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1. Introduction

Axiomatic convexity deals with families of sets, which have some properties of usual
convex sets. A general theory of convex structures can be found, for example, in [4] and
[5]. Here we will use the following definition (see [5], p. 3).

A collection G of subsets of a set X is called a convexity on X if

(1) ∅, X ∈ G,

(2)
⋂

A ∈ G for every A ⊂ G,

(3)
⋃

A ∈ G whenever A ⊂ G.

Members of G are called convex sets and the pair (X,G) is called a convexity space.

There are two main ways to introduce a convexity on a set. First, we can say that a set
G ⊂ X is convex if it satisfies certain properties. In this case we should require that the
collection G of all such sets G ⊂ X satisfies axioms (1)–(3). Another way is based on a
notion of a subbase for convexity.

It is clear that the intersection of any family of convexities on a given setX is a convexity
as well. This fact allows us to talk about subbases for convexities. A set H ⊂ G is called
a subbase for the convexity G if G is the intersection of all convexities, which contain
H (we will say also that G is generated by H). Note that topologies enjoy the same
property: intersection of any family of topologies on a given set X is also a topology on
X. So we can consider subbases for topologies as well.

Let H be a subbase for topology T . Then open sets can be described in the following
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way. First we construct the collection B of all intersections of finite subfamilies of H.
Then T consists of the empty set, whole X and all unions of subfamilies of B.

If A is a subset of X then its convex hull convGA with respect to the convexity G is
defined as follows:

convGA =
⋂

{G ∈ G : A ⊂ G}.

For any points x, y ∈ X denote by [x, y]G their convex hull convG{x, y}. We will also use
symbol [A]<ω for the collection of all finite subsets of A.

Recall two results of axiomatic convexity. The following one is well known as the finitary
property.

Proposition 1.1 ([5], p. 31, Proposition 2.1). Let (X,G) be a convexity space. Then
for every subset A ⊂ X

convGA =
⋃

F∈[A]<ω

convGF. (1)

Proposition 1.2 ([5], p. 10, Proposition 1.7.3). Let (X,G) be a convexity space. If
H is a subbase for the convexity G then for every finite subset F ⊂ X

convGF =
⋂

{H ∈ H : F ⊂ H}. (2)

In the right-hand side of (2) it is assumed that the intersection over the empty set is
equal to X. In other words, if F 6⊂ H for any H ∈ H then we set convGF = X.

It follows from the formulas (1) and (2) that for every A ⊂ X its convex hull convGA
can be described via elements of H in the following way:

convGA =
⋃

F∈[A]<ω

⋂

{H ∈ H : F ⊂ H}. (3)

Due to Proposition 1.1, a set A ⊂ X is convex (belongs to convexity G) if and only if

A =
⋃

F∈[A]<ω

convGF.

This means that A ∈ G whenever convGF ⊂ A for all F ∈ [A]<ω.

The so-called N -ary convexities form one of the most important subclasses of convexities.

Let N be a positive integer. Let [A]≤N denote the collection of all subsets F ⊂ A, which
contain no more than N points. A convexity G is called N -ary (or of arity N) (see [5])
if A ∈ G whenever convGF ⊂ A for all F ∈ [A]≤N .

In this paper we are interested in subbases for N -ary convexities. For a given collection
H of subsets of a set X we present some conditions, which guarantee that the convexity
G generated by H is of arity N . For this purpose we will need special types of convexities
and topologies on both H and X. Then we introduce a notion of N -connectedness of a
topological space with respect to a convexity on this space and prove that G is of arity N
provided that H is connected and X is N -connected. After the main result we consider
two particular cases, where the sets H ∈ H are expressed via real-valued functions.
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Applications of axiomatic convexity are mainly based on separation properties. In gen-
eral, we have the following weak version of the separation property, which follows directly
from (3): if H is a subbase for convexity G and G ∈ G then for every x 6∈ G and for
every finite subset F ⊂ G a set H ∈ H exists such that F ⊂ H and x 6∈ H.

So if G is N -ary and the number N is not very large (as a rule, we are interested in the
cases, when N = 2) then we have a sufficiently simple description of convex sets. At the
same time, if G is generated by H then our weak separation property can be applied for
every convex set G.

An important special case is when all sets H ∈ H are epigraphs of certain real-valued
functions. This leads to the notion of abstract convex functions ([1]). Description of
abstract convex functions is very important for many applications. For instance, various
numerical methods for global minimization of abstract convex functions were considered
in ([1], Chapter 9). Subdifferential calculus for abstract convex functions was investigated
in [2]. Another interesting application is the Principle of Preservation of Inequalities ([1],
Proposition 6.10). Within the framework of the given paper, due to the weak separation
property, we give a description of abstract convex functions on finite subsets of their
domain (see Proposition 4.11).

In order to have a stronger version of the separation property via elements of a subbase,
we need to indicate a property (P) of subsets of X such that a set G ⊂ X is convex and
enjoys (P) if and only if for every x 6∈ G a set H ∈ H exists with G ⊂ H and x 6∈ H.
This is the theme of the paper [3].

2. Preliminaries

Let H be a collection of subsets of a set X. In this paper we will use the following
notations:

• H′ = {X\H : H ∈ H} is the collection of all complements of sets H ∈ H;

• Hx = {H ∈ H : x ∈ H} for every x ∈ X;

• H∗ is the collection of all sets Hx with x ∈ X;

• H∗′ = {H\Hx : x ∈ X} is the collection of all complements of sets Hx ∈ H∗.

We introduce also the following convexities and topologies:

• G is the convexity on X generated by H;

• Ḡ is the convexity on X generated by the union H ∪H′;

• TX is the topology on X generated by H;

• T ′
X is the topology on X generated by H′;

• Ḡ∗ is the convexity on H generated by the union H∗ ∪H∗′;

• TH is the topology on H generated by H∗;

• T ′
H is the topology on H generated by H∗′.

We give a description of convex hulls convḠ and convḠ∗ of finite subsets of X and H
respectively.

Proposition 2.1. Let F be a finite subset of X. Then a point x ∈ X belongs to convḠF
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if and only if for every set H ∈ H the following implications hold

F ⊂ H =⇒ x ∈ H,

x ∈ H =⇒ F ∩H 6= ∅.

Proof. Since H ∪ H′ is a subbase for convexity Ḡ and F contains a finite number of
points of X then its convex hull convḠF can be described via elements of H ∪ H′ (see
Proposition 1.2):

convḠF =
(

⋂

{H ∈ H : F ⊂ H}
)

⋂

(

⋂

{X\H : H ∈ H, F ⊂ (X\H)}
)

.

So a point x ∈ X belongs to convḠF if and only if for any H ∈ H

(x ∈ H whenever F ⊂ H) and (x 6∈ H whenever F ∩H = ∅).

Proposition 2.2. Let E be a finite subset of H. Then

convḠ∗E =

{

H ∈ H :
⋂

E∈E

E ⊂ H ⊂
⋃

E∈E

E

}

. (4)

Proof. Since E is a finite subset of H and H∗ ∪H∗′ is a subbase for Ḡ∗ then

convḠ∗E =
⋂

{A : A ∈ H∗ ∪H∗′, E ⊂ A}

=
(

⋂

{Hx : x ∈ X, E ⊂ Hx}
)

⋂

(

⋂

{H′
x : x ∈ X, E ⊂ H′

x}
)

.
(5)

We have
E ⊂ Hx ⇐⇒ x ∈

⋂

E∈E

E, E ⊂ H′
x ⇐⇒ x 6∈

⋃

E∈E

E.

Hence for every set H ∈ H

H ∈
⋂

{Hx : x ∈ X, E ⊂ Hx} ⇐⇒
⋂

E∈E

E ⊂ H,

H ∈
⋂

{H′
x : x ∈ X, E ⊂ H′

x} ⇐⇒ H ⊂
⋃

E∈E

E.
(6)

Thus, the required formula (4) follows from (5) and (6).

3. Main result

First we define N -connectedness of a topological space with respect to a convexity on
this space.

Definition 3.1. Let (X, T ) be a topological space and G be a convexity on X. We say
that (X, T ) is N -connected with respect to G if N subsets X1, . . . , XN ⊂ X exist such
that X = X1 ∪ · · · ∪XN and for each i = 1, . . . , N every interval [x, y]G with x, y ∈ Xi

is connected in topology T . We say that (X, T ) is connected with respect to G in the
case, when N = 1.
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It should be mentioned that the number N above is not required to be minimal. Thus
if (X, T ) is N -connected with respect to G then it is also n-connected for any n > N .

Remark 3.2. It is easy to see that N -connectedness of a topological space with respect
to a convexity on this space remains valid if the topology decreases. This means the
following. Assume that (X, T ) is N -connected with respect to G. Let T1 be a topology
on X such that T1 ⊂ T . Then (X, T1) is N -connected with respect to G as well.

Remark 3.3. If (X, T ) is connected with respect to G then every set G ∈ G is connected
in topology T . Indeed, let G = U ∪ U ′. Take an arbitrary u ∈ U and u′ ∈ U ′. Since
G ∈ G then [u, u′]G ⊂ G = U ∪ U ′. It follows from the connectedness of [u, u′]G that
either U has a limit point of U ′ or U ′ has a limit point of U . Hence G is also connected.

Theorem 3.4. Assume that one of the spaces (H, TH) or (H, T ′
H) is connected with

respect to the convexity Ḡ∗. Let F be a finite subset of X. Then for any points x, y ∈ F
and for each z ∈ [x, y]Ḡ the following holds:

convGF = convG({z} ∪ (F\{x}))
⋃

convG({z} ∪ (F\{y})). (7)

Proof. Since the set F is finite then

convGF =
⋂

{H ∈ H : F ⊂ H}. (8)

Let F1 = {z} ∪ (F\{x}) and F2 = {z} ∪ (F\{y}). Since z ∈ [x, y]Ḡ ⊂ [x, y]G ⊂ convGF
then

convGF ⊃ convGF1

⋃

convGF2.

Now we need to check the inclusion convGF ⊂ convGF1

⋃

convGF2. We have

convGF1

⋃

convGF2 =
(

⋂

{H1 ∈ H : F1 ⊂ H1}
)

⋃

(

⋂

{H2 ∈ H : F2 ⊂ H2}
)

=
⋂

{H1 ∪H2 : H1, H2 ∈ H, F1 ⊂ H1, F2 ⊂ H2}.

If either {H1 : H1 ∈ H, F1 ⊂ H1} = ∅ or {H2 : H2 ∈ H, F2 ⊂ H2} = ∅ then
convGF1

⋃

convGF2 = X and the inclusion convGF ⊂ convGF1

⋃

convGF2 becomes triv-
ial.

So we need to show that convGF ⊂ H1 ∪H2 whenever F1 ⊂ H1 and F2 ⊂ H2 (H1, H2 ∈
H). Take such H1 and H2 and consider the sets Hx = {H ∈ H : x ∈ H} and Hy =
{H ∈ H : y ∈ H}. They cover the interval [H1, H2]Ḡ∗ . Indeed, since z ∈ H1 ∩H2 then,
by Proposition 2.2, each H ∈ [H1, H2]Ḡ∗ contains the point z. Since z ∈ [x, y]Ḡ then it
follows from Proposition 2.1 that H ∩ {x, y} 6= ∅. Hence [H1, H2]Ḡ∗ ⊂ Hx ∪ Hy. Since
one of the spaces (H, TH) or (H, T ′

H) is connected with respect to Ḡ∗ then the interval
[H1, H2]Ḡ∗ is connected in one of the topologies TH or T ′

H. Note that Hx and Hy are open
in topology TH and closed in T ′

H. Note also that H1 ∈ Hy and H2 ∈ Hx. Consequently,
a set H ∈ [H1, H2]Ḡ∗ exists such that H ∈ Hx ∩Hy. In other words, H contains both x
and y. Moreover, due to (4), H1 ∩H2 ⊂ H ⊂ H1 ∪H2. Since F\{x, y} ⊂ H1 ∩H2 and
x, y ∈ H then F ⊂ H. This implies convGF ⊂ H ⊂ H1 ∪H2.
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Theorem 3.5. Assume that one of the spaces (H, TH) or (H, T ′
H) is connected with

respect to the convexity Ḡ∗. Let T be a topology on X such that for any F ∈ [X]<ω and
Z ⊂ X

⋂

z∈Z

convG(F ∪ {z}) = convGF whenever Z has a limit point in F. (9)

Let F be a finite subset of X and x, y ∈ F . Assume that [x, y]Ḡ is connected in T . Then

convGF =
⋃

z∈[x,y]Ḡ

convG({z} ∪ (F\{x, y})). (10)

Proof. Inclusion
⋃

z∈[x,y]Ḡ

convG({z} ∪ (F\{x, y})) ⊂ convGF

is obvious because [x, y]Ḡ ⊂ [x, y]G ⊂ convGF .

Let a ∈ convGF . We need to find a point z ∈ [x, y]Ḡ such that

a ∈ convG({z} ∪ (F\{x, y})). (11)

It follows from the Theorem 3.4 that

a ∈ convG({z} ∪ (F\{x}))
⋃

convG({z} ∪ (F\{y})) for each z ∈ [x, y]Ḡ. (12)

Consider two sets
Z1 = {z ∈ X : a ∈ convG({z} ∪ (F\{x}))},

Z2 = {z ∈ X : a ∈ convG({z} ∪ (F\{y}))}.

Due to (12), they cover the interval [x, y]Ḡ. Moreover, since a ∈ convGF then x ∈ Z1 and
y ∈ Z2. Condition (9) implies that Z1 and Z2 are closed in topology T . For example,
if z is a limit point of Z1 then a ∈

⋂

z1∈Z1
convG({z1} ∪ {z} ∪ (F\{x})), and, by (9), we

have a ∈ convG({z} ∪ (F\{x})). Since [x, y]Ḡ is connected in T then we conclude that
the intersection [x, y]Ḡ ∩ Z1 ∩ Z2 is nonempty. In other words, a point z ∈ [x, y]Ḡ exists
such that

a ∈ convG({z} ∪ (F\{x}))
⋂

convG({z} ∪ (F\{y})). (13)

Check the inclusion (11). Since {z} ∪ (F\{x, y}) is a finite subset of X then it is
sufficient to show that a ∈ H whenever H ∈ H and {z} ∪ (F\{x, y}) ⊂ H. So let
{z}∪ (F\{x, y}) ⊂ H. Since z ∈ [x, y]Ḡ and z ∈ H then {x, y}∩H 6= ∅ (see Proposition
2.1). If x ∈ H then {z} ∪ (F\{y}) ⊂ H, and therefore convG({z} ∪ (F\{y})) ⊂ H. If
y ∈ H then convG({z} ∪ (F\{x})) ⊂ H. In any event the point a belongs to H (see
(13)).

Now we can formulate the main result of this paper.

Theorem 3.6. Assume that one of the spaces (H, TH) or (H, T ′
H) is connected with

respect to the convexity Ḡ∗. Let T be a topology on X such that (9) holds true. Let
N ≥ 2. Assume that the space (X, T ) is N-connected with respect to the convexity Ḡ.
Then the convexity G is of arity N .
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Proof. Let A be a subset of X such that convGF ⊂ A whenever F ∈ [A]≤N . We need
to check that A belongs to the convexity G. Due to Proposition 1.1, we have

A ∈ G ⇐⇒ convGA ⊂ A ⇐⇒ (convGF ⊂ A for each F ∈ [A]<ω).

Let F be a finite subset of A. If F ∈ [A]≤N then the inclusion convGF ⊂ A is valid.

Now assume that F consists of n different points of A and n > N . We will show that for
each point a ∈ convGF a set Fn−1 ∈ [A]≤(n−1) exists such that a ∈ convGFn−1. Then, by
induction, we can find a set FN ∈ [A]≤N such that a ∈ convGFN . Therefore convGF ⊂ A.

So take a point a ∈ convGF . Since the space (X, T ) is N -connected with respect to Ḡ
and F contains more than N points of A ⊂ X then there exists a pair of points x, y ∈ F
(x 6= y) such that the interval [x, y]Ḡ is connected in T . Then, by Theorem 3.5, there is
a point z ∈ [x, y]Ḡ with a ∈ convG({z} ∪ (F\{x, y})).

Consider the set Fn−1 = {z} ∪ (F\{x, y}). Since z ∈ [x, y]Ḡ ⊂ [x, y]G and {x, y} ∈
[A]≤2 ⊂ [A]≤N then z ∈ A. This implies Fn−1 ∈ [A]≤(n−1).

Below we will show that the estimate of arity number in Theorem 3.6 is sharp (see
Example 4.9).

Since condition (9) is not easy for verification, we present a simpler condition, which
implies (9).

Proposition 3.7. Let T be a topology on X such that for any F ∈ [X]<ω we have

if a 6∈ convGF then a set H ∈ H exists with F ⊂ intH and a 6∈ H, (14)

where intH is the interior of H in topology T . Then condition (9) holds true for T .
In particular, (9) holds for any topology T such that all sets H ∈ H are open in T .

Proof. Let F be a finite subset ofX and Z ⊂ X has a limit point in F . We need to check
the inclusion

⋂

z∈Z convG(F∪{z}) ⊂ convGF , which means that a 6∈
⋂

z∈Z convG(F∪{z})
whenever a 6∈ convGF . So let a 6∈ convGF . Then, by (14), a set H ∈ H exists with
F ⊂ intH and a 6∈ H. Since F ⊂ intH and Z has a limit point in F then H contains
a point z′ ∈ Z. Hence a 6∈ convG(F ∪ {z′}), because a 6∈ H and F ∪ {z′} ⊂ H. And
therefore a 6∈

⋂

z∈Z convG(F ∪ {z}).

If all sets H ∈ H are open in topology T (i.e. intH = H) then (14) obviously holds.

Corollary 3.8. Assume that (H, TH) is connected with respect to Ḡ∗ and (X, TX) is
N-connected with respect to Ḡ, where N ≥ 2. Then the convexity G is of arity N .

Proof. It follows directly from Theorem 3.6 and Proposition 3.7 because all sets H ∈ H
are open in the topology TX .

Unfortunately, condition (9) does not necessarily hold for the topology T = T ′
X . To show

this consider a simple example.

Example 3.9. Let X = IR. Let H be the collection of all segments [c,+∞) with c ∈ IR.
It is easy to see that the topology T ′

X consists of empty set, whole real line and all
segments (−∞, c) with c ∈ IR. Then a ∈ IR is a limit point of Z ⊂ IR (in topology T ′

X)
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if and only if infz∈Z z ≤ a. For example, if z < a then a is a limit point of Z = {z}. At
the same time, convG{z} = [z,+∞) 6⊂ convG{a} = [a,+∞). So, condition (9) does not
hold in this case.

However, it can be convenient to use a topology T onX, which possesses (9) and contains
the topology T ′

X .

4. Some particular cases

First we show that path-connectedness can be used instead of the connectedness when-
ever all sets Xi (see Definition 3.1) are convex in G.

Proposition 4.1. Let X be equipped with a topology T and G be a convexity on X.
Assume that N sets X1, . . . , XN ∈ G exist such that X = X1 ∪ · · · ∪ XN and for each
i = 1, . . . , N the following condition holds: for any two points x, y ∈ Xi a continuous
mapping ω : [0, 1] → [x, y]G exists such that ω(0) = x and ω(1) = y. Then the space
(X, T ) is N-connected with respect to G.

Proof. We need to prove that all intervals of setsXi are connected in T . So let x, y ∈ Xi.
Let [x, y]G be represented as the union of two nonempty sets U1 and U2. Since Xi ∈ G
then U1 ∪ U2 = [x, y]G ⊂ Xi. Take arbitrary u1 ∈ U1 and u2 ∈ U2. We have u1, u2 ∈ Xi.
Hence there is a continuous mapping ω : [0, 1] → [u1, u2]G with ω(0) = u1 and ω(1) = u2.
Inclusion u1, u2 ∈ [x, y]G = U1∪U2 implies that ω(t) ∈ U1∪U2 for all t ∈ [0, 1]. Thus, we
have a continuous mapping ω : [0, 1] → U1 ∪ U2, where ω(0) ∈ U1 and ω(1) ∈ U2. This
means that either U1 has a limit point of U2 or U2 has a limit point of U1. Therefore the
interval [x, y]G is connected.

Let Y be a topological space. Consider the following interpretation of continuity of a
mapping ω : Y → H in cases, when H is equipped with one of the topologies: TH or T ′

H.

Proposition 4.2. Let y0 ∈ Y and ω : Y → H be a mapping. If H is equipped with the
topology TH then ω is continuous at y0 if and only if for each x ∈ ω(y0) a neighbourhood
U of y0 exists such that x ∈ ω(y) for all y ∈ U . If H is equipped with the topology T ′

H

then ω is continuous at y0 if and only if for each x 6∈ ω(y0) a neighbourhood U of y0
exists such that x 6∈ ω(y) for all y ∈ U .

Proof. Let H be equipped with the topology TH, and assume that ω is continuous at
the point y0. Take a point x ∈ ω(y0). Then ω(y0) ∈ Hx ∈ H∗ ⊂ TH. Hence the set Hx is
a neighbourhood of ω(y0). Since ω is continuous at y0 then we can find a neighbourhood
U of y0 such that ω(y) ∈ Hx for all y ∈ U . In other words, x ∈ ω(y) for all y ∈ U .

Conversely, assume that for each x ∈ ω(y0) a neighbourhood U of y0 exists such that
x ∈ ω(y) for all y ∈ U . Let S be a neighbourhood of ω(y0). Since the topology TH is
generated byH∗ then a finite collection {Hx1

, . . . ,Hxk
} of elements ofH∗ exists such that

ω(y0) ∈
⋂k

i=1 Hxi
⊂ S. This implies xi ∈ ω(y0) for all i = 1, . . . , k. By our assumption,

there exist a neighbourhoods U1, . . . , Uk of the point y0 such that xi ∈ ω(y) for all y ∈ Ui.
Then the set U =

⋂k

i=1 Ui is a neighbourhood of y0 and ω(y) ∈
⋂k

i=1 Hxi
⊂ S for all

y ∈ U . So the mapping ω : Y → H is continuous at y0.
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We omit the second part of the proof since all arguments are the same as in the first
one.

A similar interpretation of continuity of a mapping ω : Y → X is valid for the topologies
TX and T ′

X .

Proposition 4.3. Let y0 ∈ Y and ω : Y → X be a mapping. If X is equipped with the
topology TX (T ′

X) then ω is continuous at y0 if and only if for each H ∈ H such that
ω(y0) ∈ H (ω(y0) 6∈ H) a neighbourhood U of y0 exists such that ω(y) ∈ H (ω(y) 6∈ H)
for all y ∈ U .

Proof. The proof is straightforward.

Remark 4.4. Let X be equipped with a topology T . Then all sets H ∈ H are open
(closed) in the topology T if and only if TX ⊂ T (T ′

X ⊂ T ). As one can see from
Proposition 4.2, it is natural to apply the topology TH in the case, when all sets H ∈ H
are open. At the same time, the topology T ′

H on H is suitable when all sets H ∈ H are
closed.

In order to check the connectedness of a topological space with respect to a convexity on
this space we need to describe convex hulls of each pair of elements of this space, or at
least to indicate some points of these convex hulls. Here we consider two particular cases,
where the sets H ∈ H are expressed via real-valued functions, and get some formulas for
the convex hulls in terms of these functions.

Subbases of level sets S0(l) = {x ∈ X : l(x) ≤ 0}

Let L be a family of real-valued functions defined on a set X. Consider the collection H
of all sets S0(l) = {x ∈ X : l(x) ≤ 0}, where l ∈ L.

Let x1, x2 ∈ X. Then, by Proposition 2.1, the set [x1, x2]Ḡ consists of all points x ∈ X
such that for any l ∈ L the following implications hold

max{l(x1), l(x2)} ≤ 0 =⇒ l(x) ≤ 0,

l(x) ≤ 0 =⇒ min{l(x1), l(x2)} ≤ 0.

In particular, [x1, x2]Ḡ contains all points x ∈ X such that

min{l(x1), l(x2)} ≤ l(x) ≤ max{l(x1), l(x2)} ∀ l ∈ L.

Let l1, l2 ∈ L. Due to Proposition 2.2, we have

[S0(l1), S0(l2)]Ḡ∗ = {S0(l) ∈ H : S0(l1) ∩ S0(l2) ⊂ S0(l) ⊂ S0(l1) ∪ S0(l2)}.

In other words, the set [S0(l1), S0(l2)]Ḡ∗ consists of all S0(l) such that for any x ∈ X the
following implications hold

max{l1(x), l2(x)} ≤ 0 =⇒ l(x) ≤ 0,

l(x) ≤ 0 =⇒ min{l1(x), l2(x)} ≤ 0.

In particular, [S0(l1), S0(l2)]Ḡ∗ contains all S0(l) such that

min{l1(x), l2(x)} ≤ l(x) ≤ max{l1(x), l2(x)} ∀x ∈ X. (15)
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Proposition 4.5. Assume that L is closed under vertical shifts (this means that for each
l ∈ L and c ∈ IR the function h(x) = l(x) + c belongs to L). Let x1, x2 ∈ X. Then

[x1, x2]Ḡ = {x ∈ X : min{l(x1), l(x2)} ≤ l(x) ≤ max{l(x1), l(x2)} ∀ l ∈ L}. (16)

If, moreover, X is equipped with a topology T such that

{x ∈ X : l(x) < 0} ⊂ intS0(l) ∀ l ∈ L (17)

then condition (9) is valid for T .

Proof. First we check the equality (16). Let x ∈ [x1, x2]Ḡ. Take an arbitrary l ∈ L and
consider the number c = max{l(x1), l(x2)}. Since L is closed under vertical shifts then
the function h(z) = l(z) − c belongs to L. It is easy to see that x1, x2 ∈ S0(h). Since
x ∈ [x1, x2]Ḡ then x ∈ S0(h), therefore h(x) = l(x)−max{l(x1), l(x2)} ≤ 0.

In order to check the inequality min{l(x1), l(x2)} ≤ l(x) consider the function h(z) =
l(z)−l(x). Since S0(h) ∈ H and x ∈ S0(h) then, by Proposition 2.1, {x1, x2}∩S0(h) 6= ∅.
Hence either h(x1) ≤ 0 or h(x2) ≤ 0. This means that min{l(x1), l(x2)} ≤ l(x).

Let T be a topology on X, which enjoys (17). We will show that (14) holds for T .
Then, by Proposition 3.7, condition (9) holds as well. Let F be a finite subset of X and
a 6∈ convGF . Then there is a set S0(l) ∈ H with l ∈ L such that F ⊂ S0(l) and a 6∈ S0(l).
Take a positive number ε and consider the function hε(x) = l(x) − ε. Since L is closed
under vertical shifts then hε ∈ L and, by (17),

{x ∈ X : l(x) < ε} = {x ∈ X : hε(x) < 0} ⊂ intS0(hε).

Hence S0(l) ⊂ intS0(hε) for any positive ε. In particular, we can take ε = l(a)/2 > 0
because a 6∈ S0(l). We have: F ⊂ S0(l) ⊂ intS0(hε) and a 6∈ S0(hε). Thus, condition
(14) is valid.

Remark 4.6. Note that the continuity of all functions in L is sufficient for (17) to hold.

Consider the classical convex case.

Proposition 4.7. Let (X, T ) be a topological linear space and L be the set of all con-
tinuous affine functions l : X → IR. Let H be the collection of all level sets S0(l) = {x ∈
X : l(x) ≤ 0}, where l ∈ L (in other words, H consists of the empty set, whole X and
all closed half-spaces of X). Then the convexity G generated by H is of arity 2.

Proof. We will prove that the space (H, T ′
H) is connected with respect to the convexity

Ḡ∗, and (X, T ) is connected with respect to Ḡ.

Let l1, l2 ∈ L. Since l1 and l2 are continuous and affine then for every α ∈ [0, 1] the
function l(x) = (1−α)l1(x)+αl2(x) is also continuous and affine. Consider the mapping
ω : [0, 1] → H defined by

ω(α) = {x ∈ X : (1− α)l1(x) + αl2(x) ≤ 0}. (18)

Then ω(0) = S0(l1) and ω(1) = S0(l2). Moreover, since for any α ∈ [0, 1] and x ∈ X

min{l1(x), l2(x)} ≤ (1− α)l1(x) + αl2(x) ≤ max{l1(x), l2(x)}
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then, due to (15), ω(α) ∈ [S0(l1), S0(l2)]Ḡ∗ for all α ∈ [0, 1].

Assume that H is equipped with the topology T ′
H. We need to check that ω is continuous

on [0, 1]. Take an arbitrary α0 ∈ [0, 1] and x 6∈ ω(α0). Then (1− α0)l1(x) + α0l2(x) > 0
and we can find a sufficiently small number ε > 0 such that (1−α)l1(x)+αl2(x) > 0 for
all α ∈ [0, 1]∩ (α0 − ε, α0 + ε). This implies continuity of ω (see Proposition 4.2). Thus,
by Proposition 4.1, the space (H, T ′

H) is connected with respect to the convexity Ḡ∗.

Let x1, x2 ∈ X. Consider the mapping ω : [0, 1] → X defined by

ω(α) = (1− α)x1 + αx2. (19)

Then ω(0) = x1 and ω(1) = x2. Since l((1−α)x1+αx2) = (1−α)l(x1)+αl(x2) whenever
l is affine then

min{l(x1), l(x2)} ≤ l(ω(α)) ≤ max{l(x1), l(x2)} ∀ l ∈ L.

Hence, by (16), ω(α) ∈ [x1, x2]Ḡ for any α ∈ [0, 1]. Since (X, T ) is a topological linear
space then ω is continuous on [0, 1]. Due to Proposition 4.1, the space (X, T ) is connected
with respect to the convexity Ḡ.

Note that L is closed under vertical shifts, and all functions l ∈ L are continuous in
topology T (in particular, they enjoy (17)). Then, by Proposition 4.5, condition (9) is
valid for T . At last, it follows from Theorem 3.6 that the convexity G generated by the
collection of all closed half-spaces of X is of arity 2.

Now consider the case of affine functions defined on an arbitrary linear space.

Example 4.8. LetX be a linear space and L be the set of all affine functions l : X → IR.
As in Proposition 4.7, let H be the collection of all level sets S0(l) = {x ∈ X : l(x) ≤ 0}
(l ∈ L) and G the convexity on X generated by H. Then the space (H, T ′

H) is connected
with respect to the convexity Ḡ∗ and (X, T ′

X) is connected with respect to Ḡ. Indeed,
for any l1, l2 ∈ L the function (18) enjoys all required properties. For x1, x2 ∈ X we
only need to check that the function (19) is continuous on [0, 1] if X is equipped with
the topology T ′

X . Let α0 ∈ [0, 1] and l ∈ L be such that l(ω(α0)) > 0. Since l is affine
then (1− α0)l(x1) + α0l(x2) = l(ω(α0)) > 0, hence a positive number ε exists such that
l(ω(α)) = (1 − α)l(x1) + αl(x2) > 0 for all α ∈ [0, 1] ∩ (α0 − ε, α0 + ε). This implies
continuity of ω (see Proposition 4.3).

Since for any affine function l the function −l is also affine then the set

{x ∈ X : l(x) < 0} = {x ∈ X : −l(x) > 0} = X\S0(−l) ∈ H′

is open in the topology T ′
X for all l ∈ L. Hence (17) holds true for T = T ′

X , and, by
Proposition 4.5, condition (9) is also valid. Thus, due to Theorem 3.6, the convexity G
on X is of arity 2.

The following example demonstrates that the estimate of arity number in Theorem 3.6
is sharp.

Example 4.9. Let N ≥ 2. Choose an arbitrary vectors e1, . . . , eN ∈ IRN−1 such that
every (N − 1) of them are linearly independent and zero is a convex combination of all
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ei (for example, we can take usual orthogonal base of IRN−1 and vector (−1, . . . ,−1)).
Let X = X1 ∪ · · · ∪ XN , where Xi = {aei : a ≥ 0} for any i = 1, . . . , N . Let L be
the set of all affine functions defined on IRN−1 and H the collection of all level sets
S0(l) = {x ∈ X : l(x) ≤ 0}, l ∈ L. Then all sets Xi are convex in convexity G generated
by H. Proposition 4.1 allows to prove that (H, T ′

H) is connected with respect to Ḡ∗

and (X, T ′
X) is N -connected with respect to Ḡ. Indeed, we can use the same functions

ω : [0, 1] → H and ω : [0, 1] → X as in the proof of Proposition 4.7 and Example 4.8.
For each i = 1, . . . , N we have: ω(α) = (1 − α)x1 + αx2 belongs to [x1, x2]Ḡ for any
x1, x2 ∈ Xi and α ∈ [0, 1]. Condition (17) is also valid for the topology T = T ′

X . Then,
by Proposition 4.5 and Theorem 3.6, the convexity G on X = X1 ∪ · · · ∪XN is of arity
N . Now we show that G is not of arity N − 1. Consider the set A = {e1, . . . , eN}. Then,
due to our choice of vectors ei, convGF = X ∩ convF = F ⊂ A for any F ∈ [A]≤N−1

(here convF is the classical convex hull of F in IRN−1). However, the set A does not
belong to G since 0 ∈ convGA.

Subbases of epigraphs epi l = {(y, c) ∈ Y × IR : l(y) ≤ c}

Let L be a set of real-valued functions defined on a set Y . Let X = Y × IR. Consider
the collection H of all epigraphs epi l = {(y, c) ∈ Y × IR : l(y) ≤ c}, where l ∈ L.

Let (y1, c1), (y2, c2) ∈ Y ×IR. Then the set [(y1, c1), (y2, c2)]Ḡ consists of all points (y, c) ∈
Y × IR such that for any l ∈ L the following implications hold

max{l(y1)− c1, l(y2)− c2} ≤ 0 =⇒ l(y) ≤ c,

l(y) ≤ c =⇒ min{l(y1)− c1, l(y2)− c2} ≤ 0.

In particular, [(y1, c1), (y2, c2)]Ḡ contains all (y, c) such that

min{l(y1)− c1, l(y2)− c2} ≤ l(y)− c ≤ max{l(y1)− c1, l(y2)− c2} ∀ l ∈ L. (20)

At the same time, we have a very easy description of the set [epi l1, epi l2]Ḡ∗ for every
l1, l2 ∈ L:

[epi l1, epi l2]Ḡ∗ = {epi l : l ∈ L, (epi l1 ∩ epi l2) ⊂ epi l ⊂ (epi l1 ∪ epi l2)}

= {epi l : l ∈ L, min{l1(y), l2(y)} ≤ l(y) ≤ max{l1(y), l2(y)} ∀ y ∈ Y }.

Proposition 4.10. Assume that L is closed under vertical shifts. Let (y1, c1), (y2, c2) ∈
Y × IR. Then a point (y, c) ∈ Y × IR belongs to [(y1, c1), (y2, c2)]Ḡ if and only if (20)
holds.
In other words,

[(y1, c1), (y2, c2)]Ḡ = {(y, c) : f(y) ≤ c ≤ g(y)},

where the functions f and g are defined by

f(x) = sup
l∈L

(l(x)−max{l(y1)− c1, l(y2)− c2}),

g(x) = inf
l∈L

(l(x)−min{l(y1)− c1, l(y2)− c2}).

Let, moreover, Y × IR be equipped with a topology T such that

{(y, c) : l(y) < c} ⊂ int epi l ∀ l ∈ L.

Then condition (9) is valid for T .
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Proof. Let (y, c) ∈ [(y1, c1), (y2, c2)]Ḡ. Take an arbitrary l ∈ L and consider the following
functions defined on Y :

h(z) = l(z)−max{l(y1)− c1, l(y2)− c2}, h′(z) = l(z)− l(y) + c.

Since L is closed under vertical shifts then h, h′ ∈ L. We have

h(y1) ≤ c1, h(y2) ≤ c2, h′(y) = c.

Since (y, c) ∈ [(y1, c1), (y2, c2)]Ḡ then h(y) ≤ c and min{h′(y1)− c1, h
′(y2)− c2} ≤ 0. This

means that l(y)−c ≤ max{l(y1)−c1, l(y2)−c2} and min{l(y1)−c1, l(y2)−c2} ≤ l(y)−c.

Let T be a topology on Y × IR such as in the statement of proposition. Let F be a finite
subset of Y × IR and (y, c) 6∈ convGF . Then there is a function l ∈ L such that F ⊂ epi l
and (y′, c′) 6∈ epi l. Consider the function hε(z) = l(z)− ε, where ε = (l(y′)− c′)/2 > 0.
Since L is closed under vertical shifts then epihε ∈ H. We have: (y′, c′) 6∈ epihε and

F ⊂ epi l ⊂ {(y, c) : hε(y) < c} ⊂ int epihε.

Proposition 3.7 implies that condition (9) is valid for T .

Let L be a set of real valued functions defined on a set Y and let Z be a subset of Y .
Recall (see [1]) that a function f : Y → IR+∞ = IR ∪ {+∞} is called L-convex on Z if a
subfamily T ⊂ L exists such that f(z) = supl∈T l(z) for all z ∈ Z.

Proposition 4.11. Let N ≥ 2 and T be a topology on X, which enjoys (9). Assume
that (H, T ′

H) is connected with respect to Ḡ∗ and (X, T ) is N-connected with respect to
Ḡ. Then for any function f : Y → IR+∞ the following conditions are equivalent:

(i) For every y, y1, . . . , yN ∈ Y

f(y) ≤ sup{l(y) : l ∈ L, l(yi) ≤ f(yi) ∀ i = 1, . . . , N}. (21)

(ii) f is L-convex on every finite subset of Y .

Proof. Theorem 3.6 implies that the convexity G generated by H is of arity N .

(i) =⇒ (ii) Let a function f enjoy (21) for all y, y1, . . . , yN ∈ Y . Then its epigraph
epi f belongs to the convexity G. Indeed, since G is N -ary then epi f belongs to G if and
only if convG{(y1, c1), . . . , (yN , cN)} ⊂ epi f for any (y1, c1), . . . , (yN , cN) ∈ epi f . So let
(y1, c1), . . . , (yN , cN) ∈ epi f . Then we have

convG{(y1, c1), . . . , (yN , cN)} = {(y, c) : sup{l(y) : l(yi) ≤ ci ∀ i ≤ N} ≤ c}

⊂ {(y, c) : sup{l(y) : l(yi) ≤ f(yi) ∀ i ≤ N} ≤ c}

⊂ epi f.

Let Z be a finite subset of Y . If f(z) = +∞ for all z ∈ Z then also supl∈L l(z) = +∞ for
all z ∈ Z, and therefore f is L-convex on Z. Indeed, if f(z) ≡ +∞ on Z then it follows
from (21) that for any z, y1, . . . , yN ∈ Z

sup
l∈L

l(z) = sup{l(z) : l ∈ L, l(yi) ≤ +∞ ∀ i = 1, . . . , N} ≥ f(z) = +∞.
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Now assume that the set F = {(z, f(z)) : z ∈ Z, f(z) < +∞} is not empty. Since F is
a finite subset of Y × IR then, due to (2),

convGF =
⋂

{H ∈ H : F ⊂ H} =
⋂

{epi l : l ∈ L, l(z) ≤ f(z) ∀ z ∈ Z}. (22)

Let T be the collection of all functions l ∈ L such that l(z) ≤ f(z) for any z ∈ Z.
Since epi f ∈ G and F ⊂ epi f then convGF ⊂ epi f . This means, in view of (22), that
T is nonempty (otherwise convGF = Y × IR 6⊂ epi f) and f(y) ≤ supl∈T l(y) for all
y ∈ Y . On the other hand, supl∈T l(z) ≤ f(z) for any z ∈ Z by definition of T . Hence
f(z) = supl∈T l(z) ∀ z ∈ Z. In other words, f is L-convex on Z.

(ii) =⇒ (i) Let f be L-convex on every finite subset of Y . Let y, y1, . . . , yN ∈ Y . Since
f is L-convex on {y, y1, . . . , yN} then

f(y) = sup{l(y) : l ∈ L, l(y) ≤ f(y), l(yi) ≤ f(yi) ∀ i = 1, . . . , N}

≤ sup{l(y) : l ∈ L, l(yi) ≤ f(yi) ∀ i = 1, . . . , N}.
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