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We prove a variational principle in reflexive Banach spaces X with Kadec-Klee norm, which asserts that
any Lipschitz (or any proper lower semicontinuous bounded from below extended real-valued) function
in X can be perturbed with a parabola in such a way that the perturbed function attains its infimum
(even more can be said – the infimum is well-posed). In addition, we have genericity of the points
determining the parabolas. We prove also that the validity of such a principle actually characterizes
the reflexive spaces with Kadec-Klee norm. This principle turns out to be an analytic counterpart of a
result of K.-S. Lau on nearest points.
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1. Introduction and main result

In 1961, Bishop and Phelps proved a lemma on supporting closed sets by cones [1]. An
analytic counterpart of it, on supporting functions, is the Ekeland variational principle
[6], stating that any (extended real-valued) lower semicontinuous bounded from below
function in a complete metric space can be perturbed by a distance-like function in
such a way that the perturbed function attains its minimum. In 1974, Phelps [14]
proved that in a Banach space which has a geometric property, called Radon-Nikodým
property, every nonempty bounded closed convex set is the closed convex hull of its
strongly exposed points. An analytic result related to this geometric fact is the Stegall’s
variational principle [17, 18] which shows that in such a space one can perturb a lower
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semicontinuous bounded from below function (with domain in a closed bounded convex
set) by a linear continuous functional, in order to obtain a perturbation which attains
its minimum.

The aim of this note is to go on in this vein and to show one more example of such a
correspondence between a geometrical and an analytical statement. In 1978, Lau [13]
proved that in a reflexive Banach space (X, ‖ · ‖), with Kadec-Klee norm, for every
nonempty closed set C ⊂ X there are residually many points in X\C possessing a
nearest point in C. An analytic counterpart of this result is the following theorem. And,
likewise, as in the previous cases, we can formulate it in the form of equivalence(s).

Theorem 1.1. For a Banach space (X, ‖ · ‖) the following statements are equivalent:

(i) The space X is reflexive and its norm ‖ · ‖ is Kadec-Klee.

(ii) For every Lipschitzian function f : X → (−∞,+∞) there exists a residual set
Ω ⊂ X such that for every u ∈ Ω there is a residual set Ru ⊂ (0,+∞) such that
for each c ∈ Ru the problem of minimizing f + c‖ · −u‖2 is well-posed.

(ii′) For every proper lower semicontinuous function f : X → (−∞,+∞], with inf f >
−∞, there exists a residual set Ω ⊂ X such that for every u ∈ Ω there are au ∈
(0,+∞] and a residual set Ru ⊂ (0, au) such that for each c ∈ Ru the problem of
minimizing the function f + c‖ · −u‖2 is well-posed.

(iii) For every f as in (ii) there exists a dense set D ⊂ X such that for every u ∈ D
the function f + ‖ · −u‖2 attains its infimum.

(iii′) For every f as in (ii′) there exists a dense set D ⊂ X such that for every u ∈ D
there is c > 0 so that the function f + c‖ · −u‖2 attains its infimum.

We follow the usual notation in Banach space theory, see, e.g. [10]. Let us recall that
the norm ‖ · ‖ on X is called Kadec-Klee if limn→∞ ‖xn − x0‖ = 0 whenever a sequence
x0, x1, x2, . . . ∈ X satisfies ‖xn‖ → ‖x0‖ and xn → x0 weakly. In Russian literature, a
reflexive Banach space, with Kadec-Klee norm, is called a Efimov-Stečkin space. A set
in a Baire space, in particular, in a Banach space, is called residual if its complement
is the union of countably many nowhere dense sets. An extended real-valued function
g : X → (−∞,+∞] is called proper if its effective domain dom g = {x ∈ X; g(x) < +∞}
is nonempty. Given such a function g, with inf g > −∞, we say that the problem
of minimizing g is well-posed, if every minimizing sequence (xn)n∈IN in X for g (i.e.
g(xn) ↓ inf g) has a norm-cluster point x ∈ X; hence g(x) = inf g whenever g is at least
lower semicontinuous. Obviously, if the problem to minimize g is well-posed, then the
set of minimizers for g is compact.

In the proof, we shall need the following topological fact going back to Ulam and Kura-
towski.

Lemma 1.2. Let X be a Banach space and let O ⊂ X × IR be an open subset such that
its canonical projection, along IR, is all of X. Let E ⊂ O be a residual subset in O. Then
there exists a residual subset Ω ⊂ X such that for every x ∈ Ω the set {t ∈ IR; (x, t) ∈ E}
is residual in {t ∈ IR; (x, t) ∈ O}.

Proof. Put F = E ∪ [(X × IR)\O]. It is easy to check that F is residual in X × IR.
Indeed,

(X × IR)\F = [(X × IR)\E] ∩O = O\E,
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and the latter set is of the first Biare category in O, and hence in X × IR. Now, by
applying [12, §22.V, Corollary 1a], we find a residual set Ω ⊂ X such that for every
x ∈ Ω the set {t ∈ IR; (x, t) ∈ F} is residual in IR. Hence, the set {t ∈ IR; (x, t) ∈ E}
is residual in {t ∈ IR; (x, t) ∈ O}.

Proof of Theorem 1.1. (i) ⇒ (ii). We will split the proof of this implication into
several steps.

Step 1. Let f be as in (ii). Consider the (reflexive) space X × IR and the (closed) set
epi f = {(x, t) ∈ X × IR; f(x) ≤ t}. Let L > 0 be a Lipschitzian constant of f and put

B =
{

(x, t) ∈ X × IR; |t| ≤ −‖x‖2 + L2
}

. (1)

It is elementary to check that the set B is closed, convex, symmetric, bounded, and that
it contains the origin (0, 0) in its interior. Let ‖| · |‖ denote its Minkowski functional;
this will be an equivalent norm on X × IR.

For sure, this norm will have also the Kadec-Klee property. Indeed, for n = 0, 1, 2, . . .
consider (xn, tn) ∈ X × IR such that ‖|(xn, tn)|‖ = 1, and (xn, tn) → (x0, t0) weakly
as n → ∞. Then, of course, xn → x0 weakly and tn → t0 as n → ∞. Now, for all
n = 0, 1, . . ., from the very definition of |‖ · ‖|, we must have |tn|+ ‖xn‖2 = L2 and hence

‖x0‖ ≤ lim inf
n→∞

‖xn‖ ≤ lim sup
n→∞

‖xn‖ = lim
n→∞

√

L2 − |tn| =
√

L2 − |t0| = ‖x0‖.

Thus, the Kadec-Klee property of ‖ · ‖ yields that ‖xn − x0‖ → 0 and so ‖|(xn, tn) −
(x0, t0)|‖ → 0 as n → ∞.

Step 2. Put O = (X × IR)\ epi f and consider the distance function for epi f

dist ((x, t), epi f) := inf {|‖(x, t)− (u, s)‖|; (u, s) ∈ epi f} , (x, t) ∈ O.

We can immediately see that O is an open set and that its projection, along IR, is equal
to all of X. By the mentioned result of Lau, [13, Theorem 4] (see also [2, Corollary 5.8]),
we find a residual subset E of O, such that for every (x0, t0) ∈ E, if (y1, s1), (y2, s2), . . . ∈
epi f , and

|‖(yn, sn)− (x0, t0)‖| −→ dist ((x0, t0), epi f) as n → ∞,

then the sequence ((yn, sn))n∈IN has a norm-cluster point (such a cluster point is evidently
a nearest point to (x0, t0) in epi f). In other words, the best approximation problem of
any (x0, t0) ∈ E to epi f is well-posed. By the above Lemma applied for our E and O,
we find the corresponding residual set Ω ⊂ X. Fix, for a longer while, any x0 ∈ Ω and
then find a residual set S ⊂ (−∞, f(x0)) such that {x0} × S ⊂ E. Further, fix, for a
longer while, any t0 ∈ S. Let (x1, t1) ∈ epi f be a nearest point to (x0, t0) in epi f , i.e.,

(0 <) ρ := ‖|(x1, t1)− (x0, t0)|‖ ≤ ‖|(x, t)− (x0, t0)|‖ for all (x, t) ∈ epi f. (2)

From the very definition of the norm ‖| · |‖, we have that

ρ|t1 − t0|+ ‖x1 − x0‖2 = ρ2L2. (3)

Consider any ε ∈ (0, 1). Then

‖|((x1 − ε(x1 − x0), 2t0 − t1 − ε(t0 − t1))− (x0, t0)|‖
= (1− ε)‖|(x1 − x0, t0 − t1)|‖ = (1− ε)ρ < ρ,
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and so (x1 − ε(x1 − x0), 2t0 − t1 − ε(t0 − t1)) 6∈ epi f , that is,

2t0 − t1 − ε(t0 − t1) < f(x1 − ε(x1 − x0)).

Letting ε ↓ 0 in the last inequality we obtain 2t0 − t1 ≤ f(x1). However, (x1, t1) ∈ epi f ,
and so f(x1) ≤ t1. Therefore 2t0 − t1 ≤ t1, that is, t0 ≤ t1. Thus (3) has the form

ρ(t1 − t0) + ‖x1 − x0‖2 = ρ2L2. (4)

We actually have that t1 = f(x1). Indeed, assume that t1 = f(x1) + 2δ for some δ > 0.
Then the above obtained inequality 2t0 − t1 ≤ f(x1) entails that t1 − δ ≥ t0. Thus

ρ|t1 − δ − t0|+ ‖x1 − x0‖2 = ρ(t1 − δ − t0) + ‖x1 − x0‖2 = −ρδ + ρ2L2 < ρ2L2,

and hence |‖(x1, t1−δ)−(x0, t0)‖| < ρ, which is a contradiction since (x1, t1−δ) ∈ epi f .
Thus (4) reads as

ρ(f(x1)− t0) + ‖x1 − x0‖2 = ρ2L2. (5)

Step 3. In this step we show that if x1 is such that (x1, f(x1)) is a nearest point in epi f to
(x0, t0) with distance ρ, then x1 is a minimum point for the function f+ 1

ρ
‖·−x0‖2. To this

end, first fix any x ∈ X satisfying f(x) ≥ t0. We then have ‖|(x, f(x))− (x0, t0)|‖ ≥ ρ,
and (1) with (5) yield

ρ(f(x)− t0) + ‖x− x0‖2 ≥ ρ2L2 = ρ(f(x1)− t0) + ‖x1 − x0‖2.

Therefore

f(x) +
1

ρ
‖x− x0‖2 ≥ f(x1) +

1

ρ
‖x1 − x0‖2 whenever x ∈ X and f(x) ≥ t0. (6)

Now, fix for a while any y ∈ X, with f(y) < t0. Then (y, t0) ∈ epi f , and so ‖|(y, t0) −
(x0, t0)|‖ ≥ ρ, that is, ρ|t0 − t0| + ‖y − x0‖2 ≥ ρ2L2, which yields ‖y − x0‖ ≥ ρL.
Put x2 = x0 +

ρL

‖y−x0‖
(y − x0); then ‖x2 − x0‖ = ρL, and we claim that f(x2) ≥ t0.

Indeed, assume f(x2) < t0. From the continuity of f there is x3 in the open linear
segment, with the end points x2 and x0, such that f(x3) < t0. Thus (x3, t0) ∈ epi f
and ‖x3 − x0‖ < ‖x2 − x0‖ = ρL. It then follows ‖|(x3, t0) − (x0, t0)|‖ ≥ ρ, and so
‖x3 − x0‖2 = ρ|t0 − t0|+ ‖x3 − x0‖2 ≥ ρ2L2, a contradiction. Therefore f(x2) ≥ t0.

Now, the Lipschitz property of f and (6), used for x := x2, yield

f(y) ≥ f(x2)− L‖y − x2‖ ≥ f(x1)−
1

ρ
‖x2 − x0‖2 +

1

ρ
‖x1 − x0‖2 − L‖y − x2‖

= f(x1)− L‖y − x0‖+
1

ρ
‖x1 − x0‖2 ≥ f(x1)−

1

ρ
‖y − x0‖2 +

1

ρ
‖x1 − x0‖2

for every y ∈ X with f(y) < t0. Here we first used that

‖y − x2‖ = ‖y − x0‖ − ‖x2 − x0‖ = ‖y − x0‖ − ρL

and then that L ≤ 1

ρ
‖y − x0‖. We have thus proved that the function f + c‖ · −x0‖2,

with c := 1

ρ
, attains its infimum at the point x1.
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Step 4. Next, we shall show that the problem of minimizing the function f + c‖ · −x0‖2
is well-posed. To this end, assume that a sequence (yn)n∈IN in X is such that

f(yn) +
1

ρ
‖yn − x0‖2 −→ inf

(

f +
1

ρ
‖ · −x0‖2

) (

= f(x1) +
1

ρ
‖x1 − x0‖2

)

as n → ∞.

(7)
From (7) we can easily deduce that (yn)n∈IN and (f(yn))n∈IN are bounded sequences. We
claim that lim infn→∞ f(yn) ≥ t0. Indeed, assume, by contradiction, that there are δ > 0
and an infinite set N ⊂ IN such that f(yn) < t0 − δ for every n ∈ N . Find ∆ > δ

L
so big

that ‖yn − x0‖ < ∆ for every n ∈ IN. Put

zn =
δ

L∆
x0 +

(

1− δ

L∆

)

yn, n ∈ N.

Fix any n ∈ N . Then

f(zn) ≤ f(yn) + L‖zn − yn‖ < t0 − δ + L‖zn − yn‖

= t0 − δ + L · δ

L∆
‖x0 − yn‖ ≤ t0,

and hence (zn, t0) ∈ epi f . Thus |‖(zn, t0)− (x0, t0)‖| ≥ ρ, and so ρ|t0− t0|+‖zn−x0‖2 ≥
ρ2L2, that is, ‖zn − x0‖ ≥ ρL. But then

‖yn − x0‖ =
1

1− δ
L∆

‖zn − x0‖ ≥ ρL2∆

L∆− δ
> 0 for every n ∈ N.

Now, the Lipschitz property of f and the latter inequality used twice yield

f(yn) +
1

ρ
‖yn − x0‖2 ≥ f(x0)− L‖yn − x0‖+

1

ρ
‖yn − x0‖2

≥ f(x0)− L‖yn − x0‖+
L2∆

L∆− δ
‖yn − x0‖

= f(x0) +
δL

L∆− δ
‖yn − x0‖ ≥ f(x0) +

δL

L∆− δ
· ρL2∆

L∆− δ
.

Therefore,

(0 < )
ρδL3∆

(L∆− δ)2
≤ − f(x0) + lim

n∈N

(

f(yn) +
1

ρ
‖yn − x0‖2

)

= − f(x0) + inf

(

f +
1

ρ
‖ · −x0‖2

)

(≤ 0),

a contradiction. We thus have proved that lim infn→∞ f(yn) ≥ t0.

Step 5. We shall show that

ρn := |‖(yn, f(yn))− (x0, t0)‖| −→ ρ as n → ∞. (8)

In order to prove (8), it is enough to show that every subsequence of (ρn) has a further
subsequence which is convergent to ρ. So let (ρnk

)k∈IN be an arbitrary subsequence of
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(ρn). Since, as we noticed above, the sequences (yn)n∈IN and (f(yn))n∈IN are bounded,
so is (ρn)n∈IN, and therefore, there are further subsequences of (ρnk

), (f(ynk
)) and (ynk

)
(which, for simplicity we will index again by nk, k ∈ IN) such that limk ρnk

, limk f(ynk
)

and limk ‖ynk
− x0‖ exist. Thus, using (7) and (5) we have

ρ
(

lim
k

f(ynk
)− t0

)

+ lim
k

‖ynk
− x0‖2 = ρ lim

k

(

f(ynk
) +

1

ρ
‖ynk

− x0‖2
)

− ρt0

= ρ

(

f(x1) +
1

ρ
‖x1 − x0‖2

)

− ρt0

= ρ (f(x1)− t0) + ‖x1 − x0‖2 = ρ2L2. (9)

From the definition of the norm |‖ · ‖| we have

ρn |f(yn)− t0|+ ‖yn − x0‖2 = ρ2nL
2 for all n = 1, 2, 3, . . . ,

and hence, as according to Step 4, limk f(ynk
) ≥ t0, we have

lim
k

ρnk

(

lim
k

f(ynk
)− t0

)

+ lim
k

‖ynk
− x0‖2 = lim

k
ρ2nk

L2. (10)

And, by subtracting (10) from (9), we get

(

ρ− lim
k

ρnk

)(

lim
k

f(ynk
)− t0

)

=
(

ρ2 − lim
k

ρ2nk

)

L2.

If limk ρnk
6= ρ, then we get limk f(ynk

)− t0 = (ρ+ limk ρnk
)L2, and regarding (10), we

have
lim
k

ρnk

(

ρ+ lim
k

ρnk

)

L2 + lim
k

‖ynk
− x0‖2 = lim

k
ρ2nk

L2,

lim
k

ρnk
ρL2 + lim

k
‖ynk

− x0‖2 = 0.

And this is impossible since ρ > 0 and ρn ≥ ρ for all n = 1, 2, 3, . . . Therefore,
limk ρnk

= ρ. Since we have started with an arbitrary subsequence of (ρn) this entails
that limn→∞ ρn = ρ. We thus have proved (8).

Now, since (8) means that (yn, f(yn))n∈IN is a minimizing sequence for the best approxi-
mation problem of (x0, t0) to epi f , using Step 2, we get that the sequence ((yn, f(yn))n∈IN
has a norm-cluster point. Hence so does the minimizing sequence (yn)n∈IN. (Since the
norm ‖ · ‖ is not assumed to be strictly convex, there is no guarantee that a cluster point
of (yn)n∈IN must be equal to x1; see also Remark 2.2 below). We have thus proved that
the problem of minimizing the function f + 1

ρ
‖ · −x0‖2 is well-posed.

Step 6. Keeping still the same fixed x0, it remains to show the residuality of the c’s in
question (so far we have found only one c). Consider the function ϕ : (−∞, f(x0)) →
(0,+∞) defined by

ϕ(τ) = [dist((x0, τ), epi f)]
−1 , τ ∈ (−∞, f(x0)).

It is easy to verify that ϕ is locally Lipschitzian, and that ϕ(τ) → +∞ as τ ↑ f(x0).
Also, the Lipschitz property of f easily yields that ϕ(τ) → 0 as τ ↓ −∞. We shall show
that ϕ is strictly increasing. So fix any τ1 < τ2 < f(x0). Find τ ∈ (τ1, τ2) so that τ ∈ S
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(S is the residual subset of (−∞, f(x0)) from Step 2 ). Then there is (u, t) ∈ epi f so
that ϕ(τ) = |‖(x0, τ)− (u, t)‖|−1. We have (u, t+ τ2− τ) ∈ epi f , and this point actually
lies in the interior of epi f (as f is continuous). Thus

dist ((x0, τ2), epi f) < |‖(x0, τ2)− (u, t+ τ2 − τ)‖| = |‖(x0, τ)− (u, t)‖|.

Hence ϕ(τ2) > ϕ(τ). Now, consider any ε > 0 and find (v, σ) ∈ epi f so that

dist ((x0, τ1), epi f) + ε > |‖(x0, τ1)− (v, σ)‖|.

Then (v, σ + τ − τ1) ∈ epi f , and so

ϕ(τ)−1 = dist ((x0, τ), epi f) ≤ |‖(x0, τ)− (v, σ + τ − τ1)‖|
= |‖(x0, τ1)− (v, σ)‖| < ϕ(τ1)

−1 + ε.

Hence, letting ε ↓ 0, we get ϕ(τ) ≥ ϕ(τ1). Therefore ϕ(τ2) > ϕ(τ1).

Putting together the above facts we get that ϕ is a homeomorphism from (−∞, f(x0))
onto (0,+∞). Hence, as S is a residual subset of (−∞, f(x0)), the set Rx0

:= ϕ(S)
is residual in (0,+∞). And from Step 5 we already know that for every c ∈ Rx0

the
problem of minimizing the function f + c‖ · −x0‖2 is well-posed. We have thus fully
proved (ii).

(ii) ⇒ (iii). Assume (ii) holds. Fix any z ∈ X and any ε > 0. Let L > 0 be a
Lipschitzian constant of f . Let |‖ · ‖| be the Minkowski functional of the body B defined
by (1) in Step 1 of the proof of the implication (i) ⇒ (ii); we already know that it is
an equivalent norm on X × IR. According to (ii) there is x0 with ‖x0 − z‖ < ε/2 and
c ∈

(

2L
2L+ε

, 1
)

so that f + c‖ · −x0‖2 attains its infimum at, say, x1 ∈ X. Thus

f(x) + c‖x− x0‖2 ≥ f(x1) + c‖x1 − x0‖2 for every x ∈ X. (11)

The choice x := x0 and the Lipschitz property of f yield that ‖x1 − x0‖ ≤ L
c
. Put

t0 = f(x1) + c‖x1 − x0‖2 − L2

c
. Then t0 ≤ f(x1) and

1

c
(f(x1)− t0) + ‖x1 − x0‖2 =

1

c2
L2,

which means that |‖ (x1, f(x1))− (x0, t0)‖| = 1

c
. Moreover, for (x, t) ∈ epi f , with t ≥ t0,

we have

1

c
(t− t0) + ‖x− x0‖2 ≥

1

c

(

f(x) + c‖x− x0‖2 − t0
)

≥ 1

c

(

f(x1) + c‖x1 − x0‖2 − t0
)

=
1

c2
L2,

and so |‖(x, t)− (x0, t0)‖| ≥ 1

c
.

On the other hand, take (x, t) ∈ epi f , with t < t0. Then f(x) ≤ t < t0 and, using the
definition of t0 and (11), we obtain

t0 + c‖x− x0‖2 > f(x1) + c‖x1 − x0‖2 = t0 +
1

c2
L2.
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Thus ‖x− x0‖2 > L2

c2
, and consequently

1

c
|t− t0|+ ‖x− x0‖2 >

L2

c2
,

showing again that |‖(x, t) − (x0, t0)‖| > 1

c
. Therefore, we have shown that the point

(x1, f(x1)) is a nearest point to (x0, t0) in epi f with distance 1

c
(> 1).

Now, put
u = x1 + c(x0 − x1), τ = f(x1) + c (t0 − f(x1)) .

We have |‖(x1, f(x1))− (u, τ)‖| = c|‖(x1, f(x1))− (x0, t0)‖| = 1 and the point (u, τ) lies
in the interior of the line segment joining (x0, t0) and (x1, f(x1)). Since (x1, f(x1)) is
a nearest point to (x0, t0) in epi f this means that (x1, f(x1)) is a nearest point also to
(u, τ) with ρ = dist((u, τ), epi f) = 1. But we already showed in Step 3 that in such a
case the function f + 1

ρ
‖ · −u‖2 = f + ‖ · −u‖2 attains its infimum at x1.

Finally, note that

‖u− z‖ ≤ ‖u− x0‖+ ‖x0 − z‖ = (1− c)‖x0 − x1‖+ ‖x0 − z‖

< (1− c) · L
c
+

ε

2
=

(

1

c
− 1

)

L+
ε

2
<

(

2L+ ε

2L
− 1

)

L+
ε

2
= ε.

Thus we have completely proved (iii).

(iii) ⇒ (i). Assume that (iii) holds. As regards the reflexivity of X, fix any ξ ∈ X∗.
From (iii) find x0 ∈ X, and x1 ∈ X so that ξ(x) + ‖x − x0‖2 ≥ ξ(x1) + ‖x1 − x0‖2 for
all x ∈ X. Rearranging this inequality we get

ξ(x− x1) ≥ ‖x1 − x0‖2 − ‖x− x0‖2 for all x ∈ X. (12)

Assume that x1 = x0. Then ξ(x − x0) ≥ 0 for every x ∈ X and hence ξ = 0. Further
assume x1 6= x0. Consider any t ∈ (0, 1). Taking x := x0 + t(x1 − x0) in (12), we have

(1− t)ξ(x0 − x1) = ξ(x0 + t(x1 − x0)− x1)

≥ ‖x1 − x0‖2 − ‖x0 + t(x1 − x0)− x0‖2 = (1− t2)‖x1 − x0‖2.

Dividing both sides here by (1− t), we get ξ(x0 − x1) ≥ (1 + t)‖x1 − x0‖2. And letting
t ↑ 1, we obtain

ξ(x0 − x1) ≥ 2‖x1 − x0‖2. (13)

On the other hand, fixing any h ∈ X, with ‖h‖ = 1, and any t > 0, when putting
x := x1 − th in (12), we get

−tξ(h) = ξ(x1 − th− x1) ≥ ‖x1 − x0‖2 − ‖x1 − th− x0‖2
≥ ‖x1 − x0‖2 − ‖x1 − x0‖2 − 2t‖x1 − x0‖ − t2 = −t(2‖x1 − x0‖+ t).

Here, keeping still h fixed, then dividing by (−t), and finally letting t ↓ 0, we get
ξ(h) ≤ 2‖x1 − x0‖. Thus ‖ξ‖ ≤ 2‖x1 − x0‖. Therefore, comparing this inequality with
(13), we get

2‖x1 − x0‖2 ≤ ξ(x0 − x1) ≤ ‖ξ‖‖x1 − x0‖ ≤ 2‖x1 − x0‖2,
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and so, since x1 6= x0, we get

ξ

(

x0 − x1

‖x1 − x0‖

)

= 2‖x1 − x0‖ = ‖ξ‖.

Thus, in both cases, our ξ attains its norm. Then James’ theorem guarantees the reflex-
ivity of X.

Remark 1.3. As mentioned by the referee, the fact that ξ attains its norm, provided
(iii) is true, could be derived in a shorter way, using the sum rule for subdifferentials of
convex functions (applied for the functions ξ and ‖ · −x0‖2 above). We have preferred
to give here the direct proof of this fact.

Now we shall check that the norm ‖ ·‖ is Kadec-Klee. Assume (iii) holds and that ‖ ·‖ is
not Kadec-Klee. We shall profit from a counterexample due to Konjagin [11], [2]. Using
[2, Lemma 5.9], we find δ ∈ (0, 1

4
), ξ ∈ X∗, and yn ∈ 2BX ∩ ξ−1(1), n ∈ IN, such that

limn→∞ ‖yn‖ = 1 = ‖ξ‖ and ‖yn − ym‖ > 9δ whenever n,m ∈ IN are distinct. Find
k ∈ IN such that |‖yn‖ − 1| < δ

4
and 2−n < δ

4
for every n ≥ k. Put

M =
∞
⋃

n=k

Mn where Mn = (1 + 2−n)yn +
(

3δBX ∩ ξ−1(0)
)

.

Here, eachMn is closed, and for all distinct n,m ∈ {k, k+1, . . .} the distance betweenMn

and Mm is at least δ. Therefore the whole set M is closed. Take α > max{4, 4
δ
(1 + δ)2}.

Define then the function f : X → [0,+∞) by f = α inf{‖ · −u‖; u ∈ M}; note that f is
Lipschitzian. We shall show that for any x0 ∈ δ

4
BX the function f + ‖ · −x0‖2 does not

attain its infimum. So fix such an x0 and assume, by contradiction, that there is x1 ∈ X
so that

f(x) + ‖x− x0‖2 ≥ f(x1) + ‖x1 − x0‖2 for all x ∈ X. (14)

We shall show that x1 must lie in M . Put u = yk(1 + 2−k). Then u ∈ Mk ⊂ M , and so

f(u) + ‖u− x0‖2 = ‖yk + 2−kyk − x0‖2 ≤
(

‖yk‖+
δ

4
‖yk‖+ ‖x0‖

)2

<

(

1 +
δ

4
+

δ

4

(

1 +
δ

4

)

+
δ

4

)2

< (1 + δ)2.

Now, we claim that 1

α
f(x1) <

δ
4
. Indeed, otherwise, using the latter inequality and the

choice of α, we would have

f(x1) + ‖x1 − x0‖2 ≥
αδ

4
> (1 + δ)2 > f(u) + ‖u− x0‖2,

which contradicts to (14). Thus, 1

α
f(x1) <

δ
4
, and since the distance between the sets

Mn and Mm for distinct n,m ≥ k is greater than δ, this entails that 1

α
f(x1) = inf{‖x1 −

y‖; y ∈ Mn1
} for some (unique) n1 ≥ k.

Since eachMn is closed convex and bounded, and sinceX is already shown to be reflexive,
there must exist y1 ∈ Mn1

such that ‖x1 − y1‖ = 1

α
f(x1). Assume that x1 /∈ Mn1

. Then,
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‖x1 − y1‖ > 0, and using the fact that α > 2‖y1 − x0‖, we can estimate

f(x1) + ‖x1 − x0‖2

= α‖x1 − y1‖+ ‖x1 − x0‖2 ≥ α‖x1 − y1‖+ (‖y1 − x0‖ − ‖x1 − y1‖ )2

= α‖x1 − y1‖+
(

‖y1 − x0‖2 − 2‖y1 − x0‖‖x1 − y1‖+ ‖x1 − y1‖2
)

> (α− 2‖y1 − x0‖)‖x1 − y1‖+ ‖y1 − x0‖2 > ‖y1 − x0‖2 = f(y1) + ‖y1 − x0‖2,

which contradicts (14). Therefore x1 ∈ Mn1
⊂ M .

Now, for every n ≥ k and every x ∈ Mn we thus have from (14) that ‖x−x0‖2 ≥ ‖x1−x0‖2
and hence ‖x− x0‖ ≥ ‖x1 − x0‖. Fix any n ≥ k. Put wn = (1 + 2−n)yn + x0 − ξ(x0)yn.
Then ‖wn − (1 + 2−n)yn‖ ≤ ‖x0‖ + 2‖x0‖ ≤ 3δ and ξ(wn − (1 + 2−n)yn) = 0. Hence
wn ∈ Mn and we thus have ‖wn − x0‖ ≥ ‖x1 − x0‖. Moreover,

‖wn − x0‖ = (1 + 2−n − ξ(x0))‖yn‖ → 1− ξ(x0) as n → ∞.

Therefore

1− ξ(x0) = lim
n→∞

‖wn − x0‖ ≥ ‖x1 − x0‖ ≥ ξ(x1 − x0) = 1 + 2−n1 − ξ(x0),

a contradiction. We have completely proved (i).

(i) ⇒ (ii′). Assume that the function f : X → (−∞,+∞] is proper, lower semicontinu-
ous and bounded below. We shall imitate the argument from the proof of the implication
(i) ⇒ (ii). Take B = {(x, t) ∈ X × IR; |t| ≤ −‖x‖2 + 1} and let ‖| · |‖ be the Minkowski
functional of B. Let the sets O, E, Ω, and x0 ∈ Ω be found for this norm ‖| · |‖ as
before. We find a number t0 < inf f so that (x0, t0) ∈ E. Let (x1, t1) ∈ epi f and ρ be
found for our (x0, t0) so that (2) is satisfied. Then for sure t1 > t0 and the formula (3)
has the form

ρ(t1 − t0) + ‖x1 − x0‖2 = ρ2.

And, as in the proof of the implication (i) ⇒ (ii), we can see that actually t1 = f(x1).
Thus we have formula (5) with L = 1.

Now, for any x ∈ X we have f(x) > t0. Hence the reasoning from the proof of (i) ⇒ (ii)
leading to formula (6) in Step 3 yields

f(x) +
1

ρ
‖x− x0‖2 ≥ f(x1) +

1

ρ
‖x1 − x0‖2 whenever x ∈ X.

Further we proceed as in the proof of (i) ⇒ (ii). The claim in Step 4 there is satisfied
automatically. Step 5 works without any change. Then the problem of minimizing the
function f + 1

ρ
‖ · −x0‖2 is well-posed.

It remains to prove Step 6. For the still fixed x0 we put ax0
= ϕ(inf f) (the latter could

be ∞), where the function ϕ is as in Step 6. One easily sees that ϕ(τ) → ax0
as τ ↑ inf f .

The fact that f is bounded below yields that ϕ(τ) → 0 as τ ↓ −∞. We need to show
that ϕ is strictly increasing. As in Step 6 above, fix τ1 < τ2 < inf f and take τ ∈ (τ1, τ2)
so that τ ∈ S (S is the residual subset of (−∞, f(x0)) from Step 2 corresponding to x0).
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Then there is (u, t) ∈ epi f so that ϕ(τ) = |‖(x0, τ) − (u, t)‖|−1 =: 1

ρ0
. Thus, according

to the definition of the norm |‖ · ‖|, we have (since t ≥ inf f)

ρ0(t− τ) + ‖x0 − u‖2 = ρ20.

On the other hand, putting ρ = |‖(x0, τ2)− (u, t)‖|, then

ρ(t− τ2) + ‖x0 − u‖2 = ρ2.

Consequently

ρ20 − ρ0(t− τ) = ρ2 − ρ(t− τ2) = ‖x0 − u‖2 (≥ 0).

And, since t− τ > t− τ2 > 0, we conclude that ρ < ρ0. Therefore

dist ((x0, τ2), epi f) ≤ ρ < ρ0,

which gives ϕ(τ2) > ϕ(τ). The fact that ϕ(τ) ≥ ϕ(τ1) is proved as in Step 6.

Then clearly there is a residual set Rx0
⊂ (0, ax0

) satisfying (ii′) for x0. We have thus
verified (ii′).

(ii′) ⇒ (iii′) is trivial.

(iii′) ⇒ (i). Suppose (iii′) is true. In order to prove the reflexivity of X let us fix any
ξ ∈ X∗, with ‖ξ‖ = 1. Define f : X → IR by

f(x) =

{

0 if x ∈ ξ−1(0),

+∞ if x ∈ X\ξ−1(0).

Clearly, f is lower semicontinuous and bounded below. To this f , letD ⊂ X be the dense
set given by (iii′). Pick then x0 ∈ D ∩ (X \ ξ−1(0)) and let c be such that f + c‖ · −x0‖2
attains its minimum at some x1, i.e. f+c‖·−x0‖2 ≥ f(x1)+c‖x1−x0‖2. We necessarily
have that ξ(x1) = 0. Thus, for every x ∈ ξ−1(0) we have c‖x− x0‖2 ≥ c‖x1 − x0‖2, that
is, ‖x − x0‖ ≥ ‖x1 − x0‖ (> 0). We shall show that |ξ(x1 − x0)| = ‖x1 − x0‖. Assume
not; then |ξ(x1 − x0)| < ‖x1 − x0‖. Find z ∈ X so that ‖z − x0‖ = ‖x1 − x0‖ and
ξ(z − x0) >

1

2
(‖x1 − x0‖+ |ξ(x1 − x0)|). Then, putting

w = x0 +
ξ(x1 − x0)

ξ(z − x0)
(z − x0),

we have w ∈ ξ−1(0) and

‖x1 − x0‖ ≤ |w − x0‖ =
|ξ(x1 − x0)|
ξ(z − x0)

‖z − x0‖

<
‖x1 − x0‖
ξ(z − x0)

(2ξ(z − x0)− ‖x1 − x0‖) ≤ ‖x1 − x0‖;

a contradiction. Therefore |ξ(x1−x0)| = ‖x1−x0‖, and James’ theorem guarantees that
X must be reflexive.
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If the norm in X is not Kadec-Klee, then (iii′) is violated. Indeed, assume that the norm
in X is not Kadec-Klee and take the closed set M from the proof of the implication
(iii) ⇒ (i). Let the function f be defined as follows:

f(x) =

{

0 if x ∈ M,

+∞ if x ∈ X\M.

Evidently, f is lower semicontinuous and bounded below. Let δ > 0 be the number
associated with the set M . We shall show that for any x0 ∈ δ

4
BX and any c > 0 the

function f + c‖ · −x0‖2 does not attain its infimum. Suppose this is not the case. Then
there are x0 ∈ δ

4
BX , c > 0, and x1 ∈ X so that f(x) + c‖x− x0‖2 ≥ f(x1) + c‖x1 − x0‖2

for every x ∈ X. Clearly x1 ∈ M , and so we get ‖x− x0‖ ≥ ‖x1 − x0‖ for every x ∈ M .
Now we proceed exactly as at the end of the the proof of the implication (iii) ⇒ (i)
to get a contradiction. We have thus completely verified (i), which ends the proof of
Theorem 1.1.

The genericity of the set of perturbations yields the following

Corollary 1.4. Let (X, ‖·‖) be a reflexive Banach space, with Kadec-Klee norm, and let
a function f : X → IR be either Lipschitzian or be continuous and bounded. Then there
exists a residual set Ω ⊂ X such that for every u ∈ Ω there are au ∈ (0,+∞] and a resid-
ual set Ru ⊂ (0, au) so that for each c ∈ Ru inf (f + c‖ · −u‖2) and sup (f − c‖ · −u‖2)
are both attained. (In the Lipschitzian case au = +∞.)

2. Concluding remarks and results

This section contains several remarks strengthening some of the conclusions in our prin-
ciple as well as giving some corollaries. We also give some relations to other similar
variational principles.

Remark 2.1. To prove our Theorem 1.1 we used the result of K.-S. Lau [13, Theorem
4], asserting that given a closed nonempty set C in a reflexive Banach space X with
Kadec-Klee norm, there is a residual subset Ω of X such that for each x ∈ Ω the best
approximation problem of x to C is well-posed. Actually, Theorem 1.1 contains this
result as a special case. This can be readily seen by taking such a C ⊂ X and applying
(ii′) to the function f : X → (−∞,+∞] given by f(x) = 0 if x ∈ C and f(x) = +∞
otherwise. We believe that a direct proof of our theorem using Baire category argument
exists without using the Lau’s result (see also our Remark 2.6 below).

Remark 2.2 (Uniqueness of the minimum point for the perturbations). If the
problem to minimize a given proper bounded from below function g : X → (−∞,+∞]
is well-posed and with unique minimizer, then actually every minimizing sequence for
g converges to this unique minimizer. This property is known in Optimization as the
minimization problem for g is Tykhonov well-posed, and in Analysis as g admits a strong
minimum. Lau’s result [13, Theorem 4] can be used (see [2, Theorem 6.6]) to show that,
if the norm in the reflexive spaceX is both Kadec-Klee and strictly convex, then for every
nonempty closed subset C of X the problem of best approximation in C is generically (in
X) well-posed with unique solution. Thus, there exists a variant of Theorem 1.1: if in
(i) we put The space X is reflexive and the norm is strictly convex and Kadec-Klee, this
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will be equivalent to all of the other assertions simply adding in them that the minimizer
for the corresponding perturbations is unique. We omit rather routine proofs.

Remark 2.3. The norm ‖ · ‖ in a reflexive space X can be taken, both Kadec-Klee and
Fréchet smooth according to well known renormings. Thus we get from Theorem 1.1 a
“Fréchet smooth� variational principle. If X is even superreflexive, then it admits an
equivalent norm ‖ · ‖ which is Kadec-Klee, and moreover has a modulus of smoothness
of power type, that is, there are 1 < p ≤ 2 and c > 0 such that ‖x+ th‖+‖x− th‖−2 ≤
ctp whenever x, h lie in the unit sphere of X, and t > 0; then our principle provides
supporting by an even smoother function.

Remark 2.4. Given a Lipschitz function f on X, the set of points of supporting by
a parabola may not be residual. Indeed, if so, then, when applying our principle also
for −f , we would get that f is Fréchet differentiable at the points of a residual set,
contradictory to a known counterexample in Hilbert space due to Preiss [16].

Remark 2.5. If X is reflexive, with Kadec-Klee norm ‖ · ‖, and f : X → IR is lower
semicontinuous with no further properties, then it may happen that f+c‖ ·−u‖2 attains
its infimum for no c ≥ 0 and for no u ∈ X. Indeed, define f : IR → IR by f(t) = t3, t ∈
IR. Then inft∈IR (f(t) + c(t− u)2) = −∞ for every c ≥ 0 and every u ∈ IR.

Remark 2.6. Our argument does not guarantee if, in (ii) of Theorem 1.1, we can have
c = 1 for some u ∈ Ω. This is done in (iii) for the price of eventual loss of the residuality
of the set of u’s and eventual loss of the well-posedness of the problems of minimizing
f + ‖ · −u‖2. In fact, it turns out that in (iii) one can have the residuality of the points
giving the perturbing parabolas, as it is shown in the forthcoming paper [7], which
contains also a more direct approach to the proof of (iii). This proof is based on a
technique of K.-S. Lau [13].

Note that in (iii) we can replace f + ‖ · −u‖2 by f + c‖ · −u‖2 with an arbitrary a priori
fixed c > 0, just by considering the norm

√
c‖ · ‖.

Remark 2.7 (Relations with Borwein-Preiss smooth variational principle).
This principle is usually understood as that with a perturbing function in form of the
sum of countably many parabolas, see [2, Theorem 2.6], [15, Theorems 4.20]. Yet in [2,
Theorem 5.2], dealing with reflexive spaces with Kadec norm, a perturbing function is
just one parabola. This is very close to (iii′) in our Theorem 1.1. In (ii) and (ii′) we
have in addition well-posedness of the perturbations as well as genericity of the points
u which generate perturbing parabolas, while Borwein-Preiss principles do not have it.
Moreover, our Theorem 1.1 covers also the case of Lipschitz, not necessarily bounded
below, functions. Let us mention that genericity of the perturbations occurs also in
the Stegall variational principle [17, 18] (see also below) and Deville-Godefroy-Zizler
variational principle [4] (cf. also a strengthening of the latter in [5]).

On the other hand, unlike of Borwein-Preiss principle we do not have the same kind of
control over the location of the minimum point. What we have as a direct consequence
from formula (5) is that the minimum point x1 of f + c‖ · −x0‖2 found in the proofs of
(i) ⇒ (ii) (and (i) ⇒ (ii′)) satisfies ‖x1 − x0‖ < L

c
(with L = 1 in the non-Lipschitzian

case). This means that in the Lipschitzian case we can have a minimum point of the
perturbation as close to a given point as we want, at the price of having the coefficient



224 M. Fabian, J. Revalski / A Variational Principle in Reflexive Spaces with ...

c of the perturbing parabola big. In particular, this shows that in such a case we have
density of the points realizing the minima of the perturbations.

The same kind of control could be obtained also in the case of a proper lower semi-
continuous bounded from below function f which is continuous at the points of its
effective domain dom f (the latter implies that dom f is open). To see this, let ε > 0.
Then, by the proof of (i) ⇒ (ii′) there is a residual set Ω′ in the nonempty open set
{x ∈ dom f ; f(x) < inf f + ε} so that for each x0 ∈ Ω′ there is ax0

> 0 such that
f + c‖ · −x0‖2 attains its minimum for residually many c ∈ (0, ax0

) at some correspond-
ing x1. Formula (5), with L = 1, gives ‖x1−x0‖ ≤ 1

c
. On the other hand, we know from

Step 6 that ax0
= limτ↑inf f [dist((x0, τ), epi f)]

−1. Since for τ < inf f we have

dist((x0, τ), epi f) ≤ |‖(x0, τ)− (x0, f(x0))‖| = f(x0)− τ,

we obtain that ax0
> 1

ε
. Thus for residually many c ∈ (1

ε
, ax0

) the minimum point x1

will satisfy ‖x1 − x0‖ ≤ 1

c
< ε. Observe that in this case, by formula (5) with L = 1, we

have also f(x1)− t0 ≤ 1

c
which gives f(x1) < inf f + 1

c
< inf f + ε for c as above. That is,

we have also control over the value of f at x1: The minimum point x1 of f + c‖ · −x0‖2
is an ε-minimum of f .

Remark 2.8 (Relations with Stegall variational principle). Let us recall some
notions: Given a nonempty set A of a Banach space X a slice in A is every set of the
form

{

x ∈ A : x∗(x) > sup
y∈A

x∗(y)− α

}

for some x∗ ∈ X∗ and α > 0. The set A is called dentable if it admits slices of arbitrary
small diameter. The Banach space X has the Radon-Nikodým property (in short RNP)
if every nonempty bounded subset of X is dentable.

The Stegall variational principle [17, 18] (see also [15]) states the following: Let f : C →
IR ∪ {+∞} be a proper bounded from below lower semicontinuous function defined on
a closed convex and bounded subset C of a Banach space X with RNP. Then the set
{x∗ ∈ X∗ : f + x∗ attains its strong minimum on C} is a residual subset of X∗.

This principle can be used to obtain a perturbing function in the form ‖ · ‖2 + x∗ where
x∗ ∈ X∗. More precisely, we have the following

Theorem 2.9. Let (X, ‖ · ‖) be a Banach space with RNP. Let f : X → (−∞,+∞] be
a proper lower semicontinuous function bounded below by a− b‖ · ‖p where a ∈ IR, b > 0,
and 1 ≤ p < 2. Then there exists a residual set Ω ⊂ X∗ such that for every x∗ ∈ Ω
the function f + ‖ · ‖2 + x∗ attains strongly its infimum. If (X, ‖ · ‖) is a Hilbert space,
then there even exists a residual set Ω ⊂ X such that for every x∗ ∈ Ω the function
f + ‖ · −x∗‖2 attains strongly its infimum.

Proof. We can see that

1

‖x‖(f(x) + ‖x‖2) ≥ 1

‖x‖(a− b‖x‖p + ‖x‖2) → +∞ as x ∈ X and ‖x‖ → +∞.

Hence, for every n ∈ IN there is an ∈ IR such that f + ‖ · ‖2 ≥ an + 2n‖ · ‖. Fix n > 1.
We will show that there is a residual subset Ωn ⊂ nBX∗ (where BX∗ is the unit ball in
X∗) such that for any x∗ ∈ Ωn the function f +‖ · ‖2+x∗ attains strong minimum on X.
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To this end, we follow the lines of the proof of Corollary 5.22 from [15]. Since we can
replace f + ‖ · ‖2 by f + ‖ · ‖2 − an, we may suppose that an = 0. Let us note that in
such a case for any x∗ ∈ nBX∗ and any x ∈ X we have

f(x) + ‖x‖2 + x∗(x) ≥ 2n‖x‖ − n‖x‖ = n‖x‖. (15)

Let r := (1/n)(f(0) + 1) and set C := rBX . Applying now the Stegall variational
principle for the restriction (f + ‖ · ‖2)|C of f + ‖ · ‖2 on C we obtain a residual subset G
of X∗ such that for any x∗ ∈ G the function (f+‖·‖2)|C+x∗ attains its strong minimum
on C. Put Ωn := nBX∗ ∩ G. The latter set is residual in nBX∗ . We will show that, in
fact, for any x∗ ∈ Ωn the function f + ‖ · ‖2 + x∗ attains its strong minimum also in X,
not only in C.

To prove this, let x∗ ∈ Ωn and let x0 ∈ C be the strong minimum of f + ‖ · ‖2 + x∗

on C. Take x ∈ X and suppose that f(x) + ‖x‖2 + x∗(x) ≤ f(x0) + ‖x0‖2 + x∗(x0) =
infC(f + ‖ · ‖2 + x∗) ≤ f(0). Thus, by (15) we have ‖x‖ ≤ (1/n)f(0) and hence x ∈ C
yielding x = x0. Therefore, x0 is the unique minimum of f + ‖ · ‖2 + x∗ on X. Further,
let (xk)k∈IN be a minimizing sequence for f +‖ · ‖2+x∗, that is f(xk)+‖xk‖2+x∗(xk) →
f(x0) + ‖x0‖2 + x∗(x0). Then for k large enough we will have f(xk) + ‖xk‖2 + x∗(xk) <
f(0)+1, and therefore, again from (15) we see that xk must be in C and hence xk → x0.
Thus, f + ‖ · ‖2 + x∗ attains also its strong minimum on X and our assertion is proved.

It suffices now to set Ω =
⋃∞

n=1
Ωn. This is a residual set in X∗ and satisfies the

conclusion of the theorem. The case of a Hilbert space can be obtained immediately from
the geometry of the Hilbertian norm. Indeed, we have ‖x‖2−x∗(x) = ‖x− x∗

2
‖2− 1

4
‖x∗‖2

for every x ∈ X.

For Hilbert spaces, the above result gives a stronger conclusion than our statement
(iii) because we do not have the residuality of u’s in (iii). Further, it should be noted
that Stegall principle does not need the Kadec-Klee property of the norm neither the
reflexivity of the space. Only the the fact that X possesses RNP is assumed (every
reflexive space has RNP, see for instance [15, Chapter 5]). Also, the boundedness below
by the function a − b‖ · ‖p is guaranteed by both the Lipschitz property of f as well as
by inf f > −∞.

Remark 2.10. We note that in a reflexive space any Kadec-Klee norm is already Kadec,
which means that the weak and the norm topologies on the sphere coincide. This is a
consequence of a more general fact that in any Asplund space, bounded weakly sequentially
closed sets are weakly closed. Indeed, consider an Asplund spaceX and a bounded weakly
sequentially closed set M ⊂ X, and let x be an element of the weak closure of M . By
Kaplanski’s theorem [10, p. 129], there is a countable set C ⊂ M such that x belongs
to the weak closure of C. Let Y be the closed linear span of C. Since X is Asplund,
Y ∗ must be separable. Let S be a countable norm-dense subset in BY ∗ . Find then a
sequence (xn)n∈IN in C such that y∗(xn) → y∗(x) as n → ∞ for every y∗ ∈ S. Then also
x∗(xn) → x∗(x) as n → ∞ for every x∗ ∈ X∗. And since M was weakly sequentially
closed, we conclude that x ∈ M .

Finally, let us mention that it might be possible to use some ideas from [2] in order to
extend our principle for non-reflexive spaces.
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