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Here is a presentation of an answer to the problem, deeply studied in the 70s−80s and to a large extent
unsolved then, of differential and integral calculus transfer to the framework of set-valued analysis. This
transfer is achieved through the identification of the set-valued maps with some families, the coverings,
made up of some (class of) special functions, the representations. The process is related to the one of
the atlas local maps of the differential geometry [2], [5].
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Introduction

The concept of covering is the result of coupling of two models: on the first hand,
the concret model of fluid mechanic where velocities field modelise the evolution of
the dynamic system, on the other hand, the theoretical model of atlas local maps of
differential geometry.

More precisely every covering of a set-valued map express an evolution point after point
of the image as a whole. It is thus possible in a natural way to identify the set-valued
map with all its coverings (or, if necessary, with all its coverings which have the minimum
suitability required by the mathematical context):

[t −◦ F (t) ⊂ E ]

≡

{
t ∼> fj (t) = [rj(t| : bj → E] / (equiv.rel) , j ∈ J ; ∪

j∈J
rj (t|bj) = F (t)

}
.
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Considering the strong compatibility of the equivalence relation based on transport the-
ory with any usual concept of the classical algebraic, boolean and analytical theories,
the study of the set-valued map t −◦ F (t) comes down to the study of the representation
t 7→ r(t|. Actually it leads to write r(t| under the form: r(t| = i+eT (t| where i and eT (t|
belongs to suitable spaces as we will see later. This transfer process is then systematic
and gives a very simple, flexible, and adaptable tool.

The theory obtained in this way answers to the main goals:

• the single-valued analysis fits into it, being a specific case of single valued set-valued
maps,

• it is compatible with the set algebraic theories,

• a posteriori it is not at odds with the usual set-valued analysis theories,

• it enables us to consider the extension of the one-to-one distribution theory, taking
of polydistributions while keeping the latter’s character and perspective.

After to have defined the concept of covering and its relation with set-valued maps (§ 1),
I will define the essential algebra bases to our subject (§ 2). Then I develop one to one
the extensions of classical one-one analysis concepts and of their main properties in the
following order: continuity, differentiability, measurability and integrability (§ 3, 4, 5). I
end this presentation of my work by an introduction to the extension of the distributions
theory through that I denote polydistributions (§ 6).

General notations and conventions. E a Banach space, T a topological vector space,
O an open, connected set of T .

For K ⊂ E and ε > 0 : B(K, ε) = {x ∈ E; d(x,K) < ε}; and B = B({0}, 1).

A set-valued map of domain O, and images in E is denoted F : O −◦ E.

The word ”function” always means here single-valued map.

1. Coverings

I give here first a formal exposition of the concepts of covering and subjacent set-valued
map as well as the generality of their application field which is enough to a first quick
reading of the article in its globality. Then I give the theoretical support of the funda-
mental concept of covering and I end this part by some examples.

1.1. Formal Coverings framework

1.1.1. General definitions

Definition 1.1. 1. We call dynamic, or elementary covering, any (transfer) equivalence
class of representations [see 1.3] f : O ∼> E where O is the common domain of the
representations of the class.

We call then subjacent set-valued map to f the set-valued map of domain O f : O −◦ E
defined by

˙[b, r( ] = class[b, r( ] = f : f(t) = r(t|b).

2. We call covering any family fJ = (fj)j∈J : O ∼> E of dynamics with same domain
O and order of fJ the (possibly infinite) number ω(fJ) = |J |. The subjacent set-valued
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map associated with fJ is then fJ : O −◦ E defined by

fJ(t) = ∪
j∈J

fj(t).

Definition 1.2. Let H = (P1, . . . , Pk) be k properties.

1. A dynamic is said to verify properties H if it has a representation which verifies
properties H.

2. A covering is said to verify properties H if all its elements verify properties H.

3. To say that a set-valued map F has properties H is to say that F is subjacent to at
least one covering which verifies properties H.

The properties ω(F ) = 1, ω(F ) < |N|, ω(F ) 6 |N| are said order properties.

The properties: F is simple, non singular, essentially unchanged, k-regular, are said
structure properties (see Definition 1.7)

We call then ”coverings of F” the coverings fJ of subjacent set valued map F and same
structure, order, and analytical properties than these assumed for F . We will denote
C(F ) their set.

In the same way, we call ”internal dynamics of F” the dynamics f such as f ⊂ F which

have same structure and analytical properties than these assumed for F . We will denote
I(F ) their set.

1.1.2. Application field

Case of functions (See Theorem 1.15). Any function f : O 7→ E defines an only
dynamic f . We can identify functions, single-valued dynamics and set-valued maps with
singleton image.

General case (See Theorem 1.16). Any set-valued map has coverings.

1.2. Theoretical support

1.2.1. Bases and macro germs

Definition 1.3. We call base any triple b = (n, V, µ) such as:

• n ∈ N∗, V ⊂ Rn compact, convex, /
◦

V 6= ∅

• dµ = fdλ / f > 0, C∞ on a neighbourhood of V and
∫

◦
V
dµ = 1.

n is the dimension of b and is denoted dim(b). We will denote the set of bases by B.

Comments. We have then
◦

V = V and µ(V −
◦

V ) = 0.

Definition 1.4. In a similar way of the germ notion [2], we say that two functions u
and v, from neighbourhoods of V to E, define the same b-macro germ if they coincide
on V . The set of macro germs of base b is, with the usual quotient rules, a vector space
and we will denote it Eb. Only if necessary we identify a macro germ Ûu with one of its
suitable representatives and we denotes it u : b 7→ E with x ∈ b for x ∈ V .
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Definition 1.5. Let b = (n, V, µ) be a base, k ∈ N.

We denote L(b) = L(b, E) the subspace of Eb made up of b-macro germs Ûu which a

representative u belongs to the Lebesgue space L1(
◦

V , dµ, E).

Modulo µ almost everywhere (µ a.e.) equality, it is a Banach space for:

‖Ûu‖b = inf
v∈Ûu∩L1(

◦
V ,dµ,E)

‖v‖
L1(

◦
V ,dµ,E)

= ‖u‖
L1(

◦
V ,dµ,E)

.

For Ûu ∈ L(b), we define the integral
∫

b
Ûudµ as the common value, when v belongs to

Ûu ∩ L1(
◦

V , dµ, E), of
∫

◦
V
vdµ. We can then identify

∫
b
Ûudµ and

∫
◦
V
udµ.

We denote Ek(b) the subspace of b-macro germs, said k-regular, which a representative
is of Ck class on a neighbourhood of V . It is a normed space as subspace of L(b).

1.2.2. Representations

Definition 1.6. We call parametrized macro germ of base b on O any function u(: t 7→
u(t| of domain O and images in Eb.

Therefore, if b′ is another base, we call respectively right extension and left extension of
u( by b′ the parametrized macro germs defined by

ub′(t| : (x, x′) ∈ b× b′ 7→ ub′(t|x, x
′) = u(t|x) and

b′u(t| : (x′, x) ∈ b′ × b 7→ b′u(t|x
′, x) = u(t|x).

Definition 1.7. We call representation of base b any parametrized macro germ r(: t 7→
r(t| which can be written in the form:

∀t : r(t| = i+ e(t| + s(t| where i ∈ Eb, e(t| ∈ E0(b),

s(t| = 0 µ a.e. and is bounded on b.

i, e( and s( are respectively the invariant, the evolution and the singularity of r( for the
breakdown [b, i, e(, s(] ≡ r(.

Therefore a representation is said to be simple, non singular, essentially unchanged, k-
regular, if it has a breakdown such as respectively: i = 0, s(t| = 0, e(t| = 0, e(t| ∈
Ek(b), ∀t.

1.2.3. Transfer equivalence relation

Definition 1.8. We call transfer from a base b = (n, V, µ) to a base b′ = (n′, V ′, µ′) any

C∞ transport from µb′ to µb, that is to say any function τ : Rn′
7→ Rn such as

• τ is C∞ on a neighbourhood of V ′ and τ(V ′) ⊂ V ,

• τ#. : u 7→ u ◦ τ is such as: ∀u ∈ L(b), τ#.u ∈ L(b′) and
∫

b′
τ#.udµ′ =

∫
b
udµ.

We will denote Tr(b, b′) their set [6].

Theorem 1.9.

1. Tr (b, b′) ◦ Tr (b′, b′′) ⊂ Tr (b, b′′)
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2. The inverse image by a transfer from b to b′ of a set with null µb-measure is of null
µb′-measure.

Proof. 1. is obvious.

2. follows from the property: if U is a borelian of Rn/U ⊂
◦

V : µb′(τ
−1(U)) = µb(U),

[6].

We have then the following main statement:

Theorem 1.10.

If dim(b) = dim(b′) then Tr(b, b′) 6= ∅.

Proof. Simple rewriting with the coverings terminology of the Caffarelli’s theorem of
the Transportation Theory [6].

Definition 1.11. We define the (transfer) equivalence relation between two parametrized
macrogerms u1(: O 7→ Eb1 and u2(: O 7→ Eb2 , denoted u1(∼ u2(, by: ∃b′j ∈ B, j =

1, 2 / dim(b1 × b′1) = dim(b2 × b′2), ∃τi ∈ Tr(b′j × bj , bi × b′i), j 6= i = 1, 2:

ui,b′i
(t| = τ#

i .b′juj(t| on bi × b′i, ∀t ∈ O.

where b× b′ = (n+ n′, V × V ′, µb ⊗ µb ′) denotes the product base.

Equivalence axioms check:

1. Reflexivity and symmetry are obvious.

2. Transitivity: Let t ∈ O, we put: u(t| = u, v(t| = v and w(t| = w .

If ub1 =b′1
v ◦ τ/τ ∈ Tr (b′1 × b′, b× b1) , dim (b′1 × b′) = dim (b× b1) and vb′2

=b′′1
w ◦

τ ′/τ ′ ∈ Tr (b′′1 × b′′, b′ × b′2) , dim (b′′1 × b′′) = dim (b′ × b′2) then: dim (b′1 × b′′1 × b′′) =
dim (b× b1 × b′2) and:

ub1×b′2
= (ub1)b′2

=
(

b′1
v
)

b′2
◦

(
τ × 1b′2

)

= b′1

(
vb′2

)
◦ τ × 1b′2

= b′1

(
b′′1
w

)
◦

(
1b′1

× τ ′
)
◦

(
τ × 1b′2

)

= b′1×b′′1
w ◦ τ ′′

with: τ ′′ =
(
1b′1

× τ ′
)
◦

(
τ × 1b′2

)
∈ Tr (b′1 × b′′1 × b′′, b× b1 × b′2) .

We have indeed:

Lemma. ∀b, b′, b′′ ∈ B, ∀τ ∈ Tr (b, b′) : τ × 1b′′ ∈ Tr (b× b′′, b′ × b′′) et 1b′′ × τ ∈
Tr (b′′ × b, b′′ × b′).
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Proof. ∀u ∈ L(b× b) :
∫

b′×b′′
u (τ(x′), x′′) dµb′×b′′ =

∫

b′′

(∫

b′
u (τ(x′), x′′)dµb′

)
dµb′′

=

∫

b′′

(∫

b

u (x, x′′)dµb

)
dµb′′

=

∫

b×b′′
u (x, x′′)dµb×b′′

because of Fubini’s theorem [x→ u(x, x′′)] ∈ L(b)µb′′ a.e. x
′′ ∈ V ′′o and similarly for

1b” × τ .

Theorem 1.12.

1. For any b, b′ and any u( we have: ub′(∼ u( and b′u(∼ u(.

2. If u1( ∼ u2(, then: u1(t|b1) = u2(t|b2), ∀t.

Proof. Let be t ∈ O and let’s put: u(t = u and ui(t = ui.

1. Let b” be an arbitrary base, we have: (ub′)b” =b′×b” u◦ τ2,3,1 and ub′×b” =b” (ub′)◦ τ3,2,1

with τ2,3,1 : (x, x′, x”) → (x′, x”, x) and, τ3,2,1 : (x, x′, x”) → (x”, x′, x). It follows that
ub′ ∼ u and in a similar way b′u ∼ u.

2. Let be b1, b
′
1 and τ : V×V1 → V ′

1×V
′ suitable: for (x, x1) ∈ V ×V1, u(x) = ub1(x, x1) =

b′1
v (τ(x, x1)) = b′1

v(x′1, x
′) = v(x′) ∈ im(v), it follows then that im(u) = im(v).

Definition 1.13. We say that a representation has properties H = (P1, . . . , Pk) if it
has a breakdown which has simultaneously properties H. A set of properties H is said
compatible if any representation equivalent to a representation which has properties H
has also properties H and the compatibility is said strong if therefore the validity of H
is actually independent from the considered breackdown.

Theorem 1.14. If a parametrized macrogerm u( on O and a representation r( on O
are equivalent, then u( is a representation. More precisely:

let be r(≡ [b, e( , s( ], u( of base b′ and τ ∈ Tr(b×b1, b
′
1×b

′) such as ub′1
(t| = τ#.b1r(t|, ∀t,

then

u(≡

[
b′,

∫

b′1

τ#.b1idµb′1
,

∫

b′1

τ#.b1e( dµb′1
,

∫

b′1

τ#.b1s( dµb′1

]
.

Therefore it follows that structures properties are compatible properties.

Proof. First let’s assume that e(t| is Ck, then (x′, x′1) 7→ b1e(t|τ(x
′, x′1)) is Ck and as

b′ × b′1 is compact, Lebesgue’s theorem on differentiability shows that the assignment
x′ 7→

∫
b′1

b1e(t|τ(x
′,x′1))dµb′1

is Ck and then belongs to Ek(b′).

On the other hand, let’s assume that: ∃A/µb′(A) > 0 and ∀x′ ∈ A,
∫

b′1
b1s(t|τ(x

′, x′1))dµb′1

6= 0 then: ∀x′ ∈ A, ∃Ax′

1 /µb′1
(Ax′

1 ) > 0 and b1s(t|τ(x
′, x′1)) 6= 0, ∀x′1 ∈ Ax′

1 , therefore:

µb′×b′1
({(x′, x′1) /b1s(t|τ(x

′, x′1)) 6=0}>0, then: µb′×b′1
(τ−1(x, x1) ∈ b×b1 /b1s(t|x, x1) 6= 0})

> 0, which following Theorem 1.9 contradicts the hypothesis on s( . We have then:∫
b′1

b1s(t|τ(x
′, x′1))dµb′1

= 0 µb′ a.e. x
′.
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Therefore as s(t| is bounded, ∀x′, x′1 7→ b1s(t|τ(x
′, x′1)) is also bounded, uniformely for

x′ ∈ b′. Then it is µb′1
-integrable on b′1 and its integral is bouded on b′.

It follows then from: ∀x′ ∈ b′1, u(t|x
′) = ub′1

(t|x′, x′1) =b1 r(t|τ(x
′, x′1)) =b1 i(τ(x

′, x′1)) +

b1e(t|τ(x
′, x′1)) +b1 s(t|τ(x

′, x′1)) that x′ 7→ b1i(τ(x
′, x′1)) is µb′1

-intergrable on b′1, ∀x
′ ∈ b′:

[x→
∫

b′1
b1i(τ(x

′, x′1))dµb′1
] ∈Eb′, and that: u(t|x′) =

∫
b′1
u(t|x′)dµb′1

=
∫

b′1
b1i(τ(x

′, x′1))dµb′1

+
∫

b′1
b1e(t|τ(x

′, x′1))dµb′1
+

∫
b′1

b1s(t|τ(x
′, x′1))dµb′1

for any x′ ∈ b′. The result on structure

follows immediately.

1.3. Examples

1.3.1. Case of functions

Theorem 1.15. Any function f : O 7→ E defines an only dynamic f . This dynamic is
therefore simple, non singular, infinitely regular, of arbitrary base.

We can identify functions, single-valued dynamics and set-valued maps with singleton
image.

Proof.

• Let b be an arbitrary base, r(≡ [b, e(], with e(t|x) = f(t), ∀t ∈ O, ∀x ∈ b, is a non
singular representation of {f}.

• Let r′( be an other representation of {f} of base b′.
We have: r′(t|x′) = f(t), ∀t ∈ O, ∀x′ ∈ b′. Then for example: rb′(t|x, x

′) =

br
′(t|1b×b′(x, x

′)) and [1b×b′ : (x, x′) → (x, x′)] ∈ Tr(b × b′, b × b′), equivalence
between r( and r′( follows immediately.

1.3.2. General case

Theorem 1.16.

1. Any set-valued map has simple, non singular, infinitely regular coverings.

2. If F ⊂ G are two set-valued maps from O to E, any covering of F can be completed
in a covering of G and therefore I(G) ⊂ I(F ).

Proof. 1. Let be J = im(F ) = ∪t∈O F (t) and let t → y(t) be an arbitrary selection of
F .

Let ∀y ∈ J, fy : O → E be defined by fy(t) =

{
ly if y ∈ F (t),

y(t) if not.

(fy)y∈J following the previous result can be identified with a simple, non singular, in-
finitely regular, covering of arbitrary basis b and has for subjacent set-valued map F .

2. Immediate.

1.3.3. σ-compact varieties

Definition 1.17. We call Ckσ-compact variety of E, k ∈ N, any subset W of E which
can be written in form of a union, at most countable, of compact Ck varieties Wi of finite
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dimension such as:

dimW = sup
i

dimWi < +∞.

We have then:

Theorem 1.18. Let F : O −◦ E be a set-valued map such as:

∃M,K > 0, ∀t, F (t) Ck σ-compact variety / K ≤ k and dimF (t) ≤M

then F has a simple, non singular, K-regular covering of order at most countable.

Proof. Let be: ∀t ∈ O, m(t) = dimF (t) and m = maxt∈O m(t) ≤ M , Bm = {x ∈ Rn/

‖x‖ < 1}, and Bm
k =

(
1 − 1

k

)
Bm

k .

Let be t fixed: F (t) = ∪Wj , dimWj = mj , j = 1, ...j(t).

For any y of Wj there is a CK-diffeomorphism ϕjy from an open ball Bj(xy, 2εy) of Rm

into an open neighbourhood of y in Wj . Let’s put: Oy = ϕj
y (Bj(xy, εy)). The family

{Oy} made up an open cover of Wj and consequently, by compacity, we can extract from
{Oy} a finit cover{Oyi

} = {Oj,i}i=1,...,kj
.

By homothetie-translation ζi,j we can then assume that: ∀i = 1, ...kj B(xyi
, εyi

) = πj ◦
ζi,j (Bm) where πj is the canonical projector from Rm, identified to Rmj × Rm−mj , on

R
mj . Let then φi,j defined by φi,j = ϕj

i ◦ πj ◦ ζi,j on a neighbourhood of Bm and:

[bk, ri,j,k(]i,j : bk = (m,Bm
k ,

1
vol(Bm

k
)
λ) and ∀t, ri,j,k(t| = φi,j|Bm

k+1

where λ is the Lebesgue-measure on Rm and with the convention: ri,j,k(t| = r1,1,k(t| if

φi,j is not defined, (j > j(t) or i /∈ [[1, kj]]). Then rl,j,k(t| is Ck on a neighbourhood of
Bm

k , |{(i, j, k)}| ≤ |N| and ∪i,j,k ri,j,k(t|bk) = ∪i,j Oj,i = F (t). The proof is complete.

1.3.4. Caratheodory parametrization

Definition 1.19. A representation [b, r(] is said to be k(t)-Lipschitz on its base if:

∀t, ‖r(t|x1) − r(t|x2)‖ ≤ k(t) ‖x1 − x2‖ , ∀x1, x2 ∈ b.

Theorem 1.20. Let be: F : ]a, b[ × O −◦ Rn with convex images, C : ]a, b[ −◦ O, Bn

the closed unit ball of Rn.

1. If F is measurable-Lipschitz or of Carathéodory on {C(tα}α∈]a,b[ with compact im-

ages, then F has a simple, non singular covering of order 1, of base b = (n,Bn,
1

vol(Bn)
λ), k(α, t)- Lipschitz on its base for any (α, t) ∈ ]a, b[ ×O.

2. If F is measurable-Lipschitz on {C(α)}α∈]a,b[ with closed images, then F is of order

at most countable and has a simple, non singular covering fN, of base b, uniformly
c-Lipschitz (∗) on its base for any (α, t) ∈ ]a, b[ ×O.
(∗) c independent of k ∈ N.

Proof. The proofs are simple re-writing of the classical statements on Caratheodory
parametrization given in [1], [3]
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2. Algebra

To can tackle the core of my work, it is beforehand necessary to define in coverings space
elementary algebra rules straight related to set-valued maps rules algebra. We only
consider here the most usual operations, but nevertheless, most operations on set-valued
maps can be dealed in similar ways to which follows.

Let f, g : O ∼> E be dynamics, fI , gJ : O ∼> E coverings, and F,G : O −◦ E
set-valued maps. Let be [b, r( ] = [b, i, e(, s( ] ∈ f and [b′, i′, r′( ] = [b′, e′(, s′( ] ∈ g.

2.1. Vector combinations

Theorem 2.1. Let α, β, be two scalars, we define the vector combination αf + βg
as the dynamic of which a representation is αrb′( +βbr

′( of breakdown [b × b′, αib′ +
βbi

′, αeb′(+βbe
′(, αsb′(+βbs

′( ]. We have then:

f + g = f + g.

Therefore if fI and gJ are respectively coverings of F and G, αfI + βgJ = (αfi +
βgj)(i,j)∈I×J is a covering of αF + βG.

Common stucture and order properties are kept.

The theorem follows directly of:

Lemma (Compatibility).

If u ∼ u1 and v ∼ v1, then: ub′ +b v ∼ u1b′1
+b1 v1

with the usual convention: [b, u(t] = u, [b′, v(t] = v, ...

Proof. We have: u1b̆1
= b̆u◦τ / τ : b1×b̆1 7→ b̆×b and v

1b̆′1
= b̆′v◦τ

′ / τ ′ : b′1×b̆
′
1 7→ b̆′×b′.

Let be the canonical projectors π : b̆× b 7→ b, π′ : b̆′ × b′ 7→ b′, π̆ : b1 × b̆1 × b̆′1 7→ b1 × b̆1
and π̆′ : b′1 × b̆′1 × b̆1 7→ b′1 × b̆′1.

π and π′ belong to Tr(b, b̆ × b) and Tr(b′, b̆′ × b′) respectively, therefore δ = π ◦ τ and

δ′ = π′ ◦ τ ′ belong to Tr(b, b1 × b̆1) and Tr(b′, b′1 × b̆′1), φ = δ ◦ π̆ ,φ′ = δ′ ◦ π̆′ belong to

Tr(b, b1 × b′1 × b̆1 × b̆′1) and Tr(b′, b1 × b′1 × b̆1 × b̆′1). Let’s show that (φ, φ′) belongs to

Tr(b× b′, b1 × b′1 × b̆1 × b̆′1):

Let be ζ ∈ L(b× b′), we put Ω = V1
o ×V ′

1
o × V̆1

o
× V̆ ′

1

o
. We have then

∫

Ω

ζ (φ, φ′)dµΩ =

∫
o

V ′
1 ×

o

V̆ ′
1

∫
o

V1 ×
o

V̆1

ζ (δ, δ′)dµb1×b̆1
dµ

b′1×b̆′1

=

∫
o

V ′
1 ×

o

V̆ ′
1

∫
o

V

ζ (x, δ′)dµb dµb′1×b̆′1

=

∫
o

V ′

∫
o

V

ζ (x, x′)dµb dµb′

=

∫
o

V ×
o

V ′

ζ (x, x′)dµb×b′.
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Then we verify immediately that:

(
u1b′1

+ b1v1

)
b̆1×b̆′1

= (ub′ + bv) ◦ (φ, φ′) .

The equality of dimensions is obvious and the result follows by symmetry. Therefore if
u( and v( are representations, it is immediate that ub′ + bv is a representation of same
structure.

Theorem 2.2 (Convexity). If a set-valued map F : O −◦ E has convex images, the
set of its coverings of fixed order and structure properties and the set I(F ) of its internal
dynamics are convex.

Proof. We have first: ∀F : O −◦ E, ∀fJ , f̃ eJ covering of F, ∀λ ∈ [0, 1] : F (t) ⊂ λfJ(t) +

(1 − λ)f̃ eJ(t).

Actually: ∀y ∈ F (t), ∃j, j̃ / y ∈ fj(t) and y ∈ f̃ej(t), then: y = λy + (1 − λ)y ∈
(
λfj + (1 − λ)f̃ej

)
(t) =

(
λfj + (1 − λ)f̃ej

)
(t) ⊂

(
λfJ + (1 − λ)f̃ eJ

)
(t).

On the other hand, if F (t) is convex:

(
λfJ + (1 − λ)f̃ eJ

)
(t) = λfj(t) + (1 − λ)f̃ej(t) = λF (t) + (1 − λ)F (t) ⊂ F (t).

The stability of order and structure is obvious.

Theorem 2.3 (Convexity and order). Let’s assume that the set-valued map F :
O −◦ E is of finite order and has one of the following properties:

• F has convex images

• F has C-convex images: F = fI with ∀i, fi has convex images

then co(F ) is of order 1.

Proof. Let ¸[bi, ri( ]i=1,...,m be a covering of F .

Let be V = {α = (αj)j=1,...,m−1/ ∀j, αj ≥ 0, |α| = α1 + · · · + αm−1 ≤ 1}. V is compact,

convex, of non empty interior, and bo = (m− 1, V, 1
vol(V )

λ) is a base.

It follows that [b, r( ] = [bo × b1 × · · · × bm, r( ] : r(α, x1, . . . , xm) = α1r1(t|x1) + · · · +
αm−1rm−1(t|xm−1) + (1− |α|)rm(t|xm) defines a macrogerm of subjacent set valued map
F .

We have sill to prove that r( is a representation. Let be m = 2, [b, r( ] = [(1, [0, 1], dλ)×
b1 × b2, r( ] with r(t|α, x, x′) = αr1(t|x) + (1 − α)r2(t|x

′).

We have r(= i+ e(+s( with i = αi1 + (1 − α)i2 and so on... If ej(t|, j = 1, 2 are Ck so
is e(t|.

As s(t|α, x, x′) = αs1(t|x)+(1−α)s2(t|x
′), s(t| is bounded. Therefore: s(t|−1 (E − {0}) ⊂

[0, 1]×s1(t|
−1 (E − {0})×b2 ∪ [0, 1]×b1×s2(t|

−1 (E − {0}), then: λ⊗µb1⊗µb2 (s(t|−1 (E−
{0})) ≤ µb1 (s1(t|

−1 (E − {0})) + µb2 (s2(t|
−1 (E − {0})) = 0 + 0.
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It follows that s(t| = 0µb a.e.; r( is then a representation. The general case follows by
immediate recursion on m.

Theorem 2.4 (Relaxation). If we call convexified of a covering fI the covering co(fI)
defined by

co(fI) =

{ ∑

k=1,...,m

αikfik ; ik ∈ I, αik > 0,
∑

k=1,...,m

αik = 1

}

we have then: if fI is a covering of F , then co(fI) is a covering of co(F ).

Structure properties are kept.

Proof. It follows from Theorem 2.1 that co(fI) is a covering and that structure prop-
erties are kept. As it is possible to have fi1 = · · · = fik , we have therefore co(fI) =

co(F ).

2.2. Algebraic product

Theorem 2.5. If E is an algebra, we define the algebraic product f.g of two simple
dynamics as the simple dynamic of which a representation is rb′( br

′(, of breakdown [b×
b′, eb′( be

′(, sb′( br
′(+bs

′( rb′( ]. We have then:

f.g = f.g .

Therefore if fI and gJ are respectively coverings of simple set-valued maps F and G,
fI .gJ = (fi.gj)(i,j)∈I×J is a covering of F.G.

Common stucture and order properties are kept.

Proof. The proof of compatibility is a strict transcription of proof of Theorem 2.1
with same transfer operators. The check of characteristics of representations follows
immediately from the compacity of the basis and the k-regularity.

2.3. Cartesian product

Theorem 2.6. We define the cartesian product of f by g as the dynamic f × g which
representation is (t→ r1(t| × r2(t| ) = [b1 × b2, t→ e1(t| × e2(t|, t→ s1(t| × s2(t|] and
we have then:

f × g = f × g .

Therefore if fI and gJ are respectively coverings of set-valued maps F and G, fI × gJ =
(fi × gj)(i,j)∈I×J is a covering of F ×G.

Structure and order proprieties are kept.

The theorem follows directly of:

Lemma (Compatibility). If (τ1, τ2) ∈ Tr(b′1, b1)×Tr(b
′
2, b2), then [τ1×τ2 : (x1, x2) →

(τ1(x1), τ2(x2))] ∈ Tr(b′1 × b′2, b1 × b2).
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Proof. Following Fubini’s theorem we have:

∀ψ ≥ 0,

∫

b1×b2

ψ(τ1, τ2)dµb1×b2 =

∫

b2

(

∫

b1

ψ(τ1, τ2)dµb1) dµb2

=

∫

b2

(

∫

b′1

ψ(x′1, τ2)dµb′1
) dµb2

=

∫

b′1

(

∫

b2

ψ(x′1, τ2)dµb2) dµb′1

=

∫

b′1

(

∫

b′2

ψ(x′1, x
′
2)dµb′2

) dµb′1

=

∫

b′1×b′2

ψdµb′1×b′2

and the result follows [6]. Validity of other transfer axioms is immediate.

Theorem 2.7. If we call kth-coordinate-covering of a covering fI : O ∼>E =×j=1,...nEj

the covering fk
I = (πk ◦ fi)i∈I where πk is the kth projector of E, and if fI is a covering

of a set-valued map F , then fk
I is a covering of F k = πk ◦ F .

Common structure and order properties are kept.

Proof. That follows immediately of general definitions.

2.4. Boolean structure

It is obvious that:

1. If fI and gJ are respectively coverings of F and G, fI ∪ gJ is a covering of F ∪ G.
Common stucture and order properties are kept and therefore: I(F ) ∪ I(G) ⊂
I(F ∪G).

2. If F∩G is of domain O, any of its covering can be written as intersection of coverings
of F and G and in particular: I(F ) ∩ I(G) = I(F ∩G).

2.5. Chain

Notations. Let be F : O ⊂ T −◦ T ′, G : O′ ⊂ T ′ −◦ E / F (O) ⊂ O′ and (G ◦ F ) (t) =
∪s∈F (t)G(s), fI and gJ coverings of F and G respectively.

Theorem 2.8 (Re-indexing process).

If fI = ¸[bi, ri( ]i∈I , then {t 7→ (gj(ri(t|x))i∈I,j∈J,x∈bi
} defines a covering of G ◦ F in-

dependent of the system of representations of fI used. Structure properties of G are
kept.

Proof. Only the independence of [bi, ri( ]i∈I require to be proved.

Let [b′i, r
′
i( ]i∈I be an other system of representations of fI . Let be i ∈ I, for suitable

b̆i, b̆′i and τi : b′i × b̆′i 7→ b̆i × bi, we have: r′i(t|x
′) = r(t|πbi

◦ τi(x
′, x′o)), ∀t, x

′ ∈ b′i, with x′o
arbitrary fixed in b̆′i. Then : {t 7→ (gj(r

′
i(t|x

′))i∈I,j∈J,x′∈b′i
} ⊂ {t 7→ (gj(ri(t|x))i∈I,j∈J,x∈bi

}.

The result follows by symmetry.
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Definition 2.9 (C-chain process). If [b, r( ] and [b′, r′( ] are two representations re-
spectively on O and O′ such as ∀t, r(t|b) ⊂ O′, we say that r′( is C-chainable by r(
if the parametrized macro germ on O defined by (x, x′) ∈ b × b′ 7→ (r′ ⊙ r)(t|x, x′) =
r′(r(t|x)|x′), ∀t ∈ O, is a representation.

Theorem 2.10. If r′( is C-chainable by r(, any representation equivalent to r′( is C-
chainable by any representation equivalent to r(.

Proof. Let be r1(∼ r( and r′1(∼ r′(: r1b̃1(t|x1, x̃1) = ebr(t|τ(x1, x̃1)) and r′1b̃
′
1(t

′|x′1, x̃
′
1) =

eb′r
′(t′|τ ′(x′1, x̃

′
1)). We have:

(r′1 ⊙ r1) eb1× eb′1
(t|x1, x

′
1, x̃1, x̃′1) = (r′

1 eb′1
⊙ r1 eb1

)(t|x1, x̃1, x
′
1, x̃

′
1)

= r′
1 eb′1

(r1 eb1
(t|x1, x̃1)|x

′
1, x̃

′
1)

= eb′r
′(ebr(t|τ(x1, x̃1))|τ

′(x′1, x̃
′
1))

= (eb′r
′ ⊙eb r)(t|(τ ⊗ τ ′)(x1, x̃1, x

′
1, x̃

′
1))

= eb′×eb(r
′ ⊙ r)(t|(τ ⊗ τ ′) ◦ σ(x̃′1, x̃1, x1, x

′
1)

with obviously σ = (3, 2, 4, 1) and (τ ⊗ τ ′) ◦ σ ∈ Tr(b̃′ × b̃× b× b′; b̃′1 × b̃1 × b1 × b′1).

Equivalence of macro germs follows by symmetry and we deduce then the result from
Theorem 1.14.

Definition 2.11. We say that a dynamic g : O′ ∼> E is C-chainable by a dynamic
f : O ∼> O′ if their respective representations are C-chainable (in same order) and we
define the C-chain g ◦ f : O ∼> E as the associated equivalence class.

Therefore we define the C-chain gJ ◦fI of suitable coverings by gJ ◦fI = (gj ◦fi)(i,j)∈I×J .

Theorem 2.12. If gJ : O′ ∼> E is C-chainable by fI : O ∼> O′ and are respectively
coverings of set valued maps G : O′ −◦ E and F : O −◦ O′, the C-chain gJ ◦ fI is a
covering of the chain G ◦ F .

Proof.

gJ ◦ fI(t) = ∪
(i,j)∈I×J

gj ◦ fi(t) = ∪
(i,j)∈I×J

rj
g(r

i
f(t|b)|b

′)

= ∪
j∈J

∪
i∈I

∪
s∈fi(t)

gj(s)

= ∪
s∈F (t)

G(s)

= G ◦ F (t).

Theorem 2.13. Let be fI : O ∼> O′ ⊂ T ′ simple k-regular and gJ : O′ ∼> E. If we
assume that:

• fI is non singular or dimT ′ <∞,

• gJ has a a system of representations [b′j , i
′
j, e

′
j( , s

′
j( ]j∈J such as (ζ, x′) 7→ e′(ζ, x′) is

Ck and (ζ, x′) 7→ s′(ζ, x′) is bounded on every K × b′ with K ⊂ O′ compact,
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then gJ is C-chainable by fI and the C-chain gJ ◦ fI is k-regular.

Proof. Let be |I| = |J | = 1, fI = f = ˇ[b, 0, e( , s( ], gJ = g = ˇ[b′, i′, e′( , s′( ]. We
have then: E(t| : (x, x′) 7→ e′(e(t|x)|x′) and S(t| = S1(t| + S2t| with S1(t| : (x, x′) 7→
e′(r(t|x)|x′) − e′(e(t|x)|x′) and S2(t| : (x, x′) 7→ s′(r(t|x)|x′).

As x 7→ e(t|x) and (ζ, x′) 7→ e′(ζ, x′) are Ck so is E(t|.

We have also: if f is non singular, that is to say s(= 0, then: S1(= 0; if not: µb×b′{(x, x
′)/

S1(t|x, x′) 6= 0} ≤ (µb ⊗ µb′)({x/ s(t|x) 6= 0} × b′) = 0 and, as then dimT ′ < ∞,

e(t| continuous and s(t|b) bounded: e(t|b) and e(t|b) − s(t|b] are compact. Then, as

(ζ, x′) 7→ e′(ζ, x′) is continuous, e′(e(t|b)− s(t|b]|b′)− e′(e(t|b)|b′) is compact and then its
subset S1(t|b× b′) is bounded. It follows that S1( is a singularity.

In the same way S2(t|b × b′) ⊂ s′((e(t|b) + s(t|b)|b′) is bounded by hypothesis on s′(

because e(t|b) + s(t|b) is compact.

Therefore let be: β(x, x′) = 1 if S2(t|x, x′) 6= 0, 0 if not. We have:

µb×b′{(x, x
′)/ S2(t|x, x′) 6= 0} =

∫

b×b′
β(x, x′)dµb ⊗ dµb′

=

∫

b

∫

b′
β(x, x′)dµb′dµb

=

∫

b

µb′{x
′/ s′(r(t|x)|x′) 6= 0}dµb = 0.

Then S2( is also a singularity and so is therefore S(.

It follows that [b× b′,b i
′, E( , S( ] is a k-regular representation of g ◦ f .

The transition to the general case comes down to: ri(= r( and r′j(= r′( for any (i, j).

Theorem 2.14.

1. Any covering of any set-valued map G : O′ −◦ E is C-chainable by any function
F = f : O 7→ O′ and structure properties of G are kept.

2. Let G = g : O′ 7→ E be a Ck-function and F : O −◦ O′ be a k-regular set-valued
map, if one of the following hypthesies is verified:
• g is affine,
• F simple non singular,
• F simple and T ′ of finite dimension,
then g is C-chainable with any covering of F and structure properties of F are
kept.

Proof. 1. If gJ = ¸[bj , rj( ]j∈J ,
ˇ[bj , t 7→ rj(f(t)| ]j∈J is a covering of G ◦ F and the result

is then immediate.

2. g(t′) = l(t′) + c with l ∈ L(T ′, E), c ∈ E, fj = ˇ[bj , ij, ej(, sj( ]: g ◦ rj(t|x) =

l.(ij(x)+c)+l◦ej(t|x)+l◦sj(t|x) and l◦ej(t| is Ck if ej(t| is Ck. Independently we have:
l ◦ sj(t|x) 6= 0 ⇒ sj(t|x) 6= 0 and then µj {x / l ◦ sj(t|x) 6= 0} ≤ µj {x / sj(t|x) 6= 0} = 0.
Therefore l ◦ sj(t| is bounded.

The two other cases are immediate applications of Theorem 2.13.
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3. Continuity

The fundamental idea used here, then systematically in all followings parts, is to charac-
terize each coverings analytical concept by the corresponding classical one-one concept
on the (class of its) ”total evolution”, function from O to Lebesgue’s space. This unicity
for all analytical domains and the simplicity of the process is, in itself, one of its main
properties. After to have treated the stict extension point of view, I will study relations
with Kuratowsky semi-continuity then the continuous selections existence and, to end,
I will give some results on chains.

3.1. Basics

Theorem 3.1. Any representation [b′, r′( ] equivalent to a representation [b, r( ] of total
evolution eT (: O 7→ L(b) continuous at to is of total evolution e′T (: O 7→ L(b′) continuous
at to .

Remark. Let be r(≡ [b, i, eT ( ] : eT (t| − eT (to| = r(t| − r(to| and then is independent of
the breakdown.

Proof. r(≡ [b, i, eT ( ] : eT (t| − eT (to| = r(t| − r(to| is independent from the breakdown.

Let be eT (: O 7→ L(b) continuous at to and r′(≡ [b′, i′, e′T ( ] such as r′(∼ r(. We have for
any suitable b1, b

′
1 and τ : r′b′1

(t| = τ#.b′1r(t| ∀t. Then: e′T,b′1
(t|−e′T,b′1

(to| = r′b′1
(t|−r′b′1

(to| =

τ#.b′r(t| − τ#.b′r(to| = τ#. (b1eT (t| −b1 e(to|) and by transportation:

‖e′T (t| − e′T (to| ‖b′ =

∫

b′×b′1

∥∥∥e′T,b′1
(t| − e′T,b′1

(to|
∥∥∥ dµb′×b′1

=

∫

b′×b′1

‖ b1eT (t| −b1 eT (to| ‖ ◦ τdµb′×b′1

=

∫

b1×b

‖ b1eT (t| −b1 eT (to| ‖ dµb1×b

= ‖eT (t| − eT (to| ‖b .

Definition 3.2. We say that a representation r(= [b, i, eT ( ] is continuous at to (respec-
tively on O) if it has the strong compatible property: t 7→ eT (t is continuous at to (resp.
on O) as function from O to L(b).

The continuity of dynamics, coverings, and set-valued maps, follows then general rules
(Definition 1.2).

Theorem 3.3. If f : O 7→ E is a function, it is equivalent to say:

1. the function f is continuous at to (resp. on O),

2. the dynamic f : O ∼> E is continuous at to (resp. on O),

3. the set-valued map {f} : O −◦ E is continuous at to (resp. on O).

Proof. We have actually for a function f : r(t|x) = eT (t|x) = f(t), ∀t ∈ O, x ∈ b and
then: ‖eT (t| − eT (to| ‖b = ‖f(t) − f(to)‖.
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Theorem 3.4.

1. The continuity of coverings and set-valued maps is stable by vector combination,
union and, in case of simplicity, by algebraic product.

2. The continuity is stable by relaxation.

3. If E = ×k=1,...nEk, it is equivalent to say fI (resp. F ) is continuous and for any

k = 1, ...n its kth coordinate fk
I (resp. F k) is continuous.

Proof. The results follow respectively from Theorem 2.1 for combinations, Theorem 2.4
for relaxation and Theorems 2.6 and 2.7 for cartesian product.

For algebraic product, as representations are simple, we have: r(t|x)r′(s|x′) −
r(to|x)r

′(so|x
′) = eT (t|x) (e′T (s|x′) − e′T (so|x

′)) + e′T (so|x
′) (eT (t|x) − eT (to|x)).

The result follows then from Theorem 2.5.

Union is obvious.

3.2. Semi-continuity in sense of Kuratowski [1], [3]

Theorem 3.5. Any simple non singular set-valued map F : O −◦ E which is continuous
at to is lower semi-continuous (l.s.c.) at to.

Proof. ω(F ) = 1 : f simple non singular / f = F . Let be y ∈ f(to). Let’s assume

that d(y, f(t)) 9 0 when t → to: ∃ε > 0, ∃tn → to / d(y, f(tn)) ≥ ε, ∀n, or again:

d(y, yn) ≥ ε, ∀n, ∀yn ∈ f(tn).

Let r(≡ [b, e( ] be a representation of continuous evolution of f : ‖e(tn| − e(to|‖b → 0.

Therefore: there is an extracted tν / e(tν |x) → e(to|x)µb a.e. x. As r(to| = e(to| is contin-

uous at any point of b the set
{
z ∈ f(to) / ∃xz ∈ r(to|

−1z), zν = r(tν |xz) → r(to|xz) = z
}

is dense in f(to).

Therefore: β > 0, ∃zβ ∈ f(to) / ‖zβ − y‖ < β and yβ,ν = r(tν |xβ) ∈ f(tν) → r(to|xβ) =
zβ.

Then ∀β < ε/2, ∃νβ / ν ≥ νβ ⇒ ‖yβ,ν − zβ‖ < β and therefore: ‖yβ,ν − y‖ ≤ ‖yβ,ν − zβ‖
+ ‖zβ − y‖ < 2β < ε which contradicts the definition.

We have therefore [1], [3]: ∀y ∈ f(to), limt→Oto d(y, f(t)) = 0, it is to say f(to) ⊂

lim inft→Oto f(t) and then f = F l.s.c. at to.

General case: fJ simple non singular / fJ = F . It follows from the case ω(F ) = 1

that fJ is l.s.c. at to, ∀j ∈ J . Therefore: ∀ open set U/U ∩ (to) 6= ∅, fj
−1(U) is open.

Let U be an open set /U ∩ F (to) 6= ∅ : F−1(U) = ∪j∈J / U∩fj(to)6=∅ fj
−1(U) is then open

and therefore F is l.s.c. at to.

Theorem 3.6. Any set-valued map F : O −◦ E of finite order which is continuous at
to is stochastically upper semi-continuous at to in the sense that:

∀˚[b, rj( ]j∈J ∈ C(F ), ∀ε > 0, lim
t→to

µb {x ∈ b / ∃j, rj(t|x) /∈ B (F (to), ε)} = 0.
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Proof. Let be to = 0 and let’s assume that the property is false: ∃˚[b, rj( ]j∈J ∈ C(F ), ∃ε >

0, ∃α > 0, ∃tn → 0, µb {x ∈ b / ∃j, rj(tn|x) /∈ B (F (0), ε)} ≥ α, ∀n.

Let be J = [[1, k]]: An = {x ∈ b / ∃j, rj(tn|x) /∈ B (F (0), ε)} = ∪j∈J A
j
n /A

j
n = {x ∈ b,

rj(tn|x) /∈ B (F (0), ε)}.

Let’s assume that: ∀j, limn µb(A
j
n) = 0 then ∃N / ∀n ≥ N : µb(A

j
n) ≤ α/2k, ∀j. It

follows: µb(An) ≤
∑

j µb(A
j
n) ≤ k.α/2k < α which is absurd.

Therefore, let be jo / limn µb(A
jo
n ) = 0. We have then: ‖rjo

(tn| − rjo
(0| ‖b ≥

∫
Ajo

n
‖rjo

(tn| x)

−rjo
(0|x)‖ dµb ≥

∫
Ajo

n
ε.dµb ≥ ε.α/2k, ∀n, which contradicts the hypotheses limt→0‖rjo

(tn|

−rjo
(0| ‖b = 0.

3.3. Continuous selections

Theorem 3.7.

1. Any simple non singular continuous set-valued map F : O −◦ E of locally compact
domain and closed convex images has a continuous selection ϕ such as ϕ(to) = yo
at any to and any yo in F (to).

2. A set-valued map F : O −◦ E of locally compact domain has a continuous selection
if, and only if, it has a simple non singular continuous internal dynamic f : O ∼>
E with convex images.

Proof. The direct properties are immediate consequences of Michael’s Theorem [1], [3]
and Theorem 3.5. For the reciprocal proof of 2. we put f = ϕ, the result follows then
from Theorem 1.15.

Theorem 3.8. A set-valued map F : O −◦ E has a continuous selection ϕ at to such as
ϕ(to) = yo if, and only if, yo is a uniformity point of F at to in the sense that F has an
internal dynamic f : O ∼> E which is continuous at to and such as:

f = ˙[b, r( ] / ∃xo ∈ b : r(to|xo) = yo and r(t| : b 7→ E

continuous at xo uniformly for t near to.

Therefore U(to) = {x ∈ b/ r(to|xo) uniformity point at to} is open in b.

Proof. Let be f = ˙[b, r( ], f ⊂ F, xo ∈ b : r(to|xo) = yo, W a neighbourhood of to such
as:

∀ε > 0, ∃η > 0, ∀t ∈ W, ∀x ∈ b ‖x− xo‖ < 2η : ‖r(t|x) − r(t|xo)‖ <
ε

6
.

∀x1 ∈ b, ‖x1 − xo‖ < η, ∀x ∈ b, ‖x− x1‖ < η, ∀t ∈ W , then ‖r(t|x) − r(t|x1)‖ ≤
‖r(t|x) − r(t|xo)‖ + ‖r(t|xo) − r(t|x1)‖ <

ε
3
. It follows that U(to) is open in b.

Therefore as b is convex of nonempty interior we have µb(b ∩ {x, ‖x− xo‖ < η}) > 0.

Let’s show then that t 7→ r(t|xo) is continuous at to:

let be tν → to and let’s assume that there are ε > 0 and an extracted tβ : ‖r(tβ|xo)
−r(to|xo)‖ ≥ ε.
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As tβ → to : ∃βo/ ∀β ≥ βo, tβ ∈ W and then ∀x ∈ b/ ‖x− xo‖ < η, / ∀β ≥ βo:

‖r(tβ|x) − r(to|x)‖

≥ ‖r(tβ|xo) − r(to|xo)‖ − ‖r(tβ|x) − r(tβ|xo)‖ − ‖−r(to|x) + r(to|xo)‖

≥ ε−
ε

3
−
ε

3
=
ε

3

and:

‖r(tβ| − r(to|‖b ≥

∫

b∩‖x−xo‖<η

‖r(tβ|x) − r(to|x)‖ dµb ≥ µb(b ∩ {x, ‖x− xo‖ < η}) <
ε

3
.

Then tβ → to and ‖r(tβ| − r(to|‖b 9 0 which contradicts the continuity of f .

Therefore t 7→ ϕ(t) = r(t|xo) defines a continuous selection of F at to.

The reciprocal proof is actually identical to the reciprocal proof of Theorem 3.7.

3.4. Chain rules

Let be fI : O ∼> O′ ⊂ T ′ of subjacent set-valued map F and gJ : O′ ∼> E of subjacent
set-valued map G.

Theorem 3.9.

1. Let’s assume that:
• fI is a ”continuous functions stream” at to in the sense it has a system of

representations [bi, ri( ]i∈I which verifies the strongly compatible property: t →
ri(t|x) is continuous at to for any x ∈ bi and any i ∈ I

• gJ is continuous on its domain,
then G ◦ F is continuous at to.

2. Let’s assume that fI and gJ verify hypthesies of Theorem 2.13 and that:
• fI has a system of representations [bi, ri( ]i∈I of evolution ei( such as (t, x) 7→

e(t|x) wich is continuous at to uniformly for x ∈ b, ∀i ∈ I,
• gJ is uniformly continuous on O′,
then gJ is C-chainable by fI and therefore gJ ◦ fI and G ◦ F are continuous at to.

Proof. 1. The compatibility is obvious. The result on continuity follows immediately
from the re-indexing process Theorem 2.8,

2. gJ is C-chainable by fI following Theorem 2.13. Therefore following Theorem 2.10
we can then choose to use systems of representations which verify specific hypothesies
of the proof.

Let be (i, j) ∈ I × J and tν → to.

Following hypothesies: ∀ε > 0, ∃η > 0, ∃νo/ ∀ν ≥ νo, ‖ri(tν |x) − ri(to|x)‖ < η, ∀x ∈ bi
and then: ‖e′j(ei(tν |x) − e′j(ei(to|x)‖b′j

< ε, ∀x ∈ bi. Then we have for representations
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defined in Theorem 2.13:

‖Ei,j,T (tν | −Ei,j,T (to| ‖b×b′ = ‖Ei,j(tν | − Ei,j(to| ‖b×b′

=

∫

b

∫

b′
‖e′j(ei(tν |x)|x

′) − e′j(ei(to|x)|x
′)‖dµb′dµb

=

∫

b

‖e′j(ei(tν |x) − e′j(ei(to|x‖b′dµb

≤

∫

b

εdµb ≤ ε

Theorem 3.10.

1. Let be G : O′ −◦ E ′ a continuous set valued map and F = f : O 7→ O′ a continuous
function, then G ◦ f is continuous.

2. Let be G = g : O′ 7→ E ′ a Lipschitz function near to and F : O −◦ O′ a continuous
set valued map. Let’s assume that F and g verify hypothesies of Theorem 2.14 2.,
then g ◦ F is continuous at to.

Proof. 1. It is enough to consider the covering obtained in the proof of Theorem 2.14 1.
and the result follows.

2. Following Theorem 2.14 2. only the continuity is still to be proved. For that we con-

sider the covering ˛[bi, Ei,T ( ]i∈I = ˇ[bi, g ◦ ei( , g ◦ ei,T (−g ◦ ei( ]i∈I of g◦F where˛[bi, ei,T ( ]i∈I

is a suitable covering of F and we have:

‖Ei,T (t| ‖b =

∫

b

‖g(e(t|x) − g(e(to|x)‖dµb ≤ k‖e(t| − e(to| ‖b.

The result follows.

4. Differentiability

The obvious difficulty due to the extension process used in differentiability context is
purely apparent as it is showed in the coherence theorem given in first. To start I enlist
basics of the extended differentiability concept then, in a second time, I will shortly study
relation between differentiability and contingent derivatives. To end I present extensions
of partial and high order differentials then, in a way related to the Thom’s ”multijets”
idea, extension of differential operators and some of their applications such as Taylor’s
theorem and chains formulae.

T a normed space.

4.1. Basics

Let be k ∈ N. The coherence of the notion is based on the following theorem:

Theorem 4.1.
Ek(b,L(T,E)) ⊂> L(T, Ek(b, E)).
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Therefore, if dim(T ) < ∞: Ek(b,L(T,E)) ≃ L(T, Ek(b, E)) where L denotes the space
of continuous linear operators.

Proof. First let be u. ∈ Ek (b,L(T,E)) : ∀t, [x 7→ u.t|x)] ∈ Ek(b, E) because x 7→
u.‖x) is Ck uniformly on every bounded set of T and therefore: ‖u.‖L(T,Ek(b,E)) =

sup‖t‖=1

∫
b
‖u.t|x)‖ dµb ≤

∫
b
sup‖t‖=1 ‖u.t|x)‖ dµb =

∫
b
‖u.|x)‖ dµb = ‖u.‖b <∞.

On the other hand, if dim(T ) = m <∞, we have: L(T,E) ≃ Em and then Ek(b,L(T,E))
≃ Ek(b, Em) and similarly L(T, Ek(b, E)) ≃ Ek(b, E)m. The topological equivalence
follows.

Definition 4.2. We say that a k-regular representation [b, r( ] is k-regular differentiable
at to if:

∃u. ∈ Ek(b,L(T,E)), ∃h 7→ ǫ(h| ∈ L(b, E) :

eT (to + h| = eT (to| + u.h| + ‖h‖ ǫ(h| and limh→0 ‖ε(h| ‖b = 0.

u. is then said differential of r( at to and will be denoted r(1)(to).

[b, r( ] is said differentiable if it exists k′ ≤ k such as r( is k′-regular differentiable.

Comments. 1. As r(= i+ eT ( and ‖ε(h| + s(t| − s(t+ h| ‖b = ‖ε(h| ‖b, the differentia-
bility property is equivalent each of the two properties:

∃u. ∈ Ek(b,L(T,E)), ∃h 7→ ǫ(h| ∈ L(b, E) :

r(to + h| = r(to| + u.h| + ‖h‖ ǫ(h| and limh→0 ‖ε(h| ‖b = 0,

∃u. ∈ Ek(b,L(T,E)), ∃h 7→ ǫ(h| ∈ L(b, E) :

e(to + h| = e(to| + u.h| + ‖h‖ ǫ(h| and limh→0 ‖ε(h| ‖b = 0.

2. The unicity of the differential r(1)(to) follows then from the identity of this differential
with the derivative of eT (: O 7→ Ek(b) at to.

Theorem 4.3.

1. The differentiability is a strong compatible property.

2. The differentials of two equivalent representations are equivalent and the transfers
of the equivalence are the same.

Proof. 1. Let’s put u. = r(1)(to) and let’s assume that [b′, r′( ] ∼ [b, r( ].

For suitable τ, b1, b
′
1, we have: r′b′1

(t+ h| = τ#.b1r(t+ h| = τ#.b′(r(t|+ u.h|+ ‖h‖ ε(h|) =

τ#.b1r(t| + τ#.b1u.h| + ‖h‖ τ#.b1ε(h|, then: r′b′1
(t+ h| = r′b′1

(t+ τ#.b1u.h| + ‖h‖ τ#.b1ε(h|

Let [b′, u′.] and [b′, ε′( ] be defined by: u′.h|x′) =
∫

b′1
b1u.h|τ(x

′, x′1))dµb′1
and ε′(h|x′) =∫

b′1
b1ε(h|τ(x

′, x′1))dµb′1
, ∀x′ ∈ b′.

As x 7→ u.|x) is continuous from b compact to L(T,E): supx∈b ‖u.|x)‖L(T,E) = M < ∞

and then for x′ ∈ b′: sup‖h‖=1 ‖u
′.h|x′‖ ≤

∫
b′1

sup‖h‖=1 ‖b1u.h|τ(x
′, x′1))‖ dµb′1

≤
∫

b′1
Mdµb′1
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= M . It follows that u.|x′) ∈ L(T,E). Therefore [x 7→ u.| ◦ πb ◦ τ is Ck and b′ × b′1 is
compact and following Lebesgue’s theorem [x′ 7→ u′.|x′)] ∈ Ek(b,L(T,E)) is then Ck.

Independently we have: limh 7→0 ‖ε
′(h| ‖b′ ≤ limh 7→0

∫
b′×b′1

‖b1u.h|τ(x
′, x′1))‖ dµb′×b′1

=

limh 7→0 ‖ε(h| ‖b = 0, that achieved the proof of the differentiability of r′(.

The compatibility is therefore strong as every property compatible on r(t′| − r(t|.

2. We have: r′b′1
(t + h| − r′b′1

(t| = τ#.b1r(t + h| − τ#.b′(r(t| and then ∀βn > 0, βn →

0, ∀ho ∈ T : u′b′1
.βnho| + ‖βnho‖ ε

′(βnho|) = τ#.b1u.βnho| + ‖βnho‖ τ
#.b1ε(βnho|), that

can be written: u′b′1
.ho| + ‖ho‖ ε

′(βnho|) = τ#.b1u.ho| + ‖ho‖ τ
#.b1ε(βnho|). Then, as

limβnho→0 ‖ε(βnho| ‖b = 0 and limβnho→0 ‖ε
′(βnho| ‖b = 0, there is βν , extracted / ε(βnho|

→ 0 and ε′(βnho| → 0µb′×b′1
a.e..

Then: u′b′1
.ho| = τ#.b1u.ho|, µb′×b′1

a.e. and therefore, by continuity, the egality holds on

b′ × b′1. The result follows by symmetry.

Definition 4.4. The definitions of differentiability for dynamics, coverings and set-
valued maps follow from general rules (see 1.2) and we have therefore:

1. If the dynamic f : O ∼> E is the class of [b, r( ] the differential of f is the dynamic
df : O ∼> L(T,E) defined by:

df(to) = ˇ[b, r<1 > (to).] .

2. The differential of a covering fI : O ∼> E is then the covering dfI : O ∼> L(T,E)
defined by:

dfI = (dfi)i∈I .

3. The differential of a set-valued map F : O −◦ E is the set-valued map dF : O −◦
L(T,E) defined by:

dF = ∪
fJ ∈C(F )

dfJ = ∪
f ∈I(F )

df .

4. A dynamic, a covering, a set-valued map, is said continuously differentiable on O
if its differential is continuous on O.

Comments and general convention. The value of the differential dF (t) of a set
valued map is function of the structure and analytical properties set H assumed for
F and then for every of its coverings (resp. internal dynamics). We have obviously if
H1 ⊂ H2 then dH2F (t) ⊂ dH1F (t) because CH2(F ) ⊂ CH1(F ) (resp. IH2(F ) ⊂ IH1(F )).
It must denote than if the very restrictive structure property ω = 1 is included in the
reference properties set H, and only in this case, the definition of dF relative to I(F ) is
not usable.

Except particular cases, in any situation where several coverings or set valued maps are
considered the properties set H will be only made up of their common properties.

Theorem 4.5. Any covering and any set valued map diffrenentiable at to (resp. on O)
is continuous at to (resp. O).

Proof. Actually we have for a dynamic ˙[b, r( ]: ‖eT (t| − eT (to| ‖b ≤ ‖t− to‖ (
∥∥r(1)(to

∥∥
L
+

‖ε(t− to| ‖b). The result follows.



J.-Y. Larqué / Set-Valued Analysis by Covering 565

Theorem 4.6 (Case of functions). Let f : O 7→ E be a function, it is equivalent to
say:

• The function f is Frechet-differentiable at to (resp. on O).

• The dynamic f is differentiable at to (resp. on O).

• The set-valued map {f} is differentiable at to (resp. on O).

Therefore: d{f}(to) = {f ′(to)}.

Proof. Let be f Frechet-differentiable at to: ∃u. ∈ L(T,E)/ f(to + h) = f(to) + u.h +
‖h‖ ε(h), limh→0 ε(h) = 0.

Let be b a base and r(≡ [b, 0, e(, 0], e(t|x) = f(t), U. : x ∈ b 7→ U.|x) = u., ǫ(h| :
x ∈ b 7→ ǫ(h|x) = ε(h). Then U. ∈ E∞(b,L(T,E)) and ∀h, ǫ(h| ∈ L(b). Therefore
r(to + h| = r(to| + U.h| + ‖h‖ ε(h| and limh→0 ‖ǫ(h| ‖b = limh→0 ‖ε(h)‖ = 0. It follows
that r( is differentiable at to.

Let be f = ˙[b, r( ] differentiable at to: ∃U. ∈ E(b,L(T,E)), ∃h 7→ ε(h| ∈ L(b), / r(to + h|
= r(to| + U.h| + ‖h‖ ε(h|, limh→0 ‖ǫ(h| ‖b = 0. Then f(to + h) = f(to) + U.h|x) +
‖h‖ ε(h|x) ∀x ∈ b.

Let be ho fixed, βn > 0, βn → 0: there is βν , extracted, A ⊂ b/ µb(A) = 0 and ∀x ∈
b − A, ε(βνho|x) → 0. Therefore ∀x, xo ∈ b − A,U.ho|x) − U.ho|xo) = ‖ho‖ (ǫ(βνho|x) −
ǫ(βνho|xo)) → 0 when βν → ∞ and then U.ho|x) − U.ho|xo) = 0. It follows by k-
regularity that the egality holds for any x ∈ b. We have then U.h|b) = {u.h} with
u. ∈ L(T,E) because ‖u.h‖ = ‖U.h‖b , ǫ(h|b) = {ε(h)} with ‖ε(h)‖ = ‖ǫ(h| ‖b → 0 if
‖h‖ → 0 and f(to + h) = f(to) + u.h + ‖h‖ ε(h). f is then Frechet-differentiable and
therefore: d{f}(t) = {f ′(t)}.

Theorem 4.7.

1. The spaces of differentiable dynamics, coverings, set-valued maps, are stable by
linear combination and union. Therefore:
(a) The operator fJ 7→ dfJ is

• linear: d(αfI + gJ) = αdfI + dgJ ,
• boolean: d(fI ∪ gJ) = dfI ∪ dgJ and, subject to existence, d(fI ∩ gJ) =

dfI ∩ dgJ .
(b) The operator F 7→ dF (t) is

• sublinear: αdF (t) = d(αF )(t), dF (t) + dG(t) ⊂ d(F +G)(t),
• subboolean: dF (t) ∪ dG(t) ⊂ d(F ∪ G)(t) and, subject to existence, d(F ∩

G)(t) ⊂ dF (t) ∩ dG(t),
• increasing: If F ⊂ G then dF (t) ⊂ dG(t).

2. The differentiability is stable by relaxation and:
• co(dfJ) = dco(fJ),
• co(dF )(t) ⊂ d(co(F ))(t) and therefore if F has convex images, dF has convex

images.

3. If E is an algebra, the spaces of simple differentiable dynamics, coverings, set-
valued maps, are stable by algebraic product.

Proof. The results 1. and 2. follow immediately from the definitions of differentials
and corresponding theorems of the section Algebra.
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For 3., let be f = ˛[b, e(, s( ] and g = ˇ[b′, e′(, s′( ]. We have then: d(fg) = ˇ[b× b′, ET ( ]

with: ET (t| = r(1)(t| ⊗ e′(t| + e(t| ⊗ r′(1)(t| where ⊗ denotes the analytical tensorial

product [7]. We have actually, with r(1) = u and r′(1) = v:

eT (t+ h|x)e′T (t+ h|x′)

= eT (t|x)e′T (t|x′) + u.h|x)e′(t|x′) + e(t|x)v.h|x′)

+ ‖h‖

(
eT (t+ h|x)ε′(h|x′) + ε(h|x)e′T (t|x′) + u.h|x)v.h|x′)

+
1

‖h‖
(u.h|x)s′(t|x′) + s(t|x)v.h|x′))

)

e(t|b), e′(t|b′), eT (t|b) and e′T (t|b′) are bounded, u.h|x)s′(t|x′)+ s(t|x)v.h|x′) = 0µb×b′ a.e.

and:
∫

b×b′
‖u.h|x) v.h|x′)‖ dµb×b′ ≤

∫
b
‖u.|x)‖ dµb

∫
b′
‖v.|x′)‖ dµb′ ‖h‖

2. The result

follows.

4.2. Differentiability and contingent derivatives

We follow for the notions of graphical set valued analysis theory the notations given
in [1].

Theorem 4.8.

1. Let fJ : O ∼> E be a non singular covering differentiable at t, then:

Gr(dfJ(t)) ⊂ ∪
y∈fJ (t)

Gr(DfJ(t, y)).

More precisely let f : O ∼> E be a non singular dynamic differentiable at t, for
any representation r( of f , any y ∈ f(t) and any x ∈ r(t|−1y), Gr(r<1>(t).|x)) =

{(α, r<1>(t).α|x), α ∈ T} is both a vector subspace of T × E and a subset of
Gr(Df(t, y)).

2. Let F : O − ◦E be a non singular set-valued map differentiable at t:

Gr(dF (t)) ⊂ ∪
y∈F (t)

Gr(DF (t, y)).

Proof. Let’s assume that r(≡ [b, i, e(, 0] ∈ f, u. = r(1)(t).

We have then y = r(t|x) and x′ → ‖h‖ ε(h|x′) = e(t+h|x′)−e(t|x′)−u.h|x′) is continuous
for any fixed h (∗).

Let be hn →
> 0, α ∈ T, : r(t + hnα|x) = r(t|x) + u.hnα|x) + ‖hnα‖ ε(hnα|x), which

can be written yn = y + hnβn(x) with tn = t + hnα, yn = r(tn|x) ∈ f(tn) and βn(x) =

u.α|x) + ‖α‖ ε(hnα|x).

As ‖ε(hnα|‖b → 0, if hn → 0 there is tν , extracted, / ε(hνα| → 0µb a.e..

M = {x′ ∈ b / ε(hνα|x
′) → 0} is dense in b and ∀x ∈ M, βν(x

′) → u.α|x′), y′ν =
y + hνβν(x

′) → y.

Let be x′m ∈ M → x (∗∗): ‖βν(x) − βν(x
′
m)‖ ≤ ‖u.α‖ ‖x− x′m‖ + ‖α‖ ‖ε(hνα|x)

−ε(hνα|x
′
m)‖.
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Following (∗) and (∗∗) ∀ν / hν ≤ 1, ‖hν‖ ≤ 1, ∀ρ > 0, ∃mν /
∥∥x− x′mν

∥∥ < ρ
3

and

‖hνα‖
∥∥ε(hνα|x) − ε(hνα|x

′
mν

)
∥∥ < ρ

3
and then:

∥∥hν(βν(x) − βν(x
′
mν

))
∥∥ ≤ 2ρ

3
.

Therefore ∀ρ > 0, ∃νρ / ∀ν ≥ νρ, ‖y − yν‖ ≤ ‖y − y′ν‖+hν

∥∥βν(x) − βν(x
′
mν

∥∥ ≤ ρ
3
+ 2ρ

3
=

ρ, that is to say yν → y and then (α, u.α|x)) ∈ TGr(f (to, y) = Df(to, y). The result

follows.

Convention. We call unproper cone of a cone Γ the set Γunp = {v ∈ Γ/ − v ∈ Γ}. A
cone Γ is then proper if and only if Γunp ⊂ {0}.

Theorem 4.9. Let be K a subset of E and K : t ∈ R −◦ K.

1. If for any y in K TK(y) is proper, then for any t dK(t) = {0}, or equivalently, any
differentiable covering of K is essentially unchanged.

2. If K is convex and E a Banach space:

∪
y∈K

SK(y)unp ⊂ dK(t) =
def

dK ⊂ ∪
y∈K

TK(y)unp ⊂ dK ∀t,

dK is the differential of K,

∪
y∈K

SK(y) ⊂ d+K(t) =
def

d+K ⊂ ∪
y∈K

TK(y) ⊂ d+K ∀t,

where d+K(t) denote the right differential at t of K and d+K is said right differ-
ential of K.

Proof. For (t, y) ∈ Gr(K) = R ×K, DK(t, y) = TR×K(t, y) = R× TK(y).

Let to be fixed, ∀[b, r( ] ∈ fj ∈ fJ differentiable covering of K and (x, y) ∈ b × K

such as r(to|x) = y, we have: Gr(r(1)(to).|x)) ⊂ Gr(df(to, y))unp ⊂ Gr(dK(to, y))unp =

R × TK(y)unp.

1. We have then Gr(r(1)(to).|x)) ⊂ R×{0};then r(1)(to).|x) = 0, ∀to, ∀x: t 7→ eT (t| is a
function from R to L(b) of null derivative for any to and then eT ( = c fixed in L(b) and
r( is essentially unchanged, or in an equivalent way dK(to) = {0}, ∀to.

2. Let v ∈ SK(y)unp where SK(y) = ∪h>0
K−y

h
[1]: it exists ρ > 0 such as y + tv ∈ K, if

|t| ≤ ρ.

Let then f : t 7→

{
y + (t− to)v, if |t − to| ≤ ρ,

y + t−to
|t−to|

ρv, if |t − to| ≥ ρ;
f is an internal dynamic of K, with

image y and derivative v at to: v ∈ df(to) ⊂ dK(to). Therefore: SK(y)unp ⊂ dK(to), ∀y ∈
K.

Independently if t ∼> f(t) is an internal dynamic of K, differentiable at to, the same
stands for t ∼> f1(t) = f(t + to − t1) and we have df1(t1) = df(to). It follows that
dK(t1) = dK(to), ∀to, t1.

The result follows then immediately from: SK(y)unp = SK(y)unp = TK(y)unp.

The second inclusion follows formally from a same proof.
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4.3. Product spaces

Theorem 4.10. A covering fJ : O ∼> ×k=1,...,nEk (resp. a set valued map F : O −◦
×k=1,...,nEk) is differentiable if and only if every one of its coordinates fk

J : O ∼> Ek

(resp. F k : O −◦ Ek) is differentiable. Therefore:

(dfJ)k = d(fk
J ), (dF )k = d(F k).

Proof. Strictly identical to the one of classical analysis.

Definition 4.11. If T =
n
×

k=1
Tk, we define the kthdifferentials of the covering fJ and

set-valued map F , following the usual way, by:

∂fJ

∂tk
(a) = d[h ∼> fJ(a1, .., ak + h, ak+1, .., an)](0, and

∂F

∂tk
(a) = d[h −◦ F (a1, .., ak + h, ak+1, .., an)](0).

Theorem 4.12.

1. A covering (resp. a set-valued map) which is differentiable at to has partial differ-
entials at to for any k = 1, ..., n

2. A covering (a set-valued map) is C1-differentiable on O if and only if it has n
continuous partial differentials.

Proof. 1. is obvious. 2. As differentiability and continuity of representations are com-
patible and independent of the breakdown, it exists a representation of total evolu-
tion eT ( which has for any k a continuous partial differential uk. on O. It follows
immediately that eT ( is continuously differentiable on O and of (total) differential at
to u. =

∑
k=1,...,n uk. ◦ πk.

4.4. High order differentials

Definition 4.13. 1. We define the high order differentials of a covering fJ , following
the usual way, by:

d0f = f, dk+1f = d(dkf), k > 0.

2. We say then, following general rules, that a set-valued map F : O −◦ E is kce-
differentiable if it has a kce-differentiable covering, and we define dkF : O −◦ Lk(T,E)
by:

dkF (t) = ∪
fJ∈C(F )

dkfJ(t) = ∪
f∈I(F )

dkf(t).

We have then obviously the statement:

Theorem 4.14. If f : O 7→ E is a function, it is equivalent to say:

• The function f : O 7→ E is kce-differentiable (resp. Ck).

• The dynamics f : O ∼> E is kce-differentiable (resp. Ck).

• The set-valued map {f} : O −◦ E is kce-differentiable (resp. Ck).



J.-Y. Larqué / Set-Valued Analysis by Covering 569

Comments. If a set-valued map F : O −◦ E is (k + 1)ce-differentiable, it is kce-
differentiable, but, a priori, its kce-differential is not necessary differentiable. Neverthe-
less, if it is the case:

dk+1F ⊂ d(dkF ).

4.5. Differential operators

To extend the differential operator concept to coverings, and then to set-valued maps,
we adapt the notion of ”Thom’s multijet” [2] as follows:

1. Differential Rewriting of order k:

t, h ∈ T, fJ = ¸[bj , rj( ]j∈J 7→ D(k)(fJ)(t).(h)k

=

ˇ
bj ,

∑

|(m1,...,mn)|=k

∂mrj(t).h(m1,...,mn)




j∈J

,

and

Dk)F = ∪
f∈I(F )

D(k)f

for T =
n
×

k=1
Tk, fJ , F, k

ce-differentiable; ∂m = ∂(m1,...,mn)

∂t1m1 ...∂tnmn .

2. Leibnizian of order k:

L(k) :
(
fI = ¸[bi, ri( ]i∈I , gJ = ¸[b′j , r

′
j( ]

j∈J

)

7→

ˇ[
bi × b′j ,

∑

06m6k

(
k
m

)
r
(m)
i (⊗r′j

(k−m)(

]

(i,j)∈I×J

and

L(k)(F,G) = ∪
f∈I(F ),g∈I(G)

L(k)(f, g)

for fI , gJ , F,G simple, non singular, Ck-differentiable.

3. Taylorian of order k:

t, h ∈ T, fI = ¸[bi, ri( ]i∈I 7→ T (k)(fJ)(t).h =

ˇ[
bi,

∑

06m6k

1

m!
r
(m)
i (t).(h)m

]

i∈I

and

T (k)(F ) ∪
f∈I(F )

T (k)(f)

for fJ , F, k
ce-differentiable.

Comments. If is obviously possible to extend in this way to coverings and set valued
maps every classical differential operator such as gradian, Laplacian, rotational, etc...

Theorem 4.15.
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1. Let’s assume that fJ , and F are kce-differentiable:

D(k)fJ = dkfJ and D(k)(k)F = dkF.

2. Let’s assume that fI , gJ , F,G are simple, non singular, Ck-differentiable:

L(k)(fI , gJ) = dk(fI gJ) and L(k)(F,G) ⊂ dk(FG).

3. Let’s assume that:
• fJ is (k − 1)-differentiable on O and kce-differentiable at t, then:

fJ(t+ h) = T (k)(fJ)(t).h + ||h||kǫJ(h|, with lim
h 7→0

ǫJ (h| = 0

in this way that if ¸[bj , rj( ]j∈J = fJ , ∃[bj , ǫj( ]j∈J : ∀j, rj(t+ h| =

Σ
m=0,..,k−1

1
m!
r
(m)
j (t).(h)m + ‖h‖kǫj(h|, with lim

h 7→0
‖ǫj(h|‖bj

= 0.

• fJ is non singular, Ck-differentiable on O and such as: supu.∈dkfj(s)
‖u.‖L ≤

Mj , /, ∀j ∈ J, s ∈ [t; t+ h] ⊂ O, then:

fJ(t+ h) = T (k−1)(fJ) +

∫

0

1 (1 − s)(k−1)

(k − 1)!
dkfJ(t+ sh).(h)kds

in the sense of operators, that is to say: ∀¸[bj , rj( ]j∈J = fJ , x ∈ bj , j ∈ J ,

rj(t+h|x) = Σ
m=0,..,k−1

1

m!
r
(m)
j (t).(h)m|x)+

∫

0

1 (1 − s)(k−1)

(k − 1)!
r
(k)
j (t+sh).(h)k|x)ds.

Therefore if fJ is subjacent to F and such as: supj∈J)Mj ≤M we have:

F (t+ h) ⊂ T (k−1)(fJ)(t).h+M‖h‖k ⊂ T (k−1)(F )(t).h+M‖h‖k.

Proof. 1. follows directly from the defintions of differentiability and partial differentia-
bility.

As for representations there is identity between differential and derivative of eT (: O 7→
L1(b), 2. and the first result of 3. are for dynamics simple translations of the classical
one-one analysis corresponding results, [5].

For the second point of 3. the one-one anlysis give similarly for t 7→ eT (t| = e(t| / [b, i, e( ]

∈ f : e(t+ h| = Σ
m=0,..,k−1

1
m!
e(m)(t).(h)m| +

∫
0

1 (1−s)(k−1)

(k−1)!
e(k)(t+ sh).(h)kds| in L1(b).

As L1 (]0; 1[, L1(b, dµ), ds) = L1 (]0; 1[×b, ds⊗ dµ),[7], we can write following Fubini’s

theorem: e(t + h|x) = Σ
m=0,..,k−1

1
m!
e(m)(t).(h)m|x) +

∫
0

1 (1−s)(k−1)

(k−1)!
e(k)(t + sh).(h)k|x)ds, µ

a.e. x ∈ b.

As ‖e(k)(t + sh).(h)k|x)‖ ≤ M‖h‖k on [0; 1] × b, the x-continuity of the integral term
follows from Lebesgue’s theorem and then, by continuity of the two members, the egality
can be written for any x in b. Therefore the last result follows then immediately.

For coverings and set valued maps the results follow from the general rules of transfer
as usually.
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4.6. Chains

Theorem 4.16. Let be fI : O ∼ O′ and gJ : O′ ∼ E, of subjacent set valued maps
F : O −◦ O′ and G : O′ −◦ E.

1. Let’s assume that:
• fI is a ”differentiable functions stream” in the way that it has a system of

representations [bi, ri( ]i∈I which verifies the strongly compatible property: h 7→
ri(t+ h|x) is differentiable at h = 0 for any i ∈ I, x ∈ bi,

• gJ is differentiable on F (t),
then G ◦ F is differentiable at t.

2. Let’s assume the following H set properties:
• fI is differentiable at t and has a system of representations [bi, ri( ]i∈I which

verifies the strongly compatible property:

∫

bi

‖ri(t+ h| − ri(t| ‖dµbi
≤ Ki‖h‖

αi , αi > 0, ∀i locally at h = 0;

• gJ and dgJ are C-chainable with fI ,
• O′ is convex and gJ 2ce-differentiable on O′ such as d2gJ◦fI is locally C-bounded

at t,
then gJ◦fI is differentiable at t. We have then in the sense of differential operators:

d(gJ ◦ fI)(t) = (dgJ ◦ fI)(t).dfI(t).

Therefore, G ◦ F is differentiable at t.

Proof. 1. Let fI = f, gJ = g, and [b′, r′( ] ∈ g. For x ∈ b fixed, r(1)(t) = u, r′(1)(r(t|x)) =
v, we have then for any x′ ∈ b′:

(∗) r′(r(t+ h|x)|x′)

= r′(r(t|x) + u.h|x) + ‖h‖ǫ(h|x)|x′)

= r′(r(t|x)|x′) + v. (u.h|x) + ‖h‖ǫ(h|x)) |x′)

+‖u.h|x) + ‖h‖ǫ(h|x)‖ǫ′ (r(t+ h|x) − r(t|x)|x′)

= r′(r(t|x)|x′) + v.u.h|x)|x′)

+‖h‖

(
v.ǫ(h|x)|x′) + ‖u.

h

‖h‖
|x) + ǫ(h|x)‖ǫ′ (r(t+ h|x) − r(t|x)|x′)

)
.

x′ 7→ [h 7→ v.u.h|x)|x′)] ∈ Ek(b′,L(T,E)) if r′( is k-regular differentiable and, inde-
pendently: ‖v.ǫ(h|x)| ‖b′ =

∫
b′
‖v.ǫ(h|x)|x′)‖dµb′(x

′) ≤ ‖v.‖L,b′ ‖ǫ(h|x)‖ → 0 if h → 0

because ζ 7→ r(ζ |x) differentiable at t.

In the same way: ‖u. h
‖h‖

|x) + ǫ(h|x)‖ ≤ ‖u.|x)‖L + ‖ǫ(h|x)‖ is locally bounded at h = 0

and ‖ǫ′(r(t+ h|x)− r(t|x)| ‖b′ =
∫

b′
‖ǫ′(r(t+ h|x)− r(t|x)|x′)‖dµb′ → 0 if h→ 0 because

ζ 7→ r(ζ |x) is continuous at t.

Therefore ‖v.ǫ(h|x)| + ‖u. h
‖h‖

|x) + ǫ(h|x)‖ǫ′(r(t+ h|x)− r(t|x)| ‖b′ → 0 if h→ 0 and the

result follows.
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2. We have now:

(∗) r′ ⊙ r(t+ h|x, x′) = r′ ⊙ r(t|x, x′)

= r′(1) ⊙ r(t|x, x′).u.h|x) + ‖h‖(r′(1) ⊙ r(t|x, x′).ǫ(h|x)|x′)

+
1

‖h‖
‖r(t+ h|x) − r(t|x)‖ǫ′(r(t+ h|x) − r(t|x)|x′));

and then:

‖r′(1) ⊙ r(t|x, x′).ǫ(h| ‖b×b′ ≤

∫

b

∫

b′
‖r′(1)(r(t|x)).‖Ldµb′‖ǫ(h| ‖dµb

≤

∫

b

‖r′(1)(r(t|x)).‖L,b′‖ǫ(h| ‖dµb.

Therefore: ‖r′(1) ⊙ r(t|x, x′).ǫ(h| ‖b×b′ ≤ M‖ǫ(h| ‖b → 0 if h → 0, because ζ 7→ r′(1)(ζ) is
continuous on the compact r(t|b) and then bounded.

We have by Theorem 4.15 3.:

1

‖h‖
‖r(t+ h| − r(t| ‖ǫ′(r(t+ h| − r(t| | ‖b×b′

=
1

2

∫

b×b′
‖r′(2)(r(t+ h|x) + θ(h, x)r(t|x)).(r(t+ h|x) − r(t|x))|x′)‖dµb×b′

≤
M

2

∫

b

‖r(t+ h|x) − r(t|x)‖dµb ≤
M

2
K‖h‖α → 0 if h → 0

and the result follows.

Theorem 4.17.

1. If g = u.+ c is a continuous affine function and F a differentiable set valued map
of covering fI , then g ◦ F is differentiable. Therefore:

d(g ◦ fI) = u.dfI and u.dF ⊂ d(g ◦ F )

(resp. u.dF = d(g ◦ F ) if g is a diffeomorphism).

2. If a function f and a set valued map G, of covering gJ , are differentiable, then
G ◦ f is differentiable. Therefore:

(dgJ ◦ f).df = d(gJ ◦ f) and (dG ◦ f).df ⊂ d(G ◦ f).

Proof. The two results follow immediately from the definitions of differentiability of
functions and coverings.

5. Integrability

The extension process is here applied to the concepts of measurability and integrability in
a very simple framework. This choice has been done only for a global maximal simplicity
and homogeneity of the presentation of my work. It is obviously possible to consider the
more general context used for this questions (see [1] for example).
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As usually I begin to enlist the basics and the elementary properties of the extension,
then I present the fundamental theorems of comparison between Aumann-integral and
integral (in the sense of coverings). I enlist then some results, formally classical, on
integrability and ”primitive” existence and I end this part with the main theorems of
regularization and approximation by convolution.

General conventions. ν a Radon positive measure on T, dim(T ) <∞; M ⊂ O a mea-
surable set. To lighten the account, we say measurable and integrable for ν-measurable

and ν-integrable; furthermore, we will denote
A∫

dν the Aumann integral [1], [3].

5.1. Measurability

Theorem 5.1.

1. The measurability property: ”the representation [b, r( ] has a breakdown [b, i, eT ( ]
such has eT O 7→ L(b) is Borel measurable” is strongly compatible.

2. The µ-simplicity property: ”the representation [b, r( ] has a breakdown [b, i, eT ( ] of
µb-measurable invariant” is strongly compatible.

Proof. 1. Let be to ∈ O [b, i, eT ( ], [b, i′, e′T ( ] two breakdowns of r(, then: eT (t| =
r(t| − r(to| + c = e′T (t| + c′ with c, c′ in L1(b). Therefore, if the property is compatible,
this compatibilty is strong.

Let be r′(∼ r( : r′b′1
(t| = τ#.b1r(t| ∀t ⇒ r′b′1

(t| − r′b′1
(to| = τ#.b1r(t| − b1r(to| = (πb ◦

τ)#.(r(t| − r(to|) where πb is the canonical projector from b1 × b on b.

From (πb ◦ τ) ∈ Tr(b, b′ × b′1 it follows that (πb ◦ τ)
#. is continuous and then t 7→

r′b′1
(t| − r′b′1

(to| is Borel measurable.

Let then: r′b′1
( be measurable from O to L(b′ × b′1, E), i.e. e′T,b′1

( Borel measurable.

Let be A a closed set in L(b′, E) and Ã = {u◦πb′/ u ∈ A}. We have ‖u◦πb′‖b′×b′1
= ‖u‖b′,

then Ã is closed in L1(b′ × b′1, E) and therefore e′T,b′1
(−1Ã is Borel measurable.

As e′T,b′1
(t| = u ◦ πb′ ⇔ e′T (t| ◦ πb′ = u ◦ πb′ ⇔ e′T (t| = u, then e′T (−1A = e′T,b′1

(−1Ã, i.e. r′(

is measurable.

2. is obvious.

Definition 5.2. A representation [b, r( ] is said to be measurable (resp. µ-simple) if it
has the measurable (resp. µ-simple) property.

The definitions of measurability and µ-simplicity of dynamics, coverings, and set valued
maps, follow then the general rules.

Theorem 5.3 (Case of functions). Let f : O 7→ E be a function; it is equivalent to
say:

• The function f : O 7→ E is Borel measurable.

• The dynamic f : O ∼> E is measurable.

• The set-valued map {f} : O −◦ E is measurable.
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Proof. To say that
∑

1Oj
cj is an approximation sequence of simple(*) measurable func-

tions for f : O 7→ E is equivalent to say that 1b(
∑

1Oj
cj) is an approximation sequence

of simple(*) measurable functions for [b, 1bf()] ∈ f , because: ∀t, ‖f(t) −
∑

1Oj
(t)cj‖ =

‖1bf(t) − 1b(
∑

1Oj
cj)‖b. The result follows.

(*)simple is used here in the sense of classical functions measurability theory, [4].

Theorem 5.4.

1. Any continuous covering (resp. set valued map) is measurable.

2. Measurability and continuity have the same algebraic and boolean stability proper-
ties.

Proof. Immediate for 1. and strictly identical to the corresponding continuity proofs
for 2..

Theorem 5.5.

1. Any measurable µ-simple set-valued map of order at most countable is Borel mea-
surable.

2. For any Borel measurable set-valued map F with closed images, it exists a measur-
able set-valued map of order at most countable Fo dense in F , that is to say such

as ∀t ∈ O, Fo(t) = F (t).

Proof.

Lemma. For any measurable µ-simple dynamic f , if [b, r( ] is a representation of f ,
then the function (t, x) 7→ r(t|x) is ν ⊗ µb Borel-measurable.

Proof. Let f be a measurable µ-simple dynamic and [b, r( ] = [b, i, eT ( ] ∈ f ; eT (: O 7→
L(b) measurable.

eT (= limn

∑
j 1On

j
lnj with lnj ∈ L(b), ∀j, n and then: ∀t, limn

∫
b
‖

∑
j 1On

j
(t)lnj (x)−

eT (t|x)‖dµb(x) = 0. It follows that there is an extracted sequence (α)/
∑

j 1Oα
j
(t)lαj (x) 7→

eT (t|x)µb a.e. Independently i is µb Borel-measurable. Then (t, x) 7→ i(x)+
∑

j 1Oα
j
(t)lαj (x)

is ν ⊗ µb Borel-measurable and converges ν ⊗ µb a.e. to r̃(t, x) = r(t|x). The result fol-
lows.

1. Let then F be measurable and such as ω(F ) ≤ card(N)

• ω(F ) = 1, F = f : for all open set U in E, r̃−1(U) is ν ⊗ µb-measurable and then

F−1(U) = πT (r̃−1(U)) is measurable (with πT canonical projector on T ) and F is
therefore Borel-measurable.

• ω(F ) ≤ card(N): let fJ be a measurable covering of F , ∀j ∈ J, fj is then Borel-

measurable and, for all open set U in E, fj
−1(U) is measurable and therefore

F−1(U) = ∪j∈J fj
−1(U) is measurable because |J | ≤ |N|; F is Borel-measurable.

2. Following the characterization Castaing’s theorem, [1], [3], for any Borel-measurable
set valued map F : O −◦ E, with closed images, there is a countable dense family of

Borel-measurable selections fn of F such as ∀t ∈ O, F (t) = ∪n fn(t). The set valued
map F0 subjacent to the covering fN = (fn)n∈N is then solution.



J.-Y. Larqué / Set-Valued Analysis by Covering 575

5.2. Integrability of representations

Definition 5.6. A representation [b, r( ] is said integrable on M if it is measurable and
has an integrable breakdown [b, i, eT ( ], i.e. a breakdown such as:

• ∀x ∈ b, i(x)1M is integrable,

• its total evolution eT (: O 7→ L(b) is Lebesgue integrable on M .

Comments. Let [b, r( ] be an integrable representation. If ν(M) = +∞, there is only
one integrable breakdown: i = 0, eT (= r(. If ν(M) < ∞ any breakdown is integrable
because if [b, i′, e′( ] = [b, i, e( ], we have: e′T = (i − i′) + e(, i.e. i − i′ = ct ∈ L(b) and
therefore ν integrability of e( and e′( are equivalent.

We have then the preliminary statement:

Theorem 5.7. If [b, i, eT ( ] is an integrable breakdown of r( on M , µb a.e. x ∈ b, t 7→
eT (t|x) is Lebesgue integrable on M , and

[
x 7→

(∫

M

eT (t| dν

)
(x)

]
=L(b)

[
x 7→

∫

M

eT (t|x)dν

]
.

Therefore the function x 7→
∫

M
r(t|x)dν(t) = i(x)ν(M) +

∫
M
eT (t|x)dν(t) (in particular

its domain bM) is independent of the integrable breackdown of r( which is used.

Proof. Let [b, r( ] = [b, i, eT ( ] be integrable on M .

Following lemma of Theorem 5.5, ẽT : (t, x) 7→ eT (t|x) is ν⊗µb Borel-measurable. There-
fore by hypothesis t 7→ eT (t| ∈L(M,L(b)):

∫
M×b

‖eT (t|x)‖d(ν⊗µb)=
∫

M
(
∫

b
‖eT (t| ‖dµb)dν

=
∫

M
‖eT (t| ‖bdν <∞. Then ẽT ∈ L(M × b, ν⊗µb) and for µb a.e. x t 7→

∫
M
eT (t|x)dν ∈

L 1(b, E).

Let gn be an approximation sequence of ẽT :

‖eT (t| − gn(t, )‖L1(M,L(b),ν) =

∫

M

‖eT (t| − gn(t, )‖bdν

=

∫

M×b

‖eT (t|x) − gn(t, x)‖d(ν ⊗ µb

= ‖ẽT − gn‖L1(M×b,E,d(ν⊗µb)) → 0,

that is to say: t 7→ gn(t, ) is an approximation sequence of t 7→ eT (t| and the results
follow.

Definition 5.8. Let [b, r( ] = [b, i, e(, s( ] be an integrable on M representation.

1. We call integral of r (on M the subset of E:
∫

M
r(t| dν= {i(x)ν(M)+

∫
M
eT (t|x)dν(t),

x ∈ bM}

2. r( is said totally integrable on M if furthermore bM = b and [b,
∫

M
e(t| dν] is at least

0-regular. The non singular representation [b, t 7→
∫

M
r(t| dν] is then said total integral

of r( on M .

Theorem 5.9. The integrability and total integrability properties are compatible. There-
fore if r(∼ r′(, we have

∫
M
r(t| dν =

∫
M
r′(t| dν and

∫
M
r(t| dν ∼

∫
M
r′(t| dν.
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Proof. Let be [b, r( ] = [b, i, eT ( ] ∼ [b′, r′( ] = [b′, i′, e′T ( ] and let’s assume that: ∀t, r′b′1
(t|

= τ ∗ .b1r(t|.

If ν(M) = +∞, then: i = i′ = 0. If ν(M) < +∞, we can always consider the breackdown
of r( initialized at an arbitrary to ∈ O. Then r(t| = i + eT (t| = r(to| + (r(t| − r(to|))
(similarly for r′( ). We have then eT (to| = 0, e′T (to| = 0 and from r′b′1

(to| = τ ∗ .b1r(to|, in

both cases we deduce i′b′1
= τ ∗ .b1i and then ∀t, e′T,b′1

(t| = τ ∗b1 eT (t|. Therefore:

∫

M

‖e′T (t| ‖b′dν =

∫

M

∫

b′
‖e′T (t|x′)‖dµb′dν

=

∫

M

∫

b′×b′1

‖e′T,b′1
(t|x′, x′1)‖dµb′×b′1

dν

=

∫

M

∫

b′×b′1

‖τ ∗ .b1eT (t|x′, x′1)‖dµb′×b′1
dν

=

∫

M

∫

b1×b

‖b1eT (t|x1, x)‖dµb1×b dν

=

∫

M

‖eT (t| ‖bdν <∞.

Then by continuous linearity:
(∫

M
e′T (t| dν

)
b′1

=
∫

M
e′T,b′1

(t| dν =
∫

M
τ ∗ .b1eT (t| dν =

∫
M b1eT (t| dν = τ ∗ .b1

(∫
M
eT (t| dν

)
.

The results follow by symmetry and macrogerm image.

5.3. Integrability of coverings and set-valued maps

Definition 5.10. The definitions of integrability and total integrability follow the gen-
eral rules. Therefore:

1. For integrable dynamics:

if r(∈ f,

∫

M

f dν =

∫

M

r(t| dν ⊂ E

and for total integrability:
∫

M

f dν =

∫

M

r(t| dν and

∫

M

f dν =

∫

M

f dν.

2. For integrable coverings: ∫

M

fJ dν = ∪
j∈J

∫

M

fj dν

and, for total integrability:
∫

M

fJdν =

(∫

M

fj dν

)

j∈J

then

∫

M

fJ dν =

∫

M

fJ dν.

3. For integrable set-valued maps:
∫

M

F dν = ∪
fJ∈C(F )

∫

M

fJ dν = ∪
f∈I(F )

∫

M

f dν.
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Comments. The definition relative to C(F ) is, as for differentiability, only necessary if
the structure property ω = 1 is included in the reference properties set H.

5.4. Elementary properties

Theorem 5.11 (Case of functions). Let f : O 7→ E be a function, it is equivalent to
say:

• The function f : O 7→ E is Lebesgue integrable on M .

• The dynamic f : O ∼> E is integrable on M .

• The set-valued map {f} : O −◦ E is integrable on M .

Therefore:
∫

M
f dν =

∫
M
f dν =

∫
M
{f} dν.

Proof. Immediate.

Theorem 5.12.

1. The spaces of integrable (resp. totally integrable) on M dynamics, coverings, set-
valued maps, are stable by linear combination and union. Therefore:
• The operators fJ 7→

∫
M
fJ dν and fJ 7→

∫
M
fJ dν are linear and boolean.

• The operator F 7→
∫

M
F dν is sublinear, subboolean, and increasing.

2. The integrability (resp. total integrability) is stable by relaxation and:
•

∫
M
co(fJ) dν = co(

∫
M
fJ dν) and

∫
M
co(fJ) dν = co(

∫
M
fJ dν).

• co(
∫

M
F dν) ⊂

∫
M
co(F ) dν. Therefore if F has convex images,

∫
M
F dν is

convex.

Proof. Immediate consequences of the definitions and algebra results.

5.5. Integrability and Aumann integrability

Theorem 5.13. For any set-valued map F : O −◦ E which is both measurable and
Borel-measurable it is equivalent to say that F is Aumann integrable on M and that F
is integrable on M . Therefore:

A∫

M

F dν =

∫

M

F dν.

Proof. Any Lebesgue integrable selection of F defines an internal dynamic of F . Re-

ciprocally for any internal dynamic ˙[b, r( ]of F and any x ∈ bo the function t 7→ r(t|x)
defines a Lebesgue integral selection of F . The result follows then immediately from the
definitions of the integral and Aumann integral.

Definition 5.14. We call ”Aumann kernel” of a set-valued map F the set-valued map
subjacent to the stream, possibly empty, of its locally Lebesgue integrable selections.
We denotes it A(F ).

Theorem 5.15.

1. • For any set-valued map F : O −◦ E, A(F ) : O −◦ E, if it is non empty, it
is the maximal locally integrable sub set-valued map of F . Therefore A(F ) is
always simple and non singular.
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• The operator F 7→ A(F ) is sublinear, subboolean, and increasing.
• If F , with closed images, is locally integrably bounded [1] A(F ) is dense in F .

2. For any locally Aumann integrable set-valued map F : O −◦ E and any compact
K ⊂ O:

A∫

K

F dν =

∫

K

A(F ) dν.

Proof. The results follow immediately from the definitions. The last point of 1. follows
immediately from Castaing’s theorem.

5.6. Local integrability rules

Theorem 5.16.

1. Any continuous covering (resp. set-valued map F ) is locally integrable.

2. Any measurable covering fJ of integrably bounded evolution, in the sense that:
∀K ⊂ O compact, ∀j ∈ J, ∃[bj , ij, ej,T ( ] ∈ fj , ∃gj ∈ L1

loc(O,E) /, supy∈ej,T
(t|bj) ‖y‖

≤ gj(t), ∀t ∈ K is locally totally integrable.

3. Any measurable locally integrably bounded covering fJ (resp. measurable C-locally
integrably bounded set-valued map F ) in the sense that: ∀K ⊂ O compact, ∀j ∈
J, ∃gj ∈ L1

loc(O,E) / supy∈fj(t)
‖y‖ ≤ gj(t), ∀t ∈ K is locally totally integrable.

Proof. 1. Let be f a continuous dynamic, K a compact subset of O. Any representation
[b, i, eT ( ] of f is then integrable on K because ν(K) <∞ and t 7→ eT (t| is continuous in
L1(b).

2. We have then for a suitable [bj , ij , ej,T ( ] ∈ fj : ‖ej,T (t|x)‖ ≤ gj(t), ∀x ∈ bj. The
statement follows from Lebesgue’s integrably bounded theorem.

3. Let be an arbitrary t0 and a suitable [bj , rj( ] ∈ fj . Because ej(t| = ej,T (µ a.e.,
x 7→ ej(t0|x) is continuous andK is compact, we have: ‖ej,T (t|x)‖ ≤ ‖rj(t|x)−rj(to|x)‖+
‖ej(t0|x)‖ ≤ gj(t) + gj(to) +M, ∀t ∈ K, µb a.e. x ∈ b.

The result follows then from 2.

5.7. Primitives

Theorem 5.17. Let be O =]a, b[⊂ R, ν the Lebesgue measure on R.

1. If fJ = ˇ[bj , ej(, sj( ]j∈J :]a, b[∼> E is a simple locally totally integrable covering,

for any initial condition to ∈ O, t ∼>
∫ t

to
fJ dτ is a simple covering which is

differentiable at any t where fJ is continuous. Therefore:

∫ t

to

fJ dτ =
ˇ[

bj ,

∫ t

to

ej(τ | dτ,

∫ t

to

sj(τ | dτ

]

j∈J

and d

∫ t

to

fJ dτ = fJ(t).

2. If F :]a, b[−◦ E is a simple locally totally integrable set-valued map, for any initial

condition to ∈ O, t −◦
∫ t

to
F dτ is a simple set-valued map which is differentiable
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at any t where F is continuous. Therefore:

F (t) ⊂ d

∫ t

to

F dτ.

Proof. 1. ∀ζ, sj(ζ |x) = 0 µj a.e. x ∈ bj , then:
∫

bj

∫ t

to
‖sj(ζ |x)‖ dζ dµj(x) =

∫ t

to

∫
bj
‖sj(ζ |x)‖ dµj(x) dζ = 0 and then:

∫ t

to
s(ζ |x) dζ = 0µj a.e. x ∈ bj .

Independently, x ∈ bj 7→
∫ t

to
ej(τ |x) dτ is following the hypothesies continuous and inte-

grable on bj . The first result follows. Therefore:

∫ t+h

to

ej(τ |x) dτ −

∫ t

to

ej(τ |x) dτ =

∫ t+h

t

ej(τ |x) dτ

=

∫ t+h

t

ej(t|x) dτ +

∫ t+h

t

(ej(τ |x) − ej(t|x)) dτ

= ej(t|x) h+ |h|

(
1

|h|

∫ t+h

t

(ej(τ |x) − ej(t|x)) dτ

)

and we have, if τ 7→ ej(τ | is continuous, for arbitrary ε > 0, |h| < δ, δ suitable:

∥∥∥∥
1

|h|

∫ t+h

t

(ej(τ | − ej(t| dτbj

∥∥∥∥
bj

≤
1

|h|

∫ β=max(t,t+h)

α=min(t,t+h)

‖ej(τ | − ej(t| ‖bj
dτ

≤
ε

|h|

∫ β

α

dτ = ε.

2. Because following general rules C(F ) and I(F ) are only made respectively of coverings
and internal dynamics which verify the same hypothesies than F , for any covering, (resp.
internal dynamic) of F its primitive is a differentiable covering (resp. internal dynamic)

of t −◦
∫ t

to
F dτ . The result follows.

5.8. Regularization by convolution

T = R
n, dν = dt, D(O) the set of C∞ functions θ : O 7→ R with compact support.

Theorem 5.18.

1. Let f : O ∼> E be a locally totally integrable dynamic.
The dynamic t ∈ O ∼> f ∗ θ(t) =

∫
f(t − τ)θ(τ) dτ =

∫
f(τ)θ(t − τ) dτ , said

”convolution of f by θ”, is C∞.

If f = ˙[b, r( ] with [b, r( ] = [b, i, e(, s( ] has for representation [b, r ∗ θ(, ]
= [b, (

∫
θ dτ)i, e ∗ θ(, s ∗ θ( ] with r ∗ θ(t| =

∫
r(t − τ | θ(τ) dτ =

∫
r(τ | θ(t − τ) dτ

(e ∗ θ( and s ∗ θ( similarly defined) [7].
Therefore for any m = (m1, .., mn) ∈ Nn:

∂m(f ∗ θ) = f ∗ ∂mθ and if f is Ck, |m| ≤ k, (∂mf) ∗ θ = f ∗ (∂mθ).

2. Let F : O −◦ E be a locally totally integrable set-valued map of covering fJ .
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The set-valued map F ∗ θ : t ∈ O −◦
∫
θ(τ) (F (t − τ)dτ)

def
= ∪

f∈I(F )
f ∗ θ(t) is C∞,

of covering fJ ∗ θ.
Therefore for any m = (m1, .., mn) ∈ Nn:

F ∗ ∂mθ ⊂ ∂m(F ∗ θ) and if F is Ck, |m| ≤ k, F ∗ (∂mθ) ⊂ (∂mF ) ∗ θ).

Proof. 1.
∫
r(t−τ |x)θ(τ) dτ = i(x)

∫
θ(τ)dτ +

∫
e(t−τ |x)θ(τ) dτ +

∫
s(t−τ |x)θ(τ) dτ .

Therefore:
∫

b
‖

∫
e(t − τ |x)θ(τ) dτ‖ dµb =

∫
b
‖

∫
e(τ |x)θ(t − τ) dτ‖ dµb ≤ sup |θ|

∫
supp(θ)

‖eT (τ |, ‖b dτ <∞ and we have: ‖
∫
e(τ |x)θ(t−τ)dτ−

∫
e(τ |xo)θ(t−τ)dτ‖ ≤ sup |θ|

∫
supp(θ)

‖e(τ |x) − e(τ |xo)‖ dτ , the continuity follows: [t 7→
∫
e(t− τ |x)θ(τ) dτ ] ∈ E(b).

∫
b

∫
‖s(τ |x)‖θ(t−τ) dτ dµb =

∫
(
∫

b
‖s(τ |x)‖ dµb)θ(t−τ)dτ = 0 because s(τ |x) = 0µb a.e.

x, then ∀t
∫
s(τ |x)θ(t− τ) dτ = 0µb a.e. x and r ∗ θ is a representation of f ∗ θ.

Let’s put ∂k

∂tk1
= ∂k and h = (h1, 0..). We have: θ(t + h − τ) = θ(t − τ)∂1θ(t − τ).h +

h2
1

2

∫ 1

0
(1 − u)∂2θ(t− τ + uh)du and then:

∫
eT (τ |x)θ(t+ h− τ) dτ

=

∫
eT (τ |x)θ(τ) dτ + h1

∫
e(τ |x)∂θ(t − τ) dτ + h1

∫
s(τ |x)∂θ(t− τ) dτ

+
h2

1

2

∫
eT (τ |x)

∫ 1

0

(1 − u)∂2θ(t− τ + uh) du dτ,

or again: r ∗ θ(t + h) = r ∗ θ(t) + h1

∫
e(τ |x)∂θ(t − τ) dτ + |h1|ε(h|x) with: ε(h|x) =

|h1|
h1

∫
s(τ |x)∂θ(t− τ) dτ + h1

2

∫
eT (τ |x)

∫ 1

0
(1 − u)∂2θ(t− τ + uh) du dτ .

Similarly to x 7→ e ∗ θ(t|x) and x 7→ s ∗ θ(t|x), we have [x 7→
∫
e(τ |x)∂θ(t− τ) dτ ] ∈ E(b)

and
∫
s(τ |x)∂θ(t − τ) dτ = 0µb a.e. x. Then:

‖ε(h|x)‖b ≤ ‖

∫

b

(
h1

2

∫
eT (τ |x)

∫ 1

0

(1 − u)∂2θ(t− τ + uh) du dτ) dµb‖

≤
|h1|

2
sup |∂2θ|

∫

supp(θ)

‖eT (τ | ‖bdτ

︸ ︷︷ ︸
<∞

→ 0 if h1 → 0.

The differentiability follows and the last statements follow of general rules on represen-
tations and coverings.

2. Immediate application of 1. to set-valued maps.

Theorem 5.19. Let (θk)k∈N be a ”regularization sequence”: (θk)k∈N ⊂ D(O) such as:
θk ≥ 0,

∫
θkdτ = 1, ∀k, supp(θk) ⊂ B(0, εk) with εk → 0.

1. Let fJ : O ∼> E be a simple non singular locally totally integrable covering. Let’s
assume that fJ is continuous at a fixed t then:

fJ(t) ⊂ lim sup
k

fJ ∗ θk(t)
def
= ∪

j∈J
lim sup

k
fj ∗ θk(t).
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Furthermore if fJ is locally uniformly b-Lipschitz, i.e.: ∃¸[bj , rj( ]j∈J = fJ : ∀j, ∃Uj

neighbourhood of t, ∃ρj > 0 : ‖rj(τ |x1)− rj(τ |x2)‖ ≤ ρj ‖x1 − x2‖, ∀x1, x2 ∈ bj τ ∈
Uj, then:

fJ(t) = lim sup
k

fJ ∗ θk(t).

2. Let F : O −◦ E be a simple non singular locally totally integrable set-valued map.
Let’s assume that F is continuous at a fixed t then:

F (t) ⊂ lim sup
k

covF ∗ θk(t)
def
= ∪

f∈I(F )
lim sup

k
f ∗ θk(t).

Furthermore if F is locally uniformly b-Lipschitz then:

F (t) = lim sup
k

covF ∗ θk(t) = lim sup
k

fJ ∗ θk(t) for an arbitrary fJ ∈ C(F ).

Proof. 1. It is only necessary to prove the statement for fJ = f = ˙[b, r( ]. We have, as
f is continuous at t: ∀ε > 0 ∃γ > 0 / ‖τ‖ ≤ γ ⇒ ‖eT (t− τ | − eT (τ | ‖b ≤ ε,

‖r ∗ θk(t| − r(t| ‖b ≤

∫
‖r(t− τ | − r(t| ‖bθk(τ) dτ

≤

∫
‖eT (t− τ | − eT (t| ‖bθk(τ) dτ

≤

∫

B(0,γ)

‖eT (t− τ | − eT (t| ‖bθk(τ) dτ,

≤ ε

∫
θdτ = ε, ∀k ≥ k(γ).

Hence, for any t, r ∗ θk(t| →L(b) r(t| and then: ∃bt ⊂ b / µb(b− bt) = 0 and r ∗ θk(t|x) →
r(t|x), ∀x ∈ bt. It follows that: r(t|bt) ⊂ lim supk r ∗ θk(t|bt) = lim supk r ∗ θk(t|b).

Because as r( is simple non singular so is r ∗ θk(. Then r(t|bt) and r ∗ θk(t|bt) are
respectively dense in r(t|b) = f(t) and r ∗ θk(t|b) = f ∗ θk(t). The result follows.

If f verify the Lipschitz condition, by strong compatibility of the continuity, we can
assume the chosen continuous representation r( has the Lipschitz property. Let be then
x ∈ b, as bt is dense in b: x = lim xβ , xβ ∈ bt and ‖r ∗ θk(t|x)− r(t|x)‖ ≤ ‖r ∗ θk(t|x)− r ∗
θk(t|xβ)‖+ ‖r ∗ θk(t|xβ)− r(t|xβ)‖+ ‖r(t|xβ)− r(t|x)‖, but ‖r ∗ θk(t|x)− r ∗ θk(t|xβ)‖ ≤∫
‖r(t− τ |x) − r(t− τ |xβ)‖θk(τ) dτ ≤ ρ‖x− xβ‖ for any k ≥ kU , t+ supp(θk) ⊂ U and

‖r(t|x) − r(t|xβ)‖ ≤ ρ‖x − xβ‖. It follows immediately: limβ(r ∗ θβ(t|x) − r(t|x)) = 0
and bt = b.

Let be y ∈ lim supk r ∗ θk(t) : y = limν r ∗ θν(t|xν), xν ∈ b. As b is compact, there is an
extracted xα, xα → x ∈ b. Then:

‖y − r(t|x)‖

≤ ‖y − r ∗ θα(t|xα)‖ + ‖r ∗ θα(t|xα) − r ∗ θα(t|x)‖ + ‖r ∗ θα(t|x) − r(t|x)‖

≤ ‖y − r ∗ θα(t|xα)‖ + ρ‖xα − x‖︸ ︷︷ ︸
α≥αU

+‖r ∗ θα(t|x) − r(t|x)‖→
α

0.

Then y = r(t|x) and lim supk r ∗ θk(t) ⊂ f(t). Hence, the equality follows from 1..

2. Immediate application of 1. to set-valued maps.
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6. Introduction to polydistributions

I end this exposition of my work by a short introduction to polydistributions, extension
to set-valued maps of the distributions theory. One of the main difficulties of set-valued
analysis is in the bad compatibility between set algebra and functional analysis necessi-
ties. In the framework of polydistributions this antagonism totally desappears and leads
to an extension which find again the formal simplicity of the initial theory.

I give here just basic definitions of polydistribution, distributive covering and polydis-
tribution associated with a set-valued map. I illustrate each of these concepts with their
reciprocal relations and some elementary results on derivatives and Fourier transform.

Conventions.

• O an open set in (Rn, dt).

• D(O) the space of C∞ complex functions on O with compact support in O. D′(O)
its dual space, space of distributions on O.

• S(Rn) the space of fast decreasing C∞ complex functions on Rn. S ′(Rn) its dual,
space of tempered distributions on S(Rn), [7].

6.1. General notions on polydistributions

Definition 6.1. We call polydistribution on O any set-valued map T : D(O) −◦ C such
as:

∃TI = {Ti; i ∈ I} ⊂ D′(O) : < T , ϕ >= T (ϕ) = {< Ti, ϕ >; i ∈ I}.

We denotes PD′(O) their set.

We have then the following immediate extrapolations and results:

6.1.1. Algebraic and boolean operations

T + S︸ ︷︷ ︸
set−valued maps algebra

= TI + SJ︸ ︷︷ ︸
sets algebra

and similarly:

kT = kTI ; T ∪ S = TI ∪ SJ ; T ∩ S = TI ∩ SJ (if it is defined).

Hence, we identify polydistribution on O and non empty subsets of D′(O).

6.1.2. Derivative

We define the ”derivative of order m = (m1, ..., mn)” of a polydistribution T , as in the
classical case, by:

< D(m)T , ϕ >= (−1)|m| < T , ϕ(m) >

that is equivalent to:

D(m)TI = {D(m)Ti; i ∈ I}.

We have then immediately:

T 7→ D(m)T is a linear and boolean operator from PD′(O) to itself (see Theorem 5.12)
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6.1.3. Fourier analysis

A polydistribution T on Rn is said to be tempered if it can be identified with a non
empty subset of S ′(Rn) Their set, denoted PS ′(Rn), is stable by algebraic and boolean
operations.

We define the Fourier transform T̂ of T , as in the classical case, by:

< T̂ , ϕ >=< T , ϕ̂ >

that is equivalent to:

T̂I = {T̂i, i ∈ I}.

The co-Fourier transform T is defined similarly.

We have immediately: The Fourier transform and co-Fourier transform are linear and
boolean inverse operators of PS ′(Rn) on itself:

T̂ = T̂ = T .

6.2. Distributive coverings

Definition 6.2. A covering τI : D(O) ∼> C is said to be ”distributive” if it has a
representations system [bi, ri( ]i∈I such as:

∀i ∈ I, ∀x ∈ bi, [ri,x : ϕ 7→ ri(ϕ|x)] ∈ D′(O).

We extend the classical notation < τI , ϕ > for τI(ϕ).

A distributive covering is always simple and is said tempered (O = Rn) if, for any i ∈ I
and any x ∈ bi, ri,x belongs to S ′(Rn) The spaces obtained are stable by linear and
boolean operations.

Theorem 6.3. A set-valued map T : D(O) −◦ C is a (tempered) polydistribution if and
only if it is sujacent to a (tempered) distributive covering.

Proof. Let T : D −◦ C be a polydistribution. On the first hand, if T = {Ti; i ∈ I},
τI , defined by τi = Ti, ∀i ∈ I, is a distributive covering of T . On the other hand, if τI
is a distributive covering of T , we have : T = {Ti,x = ri,x; i ∈ I, x ∈ bi} ⊂ D′(O). The
result follows.

6.2.1. Derivative

We define the derivative of order m = (m1, ..., mn) of a distributive covering τI by:

< D(m)τI , ϕ >= (−1)|m| < τI , ϕ
(m) > .

We have immediately: τI 7→ D(m)τI is a linear and boolean operator of the distributive
coverings space in itself.

6.2.2. Fourier analysis

We defined the Fourier transform of a tempered distributive covering by:

< τ̂I , ϕ >=< τI , ϕ̂ > .
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that is equivalent to: if [bi, ri( ]i∈I is a representations system of τI , [bi, r̂i( ]i∈I is a
representations system of τ̂I with:

r̂i(ϕ| = ri(ϕ̂|.

The co-Fourier transform τI 7→ τI is defined similarly.

Then, immediately: The Fourier transform an co-Fourier transform are linear and boolean
inverse operators of the tempered distributive coverings space on itself.

6.2.3. Fundamental relation

Theorem 6.4. Let be fI : O ∼> C a simple locally totally integrable covering and
[bi, ei(, si( ]i∈I a suitable representations system of fI . For any ϕ ∈ D(O), we define:

< τfI
, ϕ >=

∫
fIϕdt.

Then:

1. τfI
is a distributive covering on O of representations system

[bi, ϕ 7→

∫
ϕei(t| dt, ϕ 7→

∫
ϕsi(t| dt]i∈I .

fI 7→ τfI
is a linear and boolean operator such as, for coverings of at most countable

order:
τfI

= τgJ
⇔ fI = gJ a.e. t ∈ O.

Therefore if fI is Ck on O: ∀m ∈ Nn, / |m| ≤ k, D(m)τfI
= τ∂mfI

.

2. If we define the Fourier transform of a Rn-totally integrable fI as the locally totally
integrable covering:

t ∼> f̂I(t) =

∫

Rn

e2iπt.ζfI(ζ)dζ,

then τ bfI
is a tempered distributive covering and τ bfI

= (̂τfI
).

(similarly for the co-transform)

Proof. 1. The proof of the first point is formally the same as the proof given in the
regularization by convolution Theorem 5.18.

The calculus rules are obvious and the bijectivity property follows immediately from:

• fI = gJ naturally mean ∃i ∈ I 7→ j(i) ∈ J bijective such as: ∀i ∈ I, gj(i) = fi.

• For two dynamics f and g , of representations [b, ef,T ( ] and [b, eg,T ( ], after mutual
extension of their initial bases, the equality means equality in the space of vector
distributions D(O,L(b)). It follows the equality, for almost every t, of functions
ef,T and eg,T and hence equality of dynamics f and g.

For the last point, let be n = 1, k = 1, f = ¸[b, eT ( ]: dfI =
˝
[b, e

(1)
T ( ]. t 7→ eT ( is a C1

function from O in L(b) with derivative e
(1)
T (. The vector distribution with values in L(b)

defined in this way is then such as d
dt
eT ( = e

(1)
T (. The statement follows immediately.

2. The immediate checks and identification are formally identical to these used in 1b.
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6.3. Polydistribution associated with a set-valued map

Definition 6.5. We define the polydistribution associated with a locally integrable set-
valued map F : O −◦ C by:

TF : ϕ ∈ D(O) −◦< TF , ϕ >

=

∫
ϕ(t) (F (t)dt)

def
= {< f, ϕ >; f locally integrable selection of F}.

Theorem 6.6. Let be F,G : O −◦ C and fI : O ∼> C locally integrable:

1. ∀ϕ ∈ D(O),
∫
ϕFdt) ⊂

∫
ϕFdt ⊂

∫
ϕ (Fdt) and in particular, if F is integrably

bounded and has closed images:
∫
ϕF dt =

∫
ϕ (Fdt).

2. TF = TG ⇔ A(F ) = A(G),

3. F 7→ TF is a sublinear and subboolean operator.

4. τfI
⊂ TfI

.

5. Therefore if F : Rn −◦ C is integrable and if we defines the ”Fourier transform” of
F as the locally integrable set-valued map:

t −◦ F̂ (t) =

∫

Rn

e2iπ t.ζF (ζ) dζ,

then: T bF = T̂F .

Proof. 1. Only the second inclusion is not obvious. Let be z ∈
∫
ϕFdt and h an

integrable selection of ϕF such as
∫
hdt = z. We have: supp(h) ⊂ supp(ϕ) = K, K

compact such as (Ko) = K.

Let Km ⊂ Ko be an increasing sequence of compacts such as ∪mKm = Ko. Then

∀m, im = infKm
|ϕ| > 0 and hm =

h|m

ϕ
is then defined and measurable onKm. Therefore:∫

Km
|hm| dt ≤

1
im

∫
Km

|h|Km
| dt ≤ 1

im

∫
|h| dt <∞, hm is integrable on Km.

Let be then f an locally integrable selection of F and fm = hm 1Km
+f (1−1Km

). fm is a
locally integrable selection of F and

∫
ϕfm dt ∈

∫
ϕ(Fdt). Therefore:

∫
K
|ϕfm − h| dt ≤

sup|ϕ|

∫

K−Km

|f | dt

︸ ︷︷ ︸
→0

+

∫

Km

|ϕfKm
− h| dt

︸ ︷︷ ︸
=0

+

∫

K−Km

|h| dt

︸ ︷︷ ︸
→0

.

Hence:
∫
ϕfm dt→

∫
h dt and then z ∈

∫
ϕ(Fdt).

The special case is an immediate consequence of the theorem of integral compacity, [1],
[3].

2. and 3. are immediate.

4. Let f be a locally totally integrable dynamic.

τf (ϕ) = < τf , ϕ > = {
∫
r(t|x)ϕ(t) dt; x ∈ b}, where [b, r( ] ∈ f , and ∀x ∈ b, [t 7→

r(t|x)] ∈ A(f). Then
∫
r(t|x)ϕ(t) dt ∈< f, ϕ >. Hence, τf (ϕ) ⊂< f, ϕ > and then

τf ⊂ Tf .
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5. We have first obviously: F̂ (t) = {f̂ ; f integrable selection of F} and the locally

integrability of F̂ follows. On the other hand:

< T̂F , ϕ >=< TF , ϕ̂ >=

∫
ϕ̂(Fdt) =

{∫
ϕ̂f dt; f integrable selection of F

}

=

{∫
ϕf̂ dt; f integrable selection of F

}

=

∫
ϕ(F̂ dt) =< T bF , ϕ > .

Conclusion

I have here only explained some fundamentals of coverings theory I developed. In the
natural framework of the set-valued analysis many points would be of real interest to
be studied in more depth or developed, such as the relations between differentiability
and the different cones of derivatives, the reciprocal investment of Aumann integral and
integral in each other, the theory of polydistributions, as well as some other analytical
properties as analycity or periodicity. Similarly, it would be interesting to search and de-
velop applications for the differential inclusions and viability theories, but also, possibly,
applications to others domains less directly connected with set-valued analysis.
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