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1. Introduction

In this paper we deal with Partial Differential Inclusion:

Du ∈ K ⊆ Mm×n, (1)

where Du is the distributional gradient of the Lipshitz mapping u : Rn ⊇ Ω → Rm, Ω
is a bounded domain, K is the compact set and Mm×n is the space of matrices having
m rows and n columns. The scalar one-dimensional case of (1) (m = 1 or n = 1) is well
understood by now, see e.g. [1]. The celebrated results by Nash and Kupier [31, 19] were
dealing with the multidimensional variants of the PDI’s like (1) to obtain the existence
of the non-trivial C1 isometric immersions. Since this time the theory of the PDI’s
has evolved in several directions. Gromov [14] developed general theory called convex
integration, based on the techniques by Nash and Kupier [14], see also later book [33].
Nash and Kupier approaches deal only with C1 solutions, while Gromov had also results
for Lipshitz mappings. It is important to consider Lipshitz mappings as well, as for
example they explain some problems in the analysis of crystal microstructure, see e.g.
[4, 5, 8]. There are two approaches in this direction. The first one, based on the Baire
cathegory method, is due to Dacorogna and Marcellini [9, 10]. It has its rudiments in
the previous papers [6, 12, 13]. The second one is based on Gromov’s ideas extended
further by Müller and Šverák [27, 28] (see also [2, 11, 25, 26, 29, 30, 16, 35, 36, 17], their
references and independent earlier work [32]). It results in constructions of singular
Lipshitz solutions of elliptic and parabolic PDE’s.
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The idea of convex integration is based on the successive construction of solutions to the
PDI:

Duk ∈ Uk, uk = g on ∂Ω, (2)

where open sets Uk well approximate set K. The key point there is to construct such a
decreasing family of sets {Uk}k∈N approximating K that the existence of the solution of
(2) with Uk implies the existence of solution of (2) with Uk+1 which better approximates
set K. Then one proves that finally the sequence {Duk}k∈N converges to the solution of
(1) with the same boundary data as all the uk’s. If this machinery works one only needs
to prove that the solution of (2) with k = 1 exists.

This leads to the concept of in-approximation of K. It can be introduced in several
ways. Gromov used (in the simplest version) the in-approximation based on the lam-
convexification proces. By the lam-convex hull (called by Gromov P-convex hull in the
more general context) of a set K ⊆ Rm×n we mean the smallest set denoted by K lc with
the property that if A,B ∈ K lc and A − B is a rank-one matrix then K lc contains all
the segment [A,B].

Müller and Šverák were dealing with rank-one convex hulls of sets, called functionally
rank-one convex by Matoušek and Plecháč [21]. Namely, if K is compact then its rank-
one convex hull is defined by

Krc = {x : f(x) ≤ supy∈Kf(y), whenever f : Mm×n → R is rank-one convex}.

By rank-one convex function we mean such a one which is convex along all the directions
of rank-one matrices in Mm×n. For U being open the hull U rc is defined as the (set
theoretic) sum of rank-one- convex hulls of all its compact subsets.

The key point in the approach by Gromov, Müller and Šverák was that the existence of
solution of

Du ∈ V, u = g on ∂Ω, (3)

where V is either U lc or U rc, implies the existence of solution of (3) with U instead of
V . Sets {Uk} in the in-approximation of K have the property that Uk is contained in
(Uk+1)lc or (Uk+1)rc. Therefore one can inductively construct the solutions of (2).

As rank-one convex hull of a set can be essentially larger than its lam- convex hull
(see e.g. [17], Theorems 1-3), the technique of convex integration dealing with rc- in
approximations is more powerful.

It is natural to ask what other convexifications U of U different than lam- and rc-
convexifications could be used to built the solutions of (1) by the successive improvements
of (2). We want this convexifications to satisfy U ⊇ U rc, so also U ⊇ U lc.

We are now in the position to explain our point of view. Let us recall the notion of
quasiconvexity introduced by Morrey [22, 23]. Namely, the function f : Mm×n → R is
called quasiconvex if f satisfies the quasiconvexity condition

∫

Q

f(A+∇φ(x))dx ≥ f(A), (4)

for every A ∈ Mm×n, every cube Q ⊆ Rn and arbitrary φ ∈ C∞
0 (Q,Rm).

The above condition can be interpreted as follows. Let us consider the case n = 3
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and the functional If (u) =
∫

Q
f(∇u)dx prescribing to a deformation u : Q → R3 of

the crystal its elastic energy. Condition (4) means that among all deformations with an
affine boundary data lowest energy has an affine one. Quasiconvex functions characterize
all energy functionals If (u) =

∫

Ω
f(∇u)dx that are lower semicontinuous with respect to

the sequential weak ∗ convergence of gradients in L∞(Ω), see also e.g. [3, 7, 15, 18, 34]
and their references for some selected results on quasiconvexity.

The quasiconvex hull of a compact set K is defined by

Kqc =

{

x : f(x) ≤ sup
y∈K

f(y), whenever f : Mm×n → R is quasiconvex

}

.

Analogously as before one defines the quasiconvex hull of an open set. Morrey proved
[22, 23] that every quasiconvex function is rank–one convex. It was a question of Morrey
(however not really a conjecture) whether the converse implication is also true. Never-
less, the conjecture that every rank one convex functions is quasiconvex is often called
Morrey’s conjecture. The celebrated result by Šverák [34] shows that in the case m ≥ 3,
n ≥ 2 the answer to “Morrey’s conjecture� is negative, while the answer in the remaining
case m = 2, n ≥ 2 is still unknown.

In particular we have V qc ⊇ V rc for any V .

It was questioned by Müller and Šverák (see Chapter 5 of [26] and Question 4 in [17])
that perhaps it is possible to apply the machinery of convex integration by the successive
improvements of (2) dealing with qc-in-approximations of K. This problem still remains
open.

Here we show (Theorem 2.6) that if K admits qc-in approximation {Uk}k∈N and the
solution of the problem

Du ∈ U1, u = g on ∂Ω (5)

exists then one can find an open set U ⊆ Ω of an arbitrary small measure and a Lipshitz
mapping v such that Dv ∈ K everywhere on Ω \ U . Moreover, v satisfies the same
boundary data as u and it can be chosen arbitrary close to u in the supremum norm.
The norm of its gradient is no bigger than Csup{|k| : k ∈ U1} with the universal constant
C.

This implies (Corollary 2.9) the existence of the approximate solutions of the inclusion

Du ∈ K, u = g on ∂Ω, (6)

provided that the solution of (5) exists. By the approximate solution of (6) (see also
[24]) we mean the existence of the sequence uj of Lipshitz functions with the uniformly
bounded Lipshitz constant such that

dist(Duj, K) → 0 a.e. in Ω, uj = g on ∂Ω. (7)

Moreover, we prove that an approximating sequence {uj} can be chosen to satisfy
stronger property than (7), namely:

|{x : dist(Duj, K) 6= 0}| → 0, ‖uj − g‖∞ → 0, uj = g on ∂Ω.
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2. The result

Notation. By Mm×n we denote the space of matrices with m rows and n columns. By
W 1,p(Ω,Rm) we denote Sobolev spaces defined on an arbitrary open bounded set Ω, and
by W 1,p

0 (Ω,Rm) we mean the completion of C∞
0 (Ω,Rm) in W 1,p(Ω,Rm). We say that

u = v on ∂Ω where u, v ∈ W 1,p(Ω,Rm) if u− v ∈ W 1,p
0 (Ω,Rm). If P is the subset of an

Euclidean space E and δ > 0, by (P )δ we denote the set {p ∈ E : dist(p, P ) ≤ δ}, where
dist(p, P ) := infx∈P |x− p| and ‖P‖∞ := sup{|F | : F ∈ P}.

We will deal with piecewise affine functions defined below.

Definition 2.1. Let Ω ⊆ Rn be a bounded domain. The continuous function u : Ω →
Rm is called piecewise affine if we have: Ω = ∪iΩi ∪A where Ωi’s are open, |A| = 0 and
f is affine on each Ωi.

The approximate and quasiconvex hulls: Kapp and Kqc of set K are defined as follows
(see e.g. [24], Section 4.4).

Definition 2.2. Let K ⊆ Mm×n be the compact subset and Ω ⊆ Rn be a bounded
domain.

1) We say that F ∈ Kapp if there exists the sequence uν : Ω → Rm bounded in
W 1,∞(Ω,Rm) such that

dist(Duν , K) → 0 a.e. uν = Fx on ∂Ω

2) Kqc := {F ∈ Mm×n : f(F ) ≤ supKf for every quasiconvex f : Mm×n → R}.

The following fact is known (see e.g. Theorem 4.10, part i) in [24]).

Theorem 2.3. If K ⊆ Mm×n is the compact subset then Kapp = Kqc.

In particular, as the definition of Kqc is independent on Ω, we see that the set Kapp is
also independent on Ω.

As the consequence of the above facts we obtain the following result. It may be known
to the specialists, but for completeness of our arguments we present its proof.

Proposition 2.4. Let K ⊆ Mm×n be the compact subset and Ω ⊆ Rn be the bounded

domain. Then F ∈ Kqc if and only if for every δ > 0 there exists the sequence uν : Ω →
Rm of piecewise affine mappings, such that

dist(Duν , K) → 0 a.e. (8)

‖Duν‖∞ ≤ C‖K‖∞, (9)

uν = Fx on ∂Ω, (10)

‖uν − Fx‖∞ < δ in Ω, (11)

and the constant C in (9) depends on m and n only.

Proof. The implication “⇐� follows from Theorem 2.3, so the only part “⇒� remains
nontrivial. The proof is obtained by steps: 1. we show that there exists the sequence of
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functions {uν} (not necessarily piecewise affine) which satisfies (8), (9), (10) and (11);
2. we show that (8), (9), (10) and (11) holds true with the sequence of affine mappings.

Proof of Step 1. Suppose that F ∈ Kqc. According to Theorem 2.3 there exists the
sequence {uν} which is bounded inW 1,∞(Ω,Rm) with the property (8) and (10). The fact
that we may additionally assume that {uν} satisfies (9) follows from Zhang’s Lemma (see
Lemma 3.1 in [37] or Lemma 4.21, part (ii) in [24]) and Rellich Compactness Theorem
(see e.g. Section 1.4.6 in [20]). To show that we may additionally assume that {uν}
satisfies (11) we use the following rescaling argument. We may assume without loss of
generality that F = 0 (consider ũν = uν − Fx). Let us cover Ω up to a set of measure 0
by disjoint copies of Ω: Ωi = ai + riΩ that are contained in Ω and such that ri < ǫ for
every i, and define

ων(x) :=







riu
ν

(

x− ai
ri

)

in Ωi

0 in Ω \ ∪Ωi

Then ων ’s are continuous and satisfy (8), (9), (10). They also satisfy (11) if we take ǫ
small enough. This follows from the estimation:

‖ων‖∞ ≤ ri‖u
ν‖∞ ≤ C

′

ǫ‖Duν‖∞ ≤ Cǫ‖K‖∞ = δ,

where we take ǫ = δ
C‖K‖∞

(we may assume that ‖K‖∞ 6= 0, as otherwise the inequal-

ity is trivial) and constants C
′

, C depend on m,n, diamΩ and do not depend on the
sequence. We have used Poincare’s inequality in the version: ‖u‖∞ ≤ C‖Du‖∞, where
C = C(m,n, diamΩ), u ∈ W 1,∞

0 (Ω,Rm). It is an easy consequence of density argument
combined with the Sobolev’s integral formulae (see e.g. Theorem 1.1.10/2 in [20]):

u =
n

∑

i=1

Ki ∗Diu,

where u ∈ C∞
0 (Rn), Ki = 1

nvn

−xi

|x|n
and vn denotes the volume of the unit ball. Its

application was possible as all the uν ’s vanish on ∂Ω and Ω is bounded.

Proof of Step 2. Now let us show that the functions {uν} can be taken piecewise affine.
This is obtained in the standard way by introducing the sufficiently fine triangulation
of the set Ω by subsets Ωi and improving {uν} to be affine on every Ωi, so that (8), (9)
and (11) are satisfied (with possibly different C in (9) and 2δ instead of δ in (11)). If
the diameters of Ωi converge to zero when minx∈Ωi

dist(x, ∂Ω) → 0, then the improved
functions must satisfy the same boundary conditions as the original ones, which are given
by (10). The proof of the proposition is complete.

For an open set U we define

U qc := ∪K⊆U,K−compactK
qc.

The following definition is the generalization of the well known definition of in–approxi-
mation due to Gromov (see e.g. [14]).
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Definition 2.5. Assume thatK and Ui are subsets inMm×n, given for i ∈ N, K is com-
pact and the Ui’s are open. We say that the sequence {Ui}i∈N is a qc–in–approximation
of K (or that K admits the qc-in–approximation by {Ui}i∈N) if Ui ⊆ U qc

i+1 and for every
i we have supx∈Ui

dist(x,K) → 0 as i → ∞.

Our main result reads as follows.

Theorem 2.6. Assume that Ω ⊆ Rn is a bounded domain and the compact set K ⊆
Mm×n admits qc–in–approximation by {Ui}i∈N, where Ui ⊆ Mm×n are open subsets.

Suppose further that there is the solution u ∈ W 1,∞(Ω,Rm) of differential inclusion:

Du(x) ∈ U1 a.e. in Ω. (12)

Then for every ǫ, δ > 0 there exists the closed set F ⊆ Ω and the mapping v ∈
W 1,∞(Ω,Rm) such that

|Ω \ F | < ǫ (13)

Dv(x) ∈ K for every x ∈ F, (14)

‖Dv‖∞ ≤ C‖U1‖∞, (15)

v = u on ∂Ω,

‖u− v‖∞ ≤ δ.

Moreover, constant C in (15) depends on n and m only.

The proof will be proceeded by the sequence of lemmas.

Lemma 2.7. Let U ⊆ Mm×n be an open bounded set, u : Ω → Rm be the piecewise

affine mapping such that Du ∈ U qc for almost every x ∈ Ω. Then for every ǫ, δ > 0
there exists piecewise affine mapping v : Ω → Rm and an open set R such that

|Ω \R| < ǫ,

Dv ∈ U on R

‖Dv‖∞ ≤ C‖U‖∞, (16)

u = v on ∂Ω,

‖u− v‖∞ ≤ δ.

Moreover, the constant C in (16) depends on n and m only.

Proof. As u is piecewise affine, we have Ω = ∪iΩi ∪ A, where |A| = 0, Ωi’s are open
and u is affine on each Ωi, so that: u = Fix + Ci where Fi ∈ U qc on Ωi. Since U qc =
∪P⊆U,P−compactP

qc, we have Fi ∈ P qc
i for some compact set Pi, and we can choose δi > 0

such that (Pi)δi ⊆ U . Let ǫi > 0 be taken arbitrary. According to Proposition 2.4, we
find the piecewise affine function vi and mesasurable set

Ω̃i := {x ∈ Ωi : dist(Dvi(x), Pi) > δi} (17)

such that

dist(Dvi, Pi) ≤ δi on Ωi \ Ω̃i where |Ω̃i| < ǫi,

‖Dvi‖∞,Ωi
≤ C‖Pi‖∞ ≤ C‖U‖∞,

vi = Fix+ Ci on ∂Ωi,

‖vi − u‖∞,Ωi
≤ δ.
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In particular, on the set Ω \ Ω̃i we have Dvi ∈ (Pi)δi ⊆ U . Let us choose vi subordinated
to the choice of ǫi := ǫ/2i and let v(x) be equal to vi(x) on each Ωi. Then v verifies
the assertions of the lemma. It remains to show that one can assume that the set
R := {x ∈ Ω : Dv ∈ U} is open. To see that we use the following argument. As v is
piecewise affine, we have Ω = ∪Vk ∪A, where |A| = 0, Dv = Gk on each Vk and the Vk’s
are open. Take I := {k : Gk ∈ U} and define

R := ∪k∈IVk.

Then R is open and by construction we have Ω \ R ⊆ ∪∞
i=1Ω̃i, where Ω̃i’s are the same

as in (17). In particular |Ω \R| ≤
∑∞

i=1
ǫ
2i
= ǫ. This ends the proof of the lemma.

Lemma 2.8. Assume that Ω ⊆ Rn is a bounded domain and that the compact set

K ⊆ Mm×n admits qc-in-approximation by open sets {Ui}i∈N. Let u : Ω → Rm be

the piecewise affine mapping such that

Du ∈ U qc
1 ,

for almost every x ∈ Ω, and let {ǫk}k∈N and {δk}k∈N be two given sequences of positive

numbers. Then there exist

1. a decreasing sequence {Rk}k∈N of open subsets of Ω such that |Ω \ R1| < ǫ1 and

|Rk \Rk+1| < ǫk for every k ∈ N,

2. the sequence of piecewise affine lipshitz mappings uk : Ω → Rm such that:

a) Duk ∈ Uk, for almost every x ∈ Rk,

b) supk‖Duk‖∞ ≤ C‖U1‖∞, with C depending on m and n only,

c) uk+1 = uk a.e. on Ω \Rk, for every k ∈ N,

d) uk = u on ∂Ω, for every k ∈ N,

e) ‖u1 − u‖∞ < δ1 and ‖uk+1 − uk‖∞ < δk+1 for every k ∈ N.

Proof. We inductively apply Lemma 2.7. In the first step we use Lemma 2.7 on Ω with
U := U1, ǫ := ǫ1 and δ := δ1, and find the piecewise affine mapping u1 := v and an open
set R1 such that:

Du1 ∈ U1 ⊆ U qc
2 a.e. on R1 and |Ω \R1| < ǫ1,

‖Du1‖∞ ≤ C‖U1‖∞ on Ω with C = C(m,n),

u1 = u on ∂Ω

‖u− u1‖∞ ≤ δ1.

Suppose now that we have already constructed pairs {uk, Rk} with the desired properties
for l = 1, . . . , k. To construct uk+1 first we apply Lemma 2.7 on Ω = Rk, with u = uk,
U = Uk+1 (so that Duk ∈ U qc

k+1 on Rk), δ = δk+1 and ǫ = ǫk+1 and construct v such that:

Dv ∈ Uk+1 ⊆ U qc
k+2 on Rk+1 and |Rk \Rk+1| < ǫk+1,

‖Dv‖∞ ≤ C(m,n)‖Uk+1‖∞, on Rk

v = uk on ∂Rk,

‖uk − v‖∞,Rk
< δk+1.
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Then we extend v to the whole of Ω by expression

uk+1(x) =

{

uk(x) for x ∈ Ω \Rk

v for x ∈ Rk.

Now we are in the position to prove Theorem 2.6.

Proof of Theorem 2.6. The proof is obtained by the modification of general tech-
niques due to Gromov, Müller and Šverák, see e.g. [24], Theorem 5.3. At first we note
that we may assume that the solution u of the inclusion (12) is piecewise affine. This
is arranged by the same arguments as that in the proof of Step 2 in Proposition 2.4.
Then the proof is obtained by the successive corrections of the solution u of (12) within
piecewise affine mappings on sets Ωi where u is affine. From now the arguments are
similar to that given in [24], the proof of Theorem 5.3.

Let

Ωi = {x ∈ Ω : dist(x, ∂Ω) > 2−i},

and ρ ∈ C∞
0 (Rn) be the usual modifying kernel on Rn, i.e. suppρ ⊆ B(1),

∫

ρdx = 1
and ρǫ = ǫ−nρ(x/ǫ). Take an arbitrary ǫ, δ > 0. We may assume that ǫ, δ < 1. Then we
take ǫ1 =

ǫ
4
and choose ǫi ∈ (0, 2−(i+1)ǫ) for i = 2, 3, . . . to satisfy:

‖ρǫi ∗Dui −Dui‖L1(Ωi) < 2−i. (18)

We define the sequence {δi} by putting δ1 =
δ
4
and δi+1 = δiǫi, and use Lemma 2.8 with

{ǫi} and {δi}. In particular
∑

i δi ≤ δ/2, and we observe from part e) in Lemma 2.8
that the constructed sequence {uk} is the Cauchy sequence in L∞(Ω). Hence, and using
property e) in Lemma 2.8 there exists the function u∞ ∈ L∞(Ω) such that

uk → u∞ in L∞(Ω) and ‖u− u∞‖∞ ≤ δ.

On the other hand, using part b) in Lemma 2.8, we see that supk‖Duk‖∞ < ∞, so we
may assume (after eventually extracting the subsequence) that

Duk
∗
⇀ Du∞ in L∞(Ω).

Then property d) in Lemma 2.8 implies that

u∞ = u on ∂Ω.

We will show that

Du∞ ∈ K a.e. in R := ∩kRk. (19)

Note that R is measurable and

|Ω \R| ≤ |Ω \R1|+
∑

k≥1

|Rk \Rk+1| <
∑

k≥1

ǫk <
ǫ

2
.
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To prove (19) at first we see that

‖ρǫk ∗ (Duk −Du∞)‖L1(Ωk) = ‖Dρǫk ∗ (uk − u∞)‖L1(Ωk) ≤
C

ǫk
‖uk − u∞‖L∞(Rk)

≤
C

ǫk

∑

l≥k

‖ul − ul+1‖∞ ≤
C

ǫk

∑

l≥k+1

δl < C
′

δk, (20)

with constants C,C
′

independent on k and

‖Duk −Du∞‖L1(Ω) ≤ ‖Duk −Du∞‖L1(Ω\Ωk) + ‖Duk −Du∞‖L1(Ωk).

The first term above, according to part b) of Lemma 2.8 is no bigger than 2C‖U1‖∞|Ω \
Ωk|, so can be arbitrary small if we take k big enough. The second term can be estimated
by

‖ρǫk ∗ (Duk −Du∞)‖L1(Ωk) + ‖Duk − ρǫk ∗Duk‖L1(Ωk) + ‖Du∞ − ρǫk ∗Du∞‖L1(Ωk).

Using (18) and (20) we observe that first two expressions converge to 0 as k → ∞. To
deal with the third expression we note that

‖Du∞ − ρǫk ∗Du∞‖L1(Ωk) ≤ ‖w − ρǫk ∗ w‖L1(Ω),

where w is an extension of Du∞ by 0 outside Ω. Therefore the last expression also
converges to 0 as k → ∞. This gives ‖Duk − Du∞‖L1(Ω) → 0. After extracting the
subsequence we may assume that Duk → Du∞ almost everywhere. This together with
the fact that Duk ∈ Uk a.e. on R and Uk → K as k → ∞ shows that Du∞ ∈ K a.e. on
R. Finally, we observe that the set R is of Gδ-type, so it is not necessarily closed. As R
is measurable, we can find the closed subset F ⊆ R such that |R \F | < ǫ

2
and Du∞ ∈ K

everywhere on F . Then (19) holds true everywhere with R substituted by F , so that set
F does the job.

As an immediate corollary we obtain the following result showing the possible approach
to construct the approximate solutions to the PDI: Du ∈ K with the given boundary
data. We refer to Chapter I in [24] for their motivations in the variational models for
elastic crystals.

Corollary 2.9. Assume that Ω ⊆ Rn is a bounded domain and the compact set K ⊆
Mm×n admits qc–in–approximation by {Ui}i∈N, where Ui ⊆ Mm×n are open subsets.

Suppose further that there is the solution u ∈ W 1,∞(Ω,Rm) of the PDI (12). Then

there exists the sequence {uj}j∈N of Lipshitz functions with uniformly bounded Lipshitz

constant such that

|{x : dist(Duj, K) 6= 0}| → 0, ‖uj − u‖∞ → 0, uj = u on ∂Ω.

Remark 2.10. Let us mention that almost the same statement but with qc–in–approxi-
mation interchanged by rc–in–approximation leads to the existence of exact solutions to
the PDI: Dv ∈ K a.e., v = u on ∂Ω by celebrated result by Müller and Šverák [27, 28].
Therefore Morrey’s conjecture open in the case m = 2, n ≥ 2 is hidden in the shadow of
the theory of Partial Differential Inclusions.
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[11] B. Dacorogna: Nonconvex problems of the calculus of variations and differential inclusions,
in: Stationary Partial Differential Equations. Vol. 2, M. Chipot et al. (ed.), Elsevier,
Amsterdam (2005) 57–126.

[12] F. S. De Blasi, G. Pianigiani: A Baire category approach to the existence of solutions of
multivalued differential equations in Banach spaces, Funkc. Ekvacioj, Ser. Int. 25 (1982)
153–162.

[13] F. S. De Blasi, G. Pianigiani: Non convex valued differential inclusions in Banach spaces,
J. Math. Anal. Appl. 157 (1991) 469–494.

[14] M. Gromov: Partial Differential Relations, Springer, New York (1986).

[15] A. Kałamajska: On new geometric conditions for some weakly lower semicontinuous func-
tionals with applications to the rank-one conjecture of Morrey, Proc. R. Soc. Edinb., Sect.
A, Math. 133 (2003) 1361–1377.

[16] B. Kirchheim: Rigidity and Geometry of Microstructures, Habilitation Thesis, University
Leipzig (2001).
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