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Given an approximation {fn} of a given objective function f , we provide simple and fairly general
conditions under which a diagonal proximal point algorithm approximates the value inf f at a reasonable
rate. We also perform some numerical tests and present a short survey on finite convergence.

Introduction

Consider a function f to be minimized over a real Hilbert space H. Its effective domain
Df corresponds to the feasible set, and is given by constraints on the minimization
problem. Let {fn} be a family of proper, lower-semicontinuous convex functions with
a common domain D in H. The functions fn are meant to approximate the objective

function f in some sense. Since we do not require Df = D, this accounts for several
approximation, regularization, interior and exterior penalization schemes (see below).
We assume that infH f = infD f ≥ −∞ and denote this quantity by f ∗.

Take a starting point x0 ∈ H and two sequences of real parameters {λk} ⊂ (0,Λ] and
{εk} ⊂ [0,∞). A sequence {xk} ⊂ D is said to be an inexact diagonal proximal sequence

generated by (x0, {λk}, {fk}, {εk}) if

yk :=
xk−1 − xk

λk

∈ ∂εkfk(xk) (1)

for all k ≥ 1, where the approximate ε−subdifferential ∂ε is defined by

∂εg(u) = {u∗ ∈ H | g(v) ≥ g(u) + 〈u∗, v − u〉 − ε ∀v ∈ H} ε ≥ 0.

In order to construct such a sequence it is necessary to solve approximately an optimiza-
tion problem at each iteration, which is usually done by means of another algorithm (e.g.
bundle methods) so the use of ε−subdifferentials is important for practical purposes.

If fn ≡ f and εn ≡ 0, this is the standard proximal point algorithm, introduced in [21] for
solving variational inequalities. It has been used extensively in convex minimization (see
[13] and [23]) in the search for the value f ∗ and, if there are any, the points at which it is
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attained (also useful to find zeros of monotone operators as in [10] and [19]). For weak
and strong convergence of the sequence {xn} see [24] and [7]. Several variations can be
found in [14], [12] (relaxation) and [25] (hybrid projection-proximal point algorithm).

The term diagonal refers to the fact that the objective function is updated at each
iteration, which is not a new approach. Many authors have combined approximation
methods with the proximal point algorithm. The common feature is that a family {fn}
is chosen so that the functions are better behaved in terms of smoothness, computability,
coerciveness, etc. and converge to f in some sense. A pioneer work with interior penalties
is [16] (see also [17]). For exterior penalties and variational convergence see [1]. For
Tikhonov see [22]. For computation and bundle methods, see [4] and [5]. In the latter,
a sequence of exterior penalties is considered and their algorithm is proved to converge
in a finite number of steps in the linear case. In [2], [8] and [9] the authors study
exponential penalty and log-barrier in linear programming using properties of the limit
(unperturbed) dynamics.

Convergence to the optimal value is important on its own right but further information on
this convergence is useful for several other reasons. First, when there are no minimizers
or the convergence is only weak, there is no point in analyzing the whole sequence xn.
But even when the sequence xn is known to converge, the rate at which |fn(xn) − f ∗|
tends to 0 gives (along with the duality gap) good stopping rules, especially in large-scale
problems.

Using simple estimations, we derive qualitative and quantitative convergence results for
the values fn(xn) provided fn → f in a certain way. Unlike in the references cited above,
our results do not depend explicitly on the type of approximation. Instead, we investigate
on the minimal underlying structure that guarantees that one can approximate f ∗ by
fn(xn) at a reasonable rate. Some of our results generalize the corresponding ones in the
classical paper [13], where fn ≡ f . This paper is organized as follows: in Section 1, we
study convergence to the optimal value f ∗. The results hold even if the objective function
has no minimizers and is not coercive (cf [1]). Section 2 deals with rates of convergence.
When f has minimizers the relationship between fn and the rate of convergence of the
values becomes evident. A simple (academic) numerical example is presented. The case
of summable stepsizes and algorithm termination are commented in Section 3.

1. Convergence of the values fn(xn)

Set σn =
∑n

k=1 λk and σ0 = 0. Unless otherwise stated we assume limn→∞ σn = ∞. The
Kronecker Theorem (see, for example, [18], p. 129.) implies that if a sequence {pn} of
positive numbers is in ℓ1, then limn→∞

1
σn

∑n

k=1 σkpk = 0. For a sequence {zn} denote by

zn = 1
σn

∑n

k=1 λkzk the sequence of its averages weighted by the stepsizes {λk}. Clearly
limn→∞ zn = L implies limn→∞ zn = L. Let {pn} and {̺n} be two positive sequences.
We write pn = O(̺n) if pn/̺n is bounded. Then pn = O(̺n) implies pn = O(̺n). If
limn→∞ pn/̺n = 0 we write pn = o(̺n).

Lemma 1.1. For any u ∈ D we have

fn(xn)− fn(u) ≤
‖u− x0‖2

2σn

− 1

2σn

n
∑

k=1

λ2
k‖yk‖2 −

‖u− xn‖2
2σn

+ εn.
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Proof. Let u ∈ D. The subdifferential inequality gives

fk(u)− fk(xk) ≥
1

λk

〈xk−1 − xk, u− xk〉 − εk (2)

and so

2λk(fk(u)− fk(xk)) ≥ 2〈xk−1 − xk, u− xk〉 − 2λkεk

= ‖xk−1 − xk‖2 + ‖u− xk‖2 − ‖u− xk−1‖2 − 2λkεk

= λ2
k‖yk‖2 + ‖u− xk‖2 − ‖u− xk−1‖2 − 2λkεk. (3)

Summing for k = 1, . . . n we get

2
n

∑

k=1

λkfk(u)− 2
n

∑

k=1

λkfk(xk) ≥
n

∑

k=1

λ2
k‖yk‖2 + ‖u− xn‖2 − ‖u− x0‖2 − 2

n
∑

k=1

λkεk. (4)

Dividing by 2σn we obtain the desired inequality.

Let S = Argmin f . For r > 0 define Sr = {u ∈ D∩Df |f(u) ≤ f ∗+r} whenever f ∗ > −∞
and Sr = {u ∈ D ∩Df |f(u) ≤ −r} otherwise. Consider the following hypothesis:

Hypothesis H1: lim sup
n→∞

fn(u) ≤ f(u) for all u ∈ Sr and some r > 0.

Finally set f ∗
n = inf fn. An immediate consequence of the previous lemma is the following:

Corollary 1.2. Let limn→∞ εn = 0 and assume hypothesis H1 holds. We have

i) lim supn→∞ fn(xn) ≤ f ∗;

ii) If f ∗ ≤ lim infn→∞ f ∗
n, then limn→∞ fn(xn) = f ∗;

iii) If f ∗ ≤ lim infn→∞ f ∗
n, then lim infn→∞ fn(xn) = f ∗.

This result is similar to Theorem 2.1 in [6], though the hypotheses here are weaker and
more concise. Also, we show three different “degrees� in the conclusion, which help
understand more clearly the effect of averaging. The sequence fn(xn) approximates the
optimal value f ∗ under fairly weak hypotheses on the sequence fn and the errors εn.

Remark 1.3. Observe that in the special case where there is x∗ ∈ S ∩D we have

fn(xn)− f ∗ ≤ ‖x∗ − x0‖2
2σn

+
[

fn(x∗)− f ∗
]

+ εn.

Suppose for simplicity that f ∗ ≤ f ∗
n so that the left-hand side is nonnegative. The rate

of convergence of fn(xn) to f ∗ depends on three parameters, namely:

• σn, which seems to be intrinsic to the proximal iterations;

• εn, which has to do with computational precision;

• the behavior of fn on the minimizing set S.
If

∑

λkεk < ∞ and fn(x∗) − f ∗ = O( 1
σn
) for some x∗ ∈ S, then fn(xn) − f ∗ = O( 1

σn
).

This speed of convergence is provided by Theorem 2.1 in [13] where fn ≡ f and εn ≡ 0.
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In order for the values {fn(xn)} to converge we need further hypotheses on the way the
sequence {fn} evolves:

Hypothesis H2: There exist a set K ⊆ H containing the trajectory {xn} and a
nonnegative sequence {an} such that fn(x) ≤ fn−1(x) + an−1

for all n ≥ 2 and all x ∈ K.

The fact that the set K is chosen according to {xn} plays a key role in practice since it is
possible to get a priori estimations for the sequence in many applications. For example,
the verification of hypothesis H2 is considerably simplified under uniform coerciveness or
inf-compactness assumptions on the family {fn}. Hypothesis H2 holds trivially if the se-
quence {fn} is decreasing; which happens, for instance, for Tikhonov’s approximation or
penalization schemes as described in [9] using the log- or the inverse barrier. Hypothesis
H2 is also true if the sequence converges uniformly.

Lemma 1.4. Assume hypothesis H2 holds. For every u ∈ D we have

fn(xn)−fn(u) ≤
‖u− x0‖2

2σn

+
1

σn

n
∑

k=1

σk(ak+εk)−
1

2σn

n
∑

k=1

λk(σk−1+σk)‖yk‖2−
‖u− xn‖2

2σn

.

Proof. Multiply (2) by σk−1 with u = xk−1 and use hypothesis H2 to obtain

σk−1fk−1(xk−1)− σkfk(xk) + λkfk(xk) + σk−1ak−1 ≥ σk−1λk‖yk‖2 − σk−1εk.

Summing for k = 1, . . . n we get

−σnfn(xn) +
n

∑

k=1

λkfk(xk) +
n

∑

k=2

σk−1ak−1 ≥
n

∑

k=2

σk−1λk‖yk‖2 −
n

∑

k=2

σk−1εk.

Adding twice this inequality to (4) we get

2
n

∑

k=1

λkfk(u)− 2σnfn(xn) + 2
n

∑

k=2

σk−1ak−1

≥ 2
n

∑

k=2

σk−1λk‖yk‖2 +
n

∑

k=1

λ2
k‖yk‖2 + ‖u− xn‖2 − ‖u− x0‖2 − 2

n
∑

k=1

σkεk

=
n

∑

k=1

λk(σk + σk−1)‖yk‖2 + ‖u− xn‖2 − ‖u− x0‖2 − 2
n

∑

k=1

σkεk.

Dividing by 2σn and rearranging the terms we obtain the desired inequality.

In particular if H2 holds we have

fn(xn)− fn(u) ≤
‖u− x0‖2

2σn

+
1

σn

n
∑

k=1

σk(ak + εk). (5)

Rearranging the terms and using H2 once more we get

−
∞
∑

k=n

ak ≤ fn(xn)− f ∗ ≤ 1

σn

n
∑

k=1

σk(ak + εk) +
‖u− x0‖2

2σn

+
[

fn(u)− f ∗
]

. (6)
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The first inequality in (6) gives

lim inf fn(xn) ≥ f ∗. (7)

We shall prove that the sequence fn(xn) approaches the optimal value f ∗ without any
further assumptions. Convergence of the values fn(xn) has been proved in a monotone
setting (see Theorem 3.1 in [1] and Corollary 3.1 in [20]) or assuming that S 6= ∅, that
fn → f in the sense of Mosco1 and that {λn} is bounded away from zero (see Theorems
3.2 and 3.3 in [1] and Theorem 2.2 in [6]).

Proposition 1.5. Assume hypotheses H1 and H2 hold. If the sequences {an} and {εn}
are in ℓ1 then limn→∞ fn(xn) = f ∗. If moreover f ∗ > −∞ then

i) lim
n→∞

σn‖yn‖2 = 0; ii) lim
n→∞

‖xn‖2
σn

= 0; and iii)
∞
∑

k=1

λk‖yk‖2 < ∞.

Proof. Recall from (7) that lim infn→∞ fn(xn) ≥ f ∗. Take r > 0 and let n → ∞ in in-
equality (5), so that hypothesisH1 and the Kronecker Theorem give lim supn→∞ fn(xn) ≤
f(u) for all u ∈ Sr. Hence lim supn→∞ fn(xn) ≤ f ∗ and limn→∞ fn(xn) = f ∗. Now as-
sume f ∗ > −∞.

i) For η > 0 take xη such that f(xη) < f∗ + η. Using H1, the estimation given by
Lemma 1.4 with u = xη and the fact that limn→∞ fn(xn) = f ∗ we get

lim sup
n→∞

1

σn

n
∑

k=1

λkσk‖yk‖2 ≤ f(xη)− f ∗ < η.

ii) The proof is similar.

iii) Setting u = xk−1 in (2) and using hypothesis H2 we find

λk‖yk‖2 ≤ fk−1(xk−1)− fk(xk) + ak−1 + εk

for k ≥ 2. Summing for k = 2 . . . n we get

n
∑

k=2

λk‖yk‖2 ≤ f1(x1)− fn(xn) +
n

∑

k=2

an−1 +
n

∑

k=1

εk.

From the first part, the right-hand side converges as n → ∞.

Part i) implies limn→∞ ‖yn‖2 = 0 and so limn→∞ ‖yn‖ = 0.2 On the other hand, part
iii) reveals that if λn ≥ λ > 0 then limn→∞ ‖yn‖ = 0.

Remark 1.6. Under epi-convergence, every cluster point of {xn} is a minimizer of f .
More precisely, let τ be the strong or the weak topology in H. In addition to the
hypotheses of Proposition 1.5, suppose that for all x ∈ Df and for all sequences {zn}
in D converging to x for the topology τ we have f(x) ≤ lim infn→∞ fn(zn). Then every
τ−cluster point of the proximal sequence {xn} is a minimizer of f . A similar result
has been proved in [1] under different hypotheses including boundedness of the sequence
{xn}.
1Epi-convergence both for the weak and the strong topologies (see below).
2Let ψ : R+ → R+ be a continuous function with ψ(0) = 0 and let {αn} be a sequence of positive
numbers. Assume either that {αn} is bounded or that ψ satisfies ψ(x) ≤ M(1 + x) for some M > 0.
Then αn → 0 implies ψ(αn) → 0. This can be applied to ψ(x) =

√
x.
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2. Some remarks on the rate of convergence

It is natural to expect the rate of convergence of fn(xn) to depend on the way the sequence
fn converges to f . When the function f has minimizers we can give precise estimates
on the rate of convergence of the values in terms of the rate of pointwise convergence of
the sequence {fn} on the optimal set. The results that we present here do not depend
explicitly on the type of approximation. Moreover, it is important to underscore the fact
that the function f need not be coercive. We only require the set S ∩D to be nonempty.
This is the case for exterior penalties and finite (but not infinite) barriers. Convergence
may be slow when the jump is infinite.

Proposition 2.1. Suppose H2 holds and there is x∗ ∈ S∩D with |fn(x∗)−f ∗| = O( 1
σn
).

If
∑n

k=1 σk(ak + εk) < ∞ then |fn(xn)− f ∗| = O( 1
σn
). Moreover,

∑∞
k=1 λkσk‖yk‖2 < ∞

and the sequence {xn} is bounded.

Proof. It suffices to apply inequality (6) noticing that
∑

k≥n ak = 1
σn

∑

k≥n σnak ≤
1
σn

∑

k≥n σkak. The rest follows easily from Lemma 1.4.

Remark 2.2. In [13] the author studies the case fn ≡ 0, εn ≡ 0 and proves that if the
proximal sequence xn happens to converge strongly to some x∗ ∈ S then f(xn) − f ∗ =
o( 1

σn
). For a sequence fn this need not be the case. However, it is the case if there is

sufficiently fast convergence on S. Indeed, from the subdifferential inequality one has

fn(x
∗) ≥ fn(xn) +

1

λn

〈xn−1 − xn, x
∗ − xn〉 − εn.

Thus fn(xn) − f ∗ ≤ ‖yn‖ · ‖x∗ − xn‖ + [fn(x
∗) − f ∗] + εn. Assume the sequence fn is

bounded from below by f ∗ and that xn happens to converge strongly to some x∗ ∈ S∩D
such that |fn(x∗) − f ∗| = o( 1

σn
) (this depends only on the rate of approximation). If

‖yn‖ = O( 1
σn
) and εn = o( 1

σn
), then |fn(xn)− f ∗| = o( 1

σn
).

Observe that by virtue of Theorem 9 in [7], when fn ≡ 0 and εn ≡ 0 we always have
‖yn‖ = O( 1

σn
), so that Theorem 3.1 in [13] is a consequence of Remark 2.2 above. It is

important to point out that the proof in [13] uses a clever (but unnecessarily sophisti-
cated) argument instead of the trivial observation ‖yn‖ = O( 1

σn
). In general, it is difficult

to prove that ‖yn‖ = O( 1
σn
) because the speed depends strongly on the evolution of the

sequence {fn} so one has to study each particular type of approximation.

Remark 2.3. Some comments are in order:

(1) If λnσn ≥ λ > 0 then limn→∞ ‖yn‖ = 0; and if λn ≥ λ > 0, then limn→∞ σn‖yn‖2 = 0,
thus ‖yn‖ = o( 1√

σn
).

(2) From part i) we have σn‖yn‖2 = O( 1
σn
), which implies that σ2

n‖yn‖2 is bounded and

so is σn‖yn‖. This does not fulfill the hypothesis in Remark 2.2, but is close.

(3) The rate of approximation is crucial for the boundedness of the sequence {xn}.
To see this, take f ≡ 0 on D = [0,∞) and fn(x) = δne

−x, where the sequence {δn}
decreases to 0. It is easy to verify that this approximation satisfies all our assumptions
and if δn → 0 sufficiently slow, we will have xn → ∞.
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Example 2.4. Let g1, . . . , gm ∈ Γ0(H). A standard way to approximate f=max{gi}mi=1

is to set F (u, η) = η log
∑m

i=1 exp
(

gi(u)
η

)

for η > 0. If fn(u) = F (u, ηn) with ηn → 0, then

fn decreases to f and Hypothesis H2 holds with an ≡ 0. If x∗ ∈ S and
∑

λkηk < ∞,
then |fn(x∗)− f ∗| = O( 1

σn
). Proposition 2.1 yields |fn(xn)− f ∗| = O( 1

σn
).

Let g1, g2, g3 ∈ Γ0(R
2) be given by g1(x, y) = x+2y− 1, g2(x, y) = 2x− y and g3(x, y) =

1 − x. For f = max{g1, g2, g3} we have S = {(1/2, 1/2)} and f ∗ = 1/2. Since the
hypotheses of Corollary 1.6 also hold we must have xn → (1/2, 1/2). Strong convergence
then implies σnfn(xn) → 0 as n → ∞ by virtue of Theorem 2.2 provided ηn → 0 fast
enough.

Take λn ≡ 1, ηn = 1/n2 and x0 = (0, 0). Figure 2.1 shows the first 30 iterations of
the algorithm, Figure 2.2 shows fn(xn) vs n and Figure 2.3 shows σn(fn(xn)− f ∗) vs n.
Figure 2.4, where we have σ2

n(fn(xn)− f ∗) vs n, suggests that this quantity converges as
n → ∞.
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Remark 2.5. A different condition ensuring that the sequence of velocities converges
to zero and does not depend on the choice of the stepsizes is the following: Assume
there exists a sequence θn of nonnegative numbers such that for all u∗

n ∈ ∂fn(un) and
u∗
n+1 ∈ ∂fn+1(un+1) we have

〈 u∗
n+1 − u∗

n, un+1 − un 〉 ≥ −θn‖un+1 − un‖. (8)

If hypotheses H1 and H2 hold, f ∗ > −∞, the sequences {an}, {εn} and {θn} are in ℓ1

then limn→∞ ‖yn‖ = 0. Indeed, inequality (8) implies ‖yn+1‖ ≤ ‖yn‖+θn. Since {θn} ∈ ℓ1

and ‖yn‖ ≥ 0 the limit limn→∞ ‖yn‖ exists. It must be 0 because limn→∞ ‖yn‖ = 0 by
Proposition 1.5. An approximation fulfilling (8) is the following: Let g be a convex C1
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function whose gradient is bounded by a constant B on D. Take a sequence {rn} of
positive numbers and define fn = f + rng. Then (8) is satisfied for θn = B|rn − rn−1|.
Also, if {gn} is a family of convex C1 functions such that {∇gn} converges uniformly,
one can take θn = ‖∇gn −∇gn−1‖∞.

3. Summable stepsizes and algorithm termination

For a moment assume fn ≡ f and εn ≡ 0. If the sequence {λn} of stepsizes is in ℓ1

(σn → σ < ∞), the trajectory {xn} always converges strongly to a point x∞ (observe
that ‖xn − xm‖ ≤ ‖y1‖ · |σn − σm|), no matter whether the function has minimizers.
Even when the minimizing set is nonempty, if the distance between the initial point
x0 and the minimizing set S is greater than σ‖y1‖, then x∞ cannot be a point in S.
However, one would like to know whether or not it is possible to attain the minimizing
set if the initial condition is close enough to S (alternatively, if σ is large enough). We
give a partial answer in terms of the smoothness of the objective function around S,
which we assume to be nonempty. The following example includes the case where f
is a differentiable function having a L-Lipschitz gradient in some η-neighborhood of S
(consider the maximal monotone operator A = ∇f):

Example 3.1. Let A be a maximal monotone operator on H. Set S = A−10 and let
d(u,S) denote the distance from u to S. Assume there exist η > 0 and L > 0 such that if
d(u,S) < η, then supv∈Au ‖v‖ ≤ L d(u,S). It is clear that the minimizing set cannot be
attained in a finite number of steps. If d(xN ,S) < η for some N , the proximal iteration
yields ‖xn−xn−1‖ ≤ λnLd(xn,S) for all n > N . Since ‖xn−xn−1‖ ≥ d(xn−1,S)−d(xn,S)
we have (1 + λnL)d(xn,S) ≥ d(xn−1,S). Therefore

d(xn,S) ≥
[

n
∏

k=N+1

(1 + λkL)
−1

]

d(xN ,S) ≥ e−σnLd(xN ,S).

If σn → σ < ∞, the sequence {xn} stays away from S.

On the other hand, if the function f is somehow pointed on ∂S the sequence {xn} will
converge provided σ is large enough. To see this, let P denote the projection onto the
nonempty closed convex set S, take r > 0 and consider the following conditions:

(A) ‖v‖ ≥ r for all v ∈ ∂f(x) such that x /∈ S;
(B) f(x) ≥ f ∗ + r‖x− Px‖ for all x ∈ D; and

If (B) holds, then f(x) ≥ f ∗ + r‖x − Px‖ ≥ f(x) + 〈v, Px − x〉 + r‖x − Px‖ by the
subdifferential inequality. Hence r‖x− Px‖ ≤ 〈v, x− Px〉 and we get (A).

Proposition 3.2. Let fn ≡ f , {εn} ∈ ℓ1 and σn → σ < ∞.

i) If (A) holds for some r > 0 and r2σ > f(x0) − f ∗ +
∑

εk, then there are N ∈ N

and x∗ ∈ S such that xn = x∗ for all n ≥ N .

ii) If (B) holds for some r > 0 and r2σ = f(x0)−f ∗+
∑

εk, then limn→∞ d(xn,S) = 0.
If the sequence {‖yn‖} is bounded,3 then xn converges to a point in S as n → ∞.

Proof. If xk /∈ S for k = 1, . . . , n, then f(xk−1)− f(xk) + εk ≥ λk‖yk‖2 ≥ r2λk by (A).
Summing up one gets r2σn ≤ f(x0)− f(xn) +

∑

εk.

3For instance, if
∑

(εn + εn−1)λ
−1
n

<∞.
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i) If xn /∈ S for all n ∈ N then r2σ ≤ f(x0)− f ∗ +
∑

εk, which is a contradiction.

ii) We have lim supn→∞ f(xn) ≤ f(x0) − r2σ +
∑

εk = f ∗, so limn→∞ f(xn) = f ∗. By
(B) we get limn→∞ ‖xn−Pxn‖ = 0. Finally, if {‖yn‖} is bounded, then {xn} is a Cauchy
sequence. Clearly its limit must be in S.

Condition (B) above was used in [11] to prove convergence in a finite number of steps.
In the particular case where S = {x∗}, it is equivalent to B(0, r) ⊆ ∂f(x∗), which is
the assumption used in [24] with the same purpose in that specific case. In the cited
works, H is assumed to be Rn and the sequence {λn} to be bounded from below by a
positive constant. The following example suggests that the hypotheses above are close
to optimal.

Example 3.3. Let H be separable and define Hm = span{e1, . . . , em}, where {ek} is an
orthonormal basis for H. The function

f(x) =







∑ 1

k
xk if xk = 〈x, ek〉 ≥ 0 for all k

∞ otherwise

satisfies condition (B) on each Hm with r = 1/m. Since ∪Hm is dense in H, f is
not too far from satisfying condition (B). The k-th component of the term xn satisfies
(xn)

k ≥ (xn−1)
k − λn/k ≥ (x0)

k − σn/k and so lim infn→∞(xn)
k ≥ (x0)

k − σ/k. If x0 is
selected so that supk k(x0)

k = ∞ we will have lim infn→∞(xn)
k > 0 for some k no matter

how large σ is. Hence xn does not converge to 0, the unique minimizer of f . The initial
condition x0 can be chosen as small as desired because supk k(εx0)

k = ε supk k(x0)
k.

Remark 3.4. If {fk} is not constant, a similar argument leads us to

n
∑

k=1

λk‖yk‖2 ≤ f0(x0)− fn(xn) +
n

∑

k=1

(εk + ak−1),

but no lower bound can be obtained here for ‖yk‖ because xk can be a minimizer of
fk.
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