ ")
] =1

+Za, AiTa) (27 €50%) + Ni((2%, €%, "), R" x C)
- 0 + 0 + 0
0 0 0

Sy [A0.Gi () + M9, Hi(=)] .
“ - ( Ny ((€%,77).C) ) |
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We now take a closer look at those components pertaining to £ and 7 in (*),

From Theorem 5.2, we obtain the following rules for the components of A4 and \:

{(a,b) : a free, b = 0}, it =0, nf >0,

(A AN €< {(a,b): (a>0Ab>0)Vab=0} if& =0, nf =0,

{(a,b) : a =0,b free}, iftg >0, nf =0.
Taking into account that & = G;(z*), that nf = H;(z*) and the definitions of «, 5 and
v, yield the statement of the theorem. O]
Now by considering some properties of the sets Cy, Cy, ..., Cpio41, We try to shorten the

hypotheses of the above theorem, to facilitate its application in the special cases. First,
we take a closer look at these sets. Set B = NY_,C; and

Cl={z€R": hi(z) =0}, fori=1,2,...,p, B =nt_ Cl.

Then C; = C! x RE x R! for i = 1,2,...,p, and B = B’ x R x RLIf (u,v,w) €
Ny (B; (z*,&%, n*)), then v = w = 0. Since Cpig1 = R x C, if (u,v,w) € Np(Cpiar41;
(2*,&*,m*)) then u = 0 and we obtain,

Ny (B; (25,6%,1%)) N (=Nu(Cpiargr; (27,67,m7))) = {(0,0,0)}. (16)
Now, define

Fz(%&ﬂ?) = Gz(z) - éi? for i = 1727 . '7l
Ui(z,&m) = Hi_(2) = miy, fori=1+1,...,2L

Thus we have,

ouli(2%, 6", n") = —e; ci=1,...,1,
0
and
8MH1-,,(2*)
Onli(2%, & m") = 0 Ci=1+1,...,2l
—€i—|

where e; € R! is the ith unite vector. Suppose Z?lzl a;v; = 0 with a; > 0 and v; €
OuLi(z*,&%,n*), for i € {1,...,2(}. Then

2l

l
E —Q;e; = E —Q€E_] = 0.
=1

i=1+1
It follows that «; = 0 for any i. Theorem 3.10 implies that (z*,£*,n*) is a (DIP) point
for Cp+1, .. 7Cp+21.

Theorem 5.4. Let z* be a local minimizer of MPEC (1). Suppose that,
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(a) 2z is a (DIP) point for C1,...,Cy,
(b) (2%,&",n%) is a (DIP) point for Ay, Ay, where
Al - B N Cp+21+1, A2 - QQZ Cl

i=p+1

Then z* is M-stationary.

Proof. By Theorem 5.3, it is sufficient to show that (z*,&*,n*) is a (DIP) point for
Ci,...,Cpyory. Tt is clear that for 2/ € R™ and (¢/,7/) € R! x R,

dC’;(Z/) = dci (Zla 5/7 77/)7 dB'(Z/) = dB(Z/7 5/7 77/)7 1= 17 27 <o D

Since z* is a (DIP) point for C7, ..., C], therefore there exist o1,; > 0 with o1 < 1 such
that for each (2/,¢,n') € B((2*,£*,n");€1):
1
/ ! / < . . / ! / .
o, €f) < o () a2 €0) (17

From (16) and Theorem 3.9, it follows that for some positive numbers o9, g5 with oo <1
and for each (2/,&', 1) € B((z*,£*,1n%); e2),

1
dBme+21+1 (2/7 6,7 T’/) S ma’x{dB(Z/’ 5/’ 77,)7 dcp+21+1 (2,7 5,7 n/)} (18)
02

By the argument before the theorem, (2*,&*,n*) is a (DIP) point for Cpiq,...,Cpya,
hence for some positive numbers o3, €3 with o3 < 1 and for each (', &', n') € B((z*,£*, n%);

63)7

dA2<z’,§cn'>si< max ){dcxz’,&’,n')}. (19)

03 \p+1<i<p+2l

Finally, by the assumption (b) there exist some positive numbers o4, 4 with o4 < 1 such
that for all (/,&',n') € B((z*,£*,n%); e4),

1
dayna (2,6,m) < 0—4maX{dAl(Z’,é'm'),dAz(Z’,E',U')}- (20)

Let € = (minj<;<4){¢;} and o = o403090;. If (2, &', 0') € B((2*,£*,1%);¢€),

depraii (2, 60) = dayna, (2,€,7)

| gl( max ){dci(z’,f’,nﬂ}-

o \ 1<i<p+2i+1

According to Theorem 5.3, this assertion completes the proof. O

We introduce the multifunction ¥ : R™ x RP x R x R! = R™ as follows,
U(t,q,r,s) ={z€R":g(z) +t <0,h(2)+q¢=0,G(z) +r >0,
H(z)+s>0,(G(z) + )" (H(z) + s) = 0}.
Note that the feasible set of the MPEC is equal to ¥ = ¥(0,0,0,0). Flegel [4] used this

multifunction to define an MPEC variant of calmness, for the case where all functions
except the objective function are smooth. Let us recall this definition.
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Definition 5.5 ([4]). The MPEC (1) is said to satisfy MPEC-calmness in z*, if for some
g, > 0and for all (t,q,r,s) € B(0;¢) C R"xRPxR!xR! and all 2 € U(t, q,r, s)NB(z*; ¢)
it holds that

f(Z7) < fz) +ullt g,r8)]- (21)

Proposition 5.6. Assume that z* is a local minimizer of MPEC (1) and that MPEC (1)
is MPEC-calm at z*. Then there exists pu > 0 such that the vector (z*,0,0) € R* x R x R!
s a local minimizer of

F&)+ nlll(gr (), gm () + 1A )+ (1, ),
min(z,r,s) subject to  G(z)+1r >0, H(z)+s >0,
(G(z)+nr) " (H(z) +s) =0, (22)

where ot := max{0, a} for a € R.

Proof. By continuity of i and g there exists 0 < § < £ such that

1A (2)]| <

g7 (2), - gmDI < 3, V2 € B(2"9).

Wl M
Wl M

Let (z,7,5) € B((2%,0,0);6) be a feasible point for (22). Then set t; := —g;(2) for
i=1,...,mand q := —h(z). With this choice of ¢ and ¢, we have (¢,q,r,s) € B(0;¢)
and z € V(t,q,r,s) NB(z*;¢). Since z* satisfies the MPEC-calmness, the condition (21)
holds and we obtain,

f(2) < f(2) +pll(E, g, 9|
< f(2) + ulll(gr (2), - gm DI+ IR+ [y 8)1)),

for some p > 0. Thus (z*,0,0) is a local minimizer of (22). O

Theorem 5.7. Suppose that all the functions of MPEC (1) are locally Lipschitz and that
z* is a local minimizer of MPEC (1) at which the MPEC is MPEC-calm. Furthermore
assume that

NM(CQI+1; (Z*a 07 075*777*)) N (_NM<Q12121017 (Z*7 07 075*7 Tf))) = {(OJ 07 07 07 O)}7

where
Ci:={(z,1,5&n) € RH2H2 . Gi(2)+ri=&), i=1,....1,
and
Ci = {(Z,T, 575777) — Rn+2l+2l . Hi,l(Z) + Si—] = T]i,l}, 1, = l =+ 1, . ,2[,
and

Cousr =R"xR' xR x C.

Then z* is M-stationary.

Proof. We will prove this theorem in two steps.

Step 1: Let us show that (2*,0,0,&*,n*) is a (DIP) point for C1,. .., Coq.
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Define,

~

hi(Z7T’Sa€7T’) = Gz(z) +7r; — gi, 1= ]., R 7l,
Ei(z,r, s, 6m) = H;(2) +siy—miy, i=14+1,...,2L

Then
O Gi(2")
8Mhi(z*,0,0,£*,77*) = 0
—e;
0
fori=1,...[, and
aMHi_l(Z*)
R 0
3Mhi(2*,070;§*777*) = €i—1
0
—€i—]
fore=101+1,..,2L

From Theorem 3.10, (z*,0,0,&*,n*) is a (DIP) point for C,...,Cy. Thus, for some
e’ o’ > 0 with ¢/ < 1 and for each y € (2*,0,0,&*,n*) + €' Brai+1,

dor(y) < — (m@x) e, (),

where C' = N2 ,C;. Also, by Proposition 3.9 and by our second assumption, for some
g, 0 >0 with o <1,

dC (y> < % maX{dC’ (y)7 dC’21+1 (y)},

for all y € (2*,0,0,&*, 1) + eBpiygixr, Where C = N0, If 0p = o0’ and gy =

min{e, &'}, then

doly) < i( max ){dcxy)},

oo \1<i<2l+1

for all y € (25,0,0,£*,17*) + eoBrixrixg- Thus (2*,0,0,£*,1n*) is a (DIP) point for
Clv S 7CQZ+1-

Step 2: Let us show that z* is M-stationary.

Since the MPEC satisfies MPEC-calmness at z*, therefore by Theorem 5.6, (2*,0,0) is
a local minimizer of (22) for some p > 0. Consider (22) as a MPEC with equilibrium

~

constraints G(z,7,s) = G(z) + r and H(z,r,s) = H(z) + s. Then we deduce, by an
argument similar to that of Theorem 5.3, that there exists (A, A%, A7) #£ (0,0, 0) such
that MY > 0, \¢ and A\ satisfies the sign conditions

A free, )\$ =0,
(AW >0AM > 0) VSN =0, Viep,

NI free, M=,
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and
! 9,Gi(z*) O, Hy(2)
0e Mo f(=*,0,0) =) | A¢ e + \H 0 ,
i=1 O €;

where F(z,rs) i= £(2) + pll(gF (=), -, (DIl + [IRG) + (s 9)]1), s a locally
Lipschitz function. If we assume A\ = 0, it follows immediately from the last relation
that A = A¥ = 0, which is a contradiction. Therefore, without loss of generality, we

may assume M o=1. By Theorem 2.7, we get
AJ(0,0)(") € AS (=) + pal(F (s g (D)D) + pA(IRC) ) (7).

From Theorems 2.10 and 2.11, we obtain
af(.,0,0)(z") C Af(=") + me Ougi(2") + me Ouhi(="),

for some n? € 9,(g; (2*)) and 0 € 9y(|.|)(hi(z*)). Observe that g(z*) < 0 and h(z*) = 0,
so by computing the last subdifferentials and by taking A9 = pn? and \* = pn", we have,
g(z*)TA9 = 0 and,

0€af(z +Z)\981g, +Z>\ Oih; Z)\GaG ) + A0, H,(2")
C Oof(z —l—ZA@ogz +Z>\hah Z/\GaG ) 4+ A0, Hy ().
This concludes the proof . n

Theorem 5.8. Suppose that all the functions of MPEC (1) are locally Lipschitz and
that z* is a local minimizer of MPEC (1) at which the MPEC is MPEC-calm. Then z*
15 M-stationary.

Proof. By Theorem 5.7, it is sufficient to show that the condition

NM(C2Z+1; (Z*a 07 075*7 77*)) N (_NM(C/; (2*7 07 0,5*, 77*))) = {(O’ O? 07 0, O)}v (23)

holds true, when C' = N, C;.

If (w,v,w,z,y) € Np(Copiy;(2%,0,0,€%,1m*)), then by [19, Proposition 6.41], u = v =
w = 0 and we have (x,y) € Ny (C; (£%,7%)).

Now suppose that (0,0,0,z,y) € Ny (C’;(2*,0,0,£%,1n*). Namely, there exist sequences
{(Zns Ty Sy &y ) b and { (Un, Uy Wy, Tp,y Yn) } such that,
(ZTL’ Tn) Sn? §7’l7 7771») E Cl?
(Z'rw Tn,s Sn, é.na T/n) B (Z*a 07 07 5*7 77*)7
(U’Tu Upy Wy, Ty, ?Jn) B (07 07 07 x, y)
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and
(um Uny Wn, T, yn) € NP(C/; (Zna T'ny Sn, énv nn))
For each n, there exists o, > 0 such that for all (z,7,s,£,n) € C’

V

< (umvn,wmxn, yn)a (Z — Zn, T —Th, S — 87175 - 5”7 n— 7]n)
S O-TL||(Z7T787§777) - (Zn,’f’n, Smfn;nn)HQ- (24)

Let € > 0 be arbitrary and for each integer i € {1,2,...,1} set

ith

I times

ith

_ ~ =~
0;°=(0,...,/—¢,...0).

ltzrrnes

Then we have
(z'rhr'ﬂ + Of? STL?STL + 0?71777/)7 (ZTH TTL + O’L'_a? STL?STL + 07,_877771) G C/

Now by (24), it follows that v\ + z{™ < 20, and — (0™ + ™) < 20,.¢, where v{™ and
xz(-n) are the ith component of v and z. Since ¢ is arbitrary, then vgn) + xﬁn) =0, Vn. On
the other hand lim,,_ UZ(") =0, thus z; = lim,,_ . z; ~ = 0. By similar argument we

can prove that y = 0 and this completes the proof . O]

n)

The next example illustrates a nonsmooth MPEC which satisfies assumptions of Theorem
5.4 at a minimizer point and is not MPEC-calm at that point.

Example 5.9. Consider the following problem:
h(z,y) = sin(|[(z,y)]]) =0,
min f(z,y) =25 st G(z,y)=2>0, H(wy) =y>0, G(z,y)H(x,y) =0,
(z,y) € R%
The point (0,0) is a local minimum for the above problem. For simplicity, let us apply

||l.]l1 in our argument. Since there is only one equality constraint in this system, the
condition 5.4(a) is trivial. We have,

Ay = {(z1, 29, 23, 24) € R sin(||(zy, z2)||) = 0,25 > 0,24 > 0, 2324 = 0},
and
Ay = {(21, 29, 23, 24) € R* : 23 = G (21, 22), 14 = H (w1, 79)}
= {(w1, 79, 73,74) €ER* : 13 = 11, 14 = 25}

We claim that (0,0,0,0) is a (DIP) point for A; and As. If ¢ < 7, then A; N AyNeBpra =

{(0,0,0,0)}. Suppose that (yi,ys,y3,ys) € eBra. We have, da,na,((Y1,Y2,V3,91)) =
ly1| + |y2| + |ys| + |ya]- It is easy to verify that,

ly1| + [ya| + |ys| + |va] ifys < 0,94 <O
da, (Y1, Y2, Y3, ¥a) = < ly1] + |y2| + |ys] ifys <0<wysor0<ys<y,
ly1| + |ye| + |yal ifys <0< ysor0 <y, <ys
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and da,(y1,Y2,Y3, Y1) = |y1 — y3| + |y2 — ya|. We claim that

dAlﬂAz (yh Y2, Y3, y4) S 3 max{dA1 (ylv Y2, Y3, y4)7 dA2 (yla Y2, Y3, y4)} (25>

If y3 < 0,y4 < 0, then (25) holds. If

da, (Y1, Y2, Y3, a) = |ta| + [yl + |ys| < day(y1,92, Y3, ya),

then

dayna, (Y1, Y2, Y3, Ya) < 3(lyr — ys| + ly2 — yal)
= Bmax{dAl(ybyQay?ny4)>dA2(ylay27y3>y4)}-

It dA2(y1’y27y37y4) S dA1 (ylﬂy27y37y4) = |y1| + |y2| + |y3|7 then

da,nas (Y1, Y2, Y3, Ya) < ya| + [y2l + lysl + |ya| + |y2 — v4l
< 3(Jya] + ly2| + lysl)
= 31’I1aX{dA1 <y17y27y37y4>7d142(y17y27y37y4)}‘

The argument is similar in other cases. Now, we prove that the above system is not
MPEC-calm at (0,0). For n > 2 take (z,,,y,) = (=5, 0) and (¢n, Tn, $) = (— sin(5), =5, 0).

) 26
Then (2, yn) € V(Gn, Tn, Sn) and (z,, yn) — (0,0) and (gn, 7, Sn) — (0,0,0). On the
other hand,

)+ s = 5+ 0 fsint) + 2
< 0= £(0,0).

Thus this system is not MPEC-calm at (0, 0).
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