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According to the Blaschke-Lebesgue theorem, among all plane convex bodies of given constant width
the Reuleaux triangle has the least area. The area of a convex set can be written as an integral involving
the support function h and the radius of curvature ρ of the set. The support function satisfies a second
order ordinary differential equation where the datum is the radius of curvature. The function ρ is non-
negative and bounded above, so that the Blaschke-Lebesgue theorem can be formulated as an optimal
control problem, where the functional to be minimized is the area. In the same way, the control theory
can be used to find the body of minimum volume among all 3-dimensional bodies of revolution having
constant width.
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1. Introduction

Let K be a planar convex body (i.e., a compact convex subset of R2) having the origin
O as an interior point, let HK denote its support function, defined by

HK(ξ) = sup{〈x, ξ〉; x ∈ K}, ξ ∈ R
2, (1)

and let
hK(θ) = HK(cos θ, sin θ), θ ∈ R. (2)

We say that K is a body of constant width w if hK(θ) + hK(−θ) = w for every θ. This
amounts to require that any two distinct parallel lines tangent to the boundary of K are
separated by a distance w. The simplest example of a body of constant width is a circle.
A less trivial example is the so-called Reuleaux triangle R of constant width w, that is,
the plane convex set obtained by the intersection of three circles of radius w, centered
at the vertices of an equilateral triangle of side w (see Figure 1.1). It is easily seen that
its area is

A(R) =
π −

√
3

2
w2.

Other examples are the Reuleaux polygons with an odd number of sides.

The following celebrated result, due to Blaschke and Lebesgue (see [3, 19]), characterizes
the bodies of minimal area among all planar convex bodies of given constant width.
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Figure 1.1: The Reuleaux triangle

Theorem 1.1 (Blaschke-Lebesgue). Among all planar convex bodies of given con-

stant width, the Reuleaux triangle has the least area.

The major disadvantage of the proof given by Blaschke and Lebesgue, and by many
subsequent authors (see [8, 5, 2, 6, 11, 16, 17]), is that it relies on the prior knowledge
of the minimizer.

Recently, some analytical proofs of the Blaschke-Lebesgue theorem have been developed.
We mention the attempt by Ghandehari [12] and the proof given by Harrell [13].

In this paper we give a proof of Theorem 1.1 following the approach of Ghandehari,
which is based on optimal control theory. Unfortunately, in our opinion the proof given
in [12] is not entirely correct; actually, some conclusion is not rightly supported by the
given arguments:
Considering the cases that one has to analyze to find the maximum of the Hamiltonian
function, Ghandehari excludes the cases λ 6= 0 and λx1 + p2 6= 0 together with λ 6= 0
and λx1 + p2 = 0, where (λ, p1, p2) is the auxiliary vector, as leading to contradictions.
While we agree with the second hypothesis (Case 1, p. 397), our analysis leads us to
exclude also the case λ = 0 (the one saved by Ghandehari) and the case λ 6= 0 and
λx1 + p2 6= 0 on certain subintervals Ii of [0, π], which Ghandehari does not take into
consideration at all. We conclude that we have to study the problem just when λ 6= 0
(that is λ = −1) and p2 + λx1 6= 0, following a quite different path and reasoning also
on some geometrical aspect.
Our aim is to give a rigorous proof of the Blaschke-Lebesgue theorem following the op-
timal control theory approach. More precisely, we rewrite the problem of minimizing
the area among the class of planar convex bodies of given constant width as an optimal
control problem, where the curvature radius of the convex body appears as a control,
and the unknown function hK satisfies an ordinary differential equation. At this point,
we show that the only functions hK satisfying the necessary condition for optimality
given by the Pontryagin Maximum Principle are the support functions of the Reuleaux
polygons with an odd number of sides. The conclusion now follows from the fact that,
among all these Reuleaux polygons, the Reuleaux triangle attains the least area.
The second part of the paper is devoted to prove the 3-dimensional analogue of the
Blaschke-Lebesgue Theorem for rotational bodies, using the Pontryagin Maximum Prin-
ciple; this proof is our main and new result. Actually, Theorem 4.1 has been approached
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only via geometrical techniques and the use of the Optimal Control Theory here is the
starting point for its application to 3-dimensional problems in convex geometry.

The plan of the paper is the following.
In the second section, we recall some of the main definitions, properties and formulas in
convex geometry that we are going to use in the subsequent pages.
In the third section, we study the smaller class of plane convex bodies of constant width
w = 1 and we write the problem of minimizing the area A of such bodies using an
optimal control theory formulation, where the function ρ, the radius of curvature, is the
control parameter.
To gain the solution of the problem, we introduce new variables, depending on h and
ρ, then fix the values of the functions h and h′ at the points θ = 0 and θ = π, and
finally we apply the Pontryagin Maximum Principle, looking for the maximum value of
the Hamiltonian function of the problem, with respect to the control u.
Due to the exclusion of the bodies having maximum area and of those with empty
interior, we can analyse just the case where some of the varying parameters are not
completely free.
In order to satisfy the initial conditions for the support function and its regularity, we
conclude that the only possible solutions are Reuleaux polygons. Finally, since the area
of a Reuleaux polygon is an increasing function with respect to the number of sides,
we can conclude that the Reuleaux triangle is the solution to the Blasckhe-Lebesgue
theorem.
In the last section, the 3-dimensional case of bodies of revolution having constant width
is analyzed as a planar problem, considering the plane figures whose rotations around
one of their symmetry axis generate such bodies. The minimum volume is gained when
the rotating figure is a Reuleaux triangle, as stated in [5].
The author wishes to express her gratitude to Prof. G. Crasta and to Prof. C. Benassi
for many valuable advices.

2. Preliminaries

A planar convex body K is a compact, convex subset of R2 with nonempty interior. It is
not restrictive to assume that the origin is an interior point of K.
The support function and the support function in the direction −→uθ = (cos θ, sin θ) of K
are defined respectively in (1) and (2). The width of K in the direction −→uθ , given by

wK(θ) = hK(θ) + hK (θ + π), (3)

measures the distance from distinct parallel lines tangent to the boundary ∂K of K, and
perpendicular to the direction −→uθ .

We say that K is a body of constant width w if wK(θ) = w for every θ. It is well known
that every convex body of constant width K is strictly convex. As a consequence, for
every θ there exists a unique point Γ(θ) ∈ ∂K with supporting line perpendicular to −→uθ ,
and such that hK(θ) = 〈−→uθ , Γ(θ)〉.
Let κ(θ) be the principal curvature of ∂K at Γ(θ), and let

ρK(θ) = 1/κ(θ)
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denote the curvature radius of ∂K at Γ(θ). It is well known that the functions hK and
ρK satisfy the ordinary differential equation

h′′
K(θ) + hK(θ) = ρK(θ) (4)

(see, for example, [22], p. 3 or [23], p. 110). In order to use (4) correctly, we work with

functions hK which are differentiable a.e. two times. Furthermore, we recall that if K
has constant width, then hK is continuously differentiable (see [23], §1.7).
It is not difficult to see that the area of K is given by

A(K) =
1

2

∫

2π

0

hK(θ)ρK(θ) dθ (5)

(see [22], §1).

3. The optimal control theory formulation

As a first reduction, in order to prove the Blaschke-Lebesgue theorem, it is not restrictive
to consider only the class K1 of convex bodies of constant width w = 1.

Let us consider a convex body K ∈ K1. From the relation (3) of width, we have that

hK(θ) + hK(θ + π) = 1, (6)

hence h′′
K(θ) + h′′

K(θ + π) = 0. It follows, according to (4), that

ρK(θ) + ρK(θ + π) = hK(θ) + h′′
K(θ) + hK(θ + π) + h′′

K(θ + π) = 1, (7)

hence the radius of curvature ρK is bounded and satisfies the condition

0 ≤ ρK(θ) ≤ 1 ∀θ. (8)

From an Optimal Control Theory point of view, we can consider the problem of mini-
mizing the area A, given by (5), among all functions h = hK satisfying the differential
equation (4), where the control ρ = ρK takes values in the control set [0, 1] (see (8)).
Moreover, h and ρ satisfy the additional symmetry conditions (6) and (7).

In conclusion, the problem can be summarized in the following way:

min
1

2

∫

2π

0

h(θ)ρ(θ) dθ (9)

subject to

h(θ) + h′′(θ) = ρ(θ), (10)

h(θ) + h(θ + π) = 1, (11)

ρ(θ) + ρ(θ + π) = 1, (12)

0 ≤ ρ ≤ 1. (13)
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It is worth to remark that, thanks to the symmetry conditions (11) and (12), the mean
values of h and ρ in [0, 2π] are fixed. Namely

∫

2π

0

h(θ)dθ =

∫ π

0

h(θ)dθ +

∫

2π

π

h(θ)dθ

=

∫ π

0

h(θ)dθ +

∫ π

0

h(θ + π)dθ =

∫ π

0

1dθ = π,

(13’)

which is just the perimeter of the body having support function equal to h. Moreover,
using (12) in place of (11) in (13’), one obtains

∫

2π

0

ρ(θ)dθ =

∫

2π

0

(h(θ) + h′′(θ))dθ

=

∫

2π

0

h(θ)dθ + [h′]2π0 =

∫

2π

0

h(θ)dθ = π.

(14)

We can also fix the values of h and h′ at the points θ = 0 and θ = π, that means
that we prevent the figure from translating in any direction. Indeed, if we consider any
diameter of K, two support lines to K pass through its ends and are perpendicular to
such a chord. Therefore, we can take one end of that diameter as the origin and fix the
following values:

h(0) = 1, h(π) = 0,

h′(0) = 0, h′(π) = 0.

Using (6) and (7), the area functional can be written as an integral from 0 to π. Namely,

∫

2π

0

h(θ)ρ(θ) dθ =

∫ π

0

h(θ)ρ(θ) dθ +

∫ π

0

h(θ + π)ρ(θ + π) dθ

=

∫ π

0

(h(θ)ρ(θ) + (1− h(θ))(1− ρ(θ))) dθ

=

∫ π

0

(2h(θ)ρ(θ) + 1− ρ(θ)− h(θ)) dθ.

Let us introduce the new variables











x1(θ) = 2h(θ)− 1,

x2(θ) = x′
1(θ) = 2h′(θ),

u(θ) = 2ρ(θ)− 1.

Since the area is given by 1

4

∫ π

0
(1 + x1(θ)u(θ)) dθ, the optimal control problem can be

formulated in the following new way:

min

∫ π

0

x1(θ)u(θ) dθ, (15)



396 F. Malagoli / The Blaschke-Lebesgue Theorem

subject to

x′
1 = x2, (16)

x′
2 = u− x1, (17)

x1(0) = 1, x1(π) = −1, (18)

x2(0) = 0, x2(π) = 0, (19)

|u| ≤ 1. (20)

The Blaschke Selection Theorem (see [23], p. 50) guarantees the existence of a minimizer
even to such a problem. Using the Pontryagin Maximum Principle for the analysis of the
problem (15)–(20), we will show that the solution to the Blaschke-Lebesgue Theorem is
to be found among the regular Reuleaux polygons. We recall that a Reuleaux polygon is
a convex figure which is obtained drawing arcs of circumference on the sides of a regular
polygon, in such a way that each arc connects two consecutive vertices of the polygon
and is centered in the vertex opposite to the corresponding side. This implicitly means
that we can construct Reuleaux polygons only with an odd number of sides.

Let us write the Pontryagin Maximum Principle for the problem (15)–(20) (see, for
example, [20, 21]). The Hamiltonian function of the problem is given by

H(x, p, u) = u(λx1 + p2) + p1x2 − p2x1,

where λ is a non-positive constant. The state variables x = (x1, x2) satisfy (16)–(17)
with boundary conditions (18)–(19), whereas the adjoint vector p = (p1, p2) satisfies the
adjoint system of differential equations



















p′1 = −∂H

∂x1

= p2 − λu ,

p′2 = −∂H

∂x2

= −p1 .

(21)

According to the Pontryagin Maximum Principle, if (x∗, u∗), x∗ = (x∗
1, x

∗
2), is an optimal

solution for the problem (15)–(20), then there exist a constant λ ≤ 0 and an absolutely
continuous adjoint vector p∗ = (p∗1, p

∗
2) such that

max
|w|≤1

H(x∗(θ), p∗(θ), w) = H(x∗(θ), p∗(θ), u∗(θ)), a.e. θ ∈ [0, π].

Due to the linearity of the equations, we can always assume that λ = 0 or λ = −1. Since
the function H is linear with respect to u, the maximum value in the left hand side is
reached when the control u satisfies

u =

{

1, if λx1 + p2 > 0,

−1, if λx1 + p2 < 0,
(22)

whereas u can take any value in [−1, 1] when λx1 + p2 = 0.

Let us consider all the possible cases.
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Case 1: λ = −1 and λx1 + p2 ≡ 0 in the whole interval [0, π].
In this case, p2 = −λx1, therefore p

′
2 = −λx′

1 = −p1 = −λx2, and p′1 = p2 − λu = λx′
2 =

λ(u− x1), where we use the differential equations for p′1, p
′
2 and (16), (17).

Then, −λx1 − λu = p2 + u = −λx1 + λu, which implies u = 0. This means ρ(θ) = 1/2,
so we have found a disc with radius 1/2, which has maximum area among the convex
bodies with constant width 1. Clearly, this case has to be excluded.

Case 2: λ = 0. The maximality condition is satisfied if

u =

{

1 if p2 > 0,

−1 if p2 < 0.

The differential equations for p1 and p2 become

{

p′1 = p2,

p′2 = −p1,

that is p′′2 = −p2, from which we get p2(θ) = B sin(θ − γ), for some constants B and γ.
Hence we find x1(θ) = A sin(θ − α) ± 1, so that x2(θ) = A cos(θ − α), with x1(0) = 1,
x1(π) = −1, x2(0) = 0 = x2(π). If we use these conditions on x1 and x2, we find

{

x1(0) = −A sinα± 1 = 1,

x2(0) = A cosα = 0.

The second equation means α = π/2, therefore the first is true only if p2(0) < 0 and
A = −2. Hence, in a right neighborhood of θ = 0, we have x1(θ) = 2 cos θ − 1.
The function p2 satisfies p′′2 + p2 = 0, therefore, if γ > 0, it is negative in a right
neighborhood [0, τ1) of 0, it is positive in (τ1, τ1 + π) and again negative in (τ1 + π, 2π).
Consequently, we have

u =











−1, in [0, τ1),

1, in (τ1, π + τ1),

−1, in (π + τ1, 2π),

and then

ρ =











0, in [0, τ1),

1, in (τ1, π + τ1),

0, in (π + τ1, 2π),

We conclude that ρ = 0 in an interval of length π. Such a case corresponds to a
degenerate convex body (i.e. a convex body with empty interior). Then, this case also
must be excluded.

Case 3: λ = −1 and λx1 + p2 ≡ 0 on certain subintervals Ij of [0, π].
Suppose that p2 − x1 6= 0 on Ii and p2 − x1 = 0 on Ii+1 = [τ1, τ2] or viceversa. Since
the differential equations for p2 and x1 can be written as p′′2 + p2 = −u and x′′

1 + x1 = u
respectively, we have that p2(θ) = B1 sin θ + B2 cos θ − u and x1 (θ) = A1 sin θ +
A2 cos θ + u.
This means that p2 = x1 ⇒ (A1 −B1) sin θ+ (A2 −B2) cos θ+ 2u ≡ 0 for all θ ∈ Ii+1.
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In case u = constant, u = A1−B1

2
sin θ+ A2−B2

2
cos θ in the whole interval Ii+1 if and only

if u ≡ 0 and (4) gives us ρ ≡ 1

2
∀ θ ∈ Ii+1.

Due to conditions (11) and (12), our extremal figure is delimited by two circular arcs of
radius 1

2
centered in the origin, one facing the other.

But one can draw another body of smaller area and constant width one via suitable cuts
on its boundary, as it is shown in the following picture:

 

A

B

C

δ− 1

2 0
1

2

Figure 3.1:

Actually, we consider an arc of radius 1 connecting A and B instead of the arc AB of
radius 1

2
, while the facing arc is substituted by two arcs of radius 1 centered in A and

B respectively. If δ is the measure of the interval we are working with, the missing area
between the arc AB of radius 1 and the arc AB of radius 1

2
, written as

A1 =
δ

8
− arcsin

(

1

2
sin

(

δ

2

))

+
1

2
sin

(

δ

2

)





√

√

√

√

(

1− 1

4

(

sin

(

δ

2

))2
)

− 1

2
cos

(

δ

2

)



 ,

is bigger than the opposite added area which can be calculated as

A2 =
3δ

8
− arcsin

(

1

2
sin

(

δ

2

))

− 1

2
sin

(

δ

2

)





√

√

√

√

(

1− 1

4

(

sin

(

δ

2

))2
)

− 1

2
cos

(

δ

2

)



 ,

for all δ ∈ [0, π].
On the other hand, the segments intercepted by the parallel lines to the bisecting line of
the δ-angle, on the figure delimited by the arc AB of radius 1 and the arc AB of radius
1

2
, are longer than the corresponding segments on the figure delimited by the two arcs of

radius 1 centered in A and B, except for the ones on the bisecting line itself.

In case u 6= constant in Ii+1, we study the behaviour of the function z = p2 − x1:
Actually,

z =

{

(B1 − A1) sin θ + (B2 − A2) cos θ − 2, if u = 1,

(B1 − A1) sin θ + (B2 − A2) cos θ + 2, if u = −1,
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in Ii. So it can take the value 0 in τ1, having also horizontal tangent line in that point,
if it does not change sign in Ii; in any case we need | A |= 2.
The Hamiltonian function reaches its maximum value with

u =

{

1 if z > 0

−1 if z < 0,

but we get

z =

{

(B1 − A1) sin θ + (B2 − A2) cos θ − 2 ≤ 0, if u = 1,

(B1 − A1) sin θ + (B2 − A2) cos θ + 2 ≥ 0, if u = −1,

since | A |= 2.
We exclude these solutions.

Case 4: λ = −1 and λx1 + p2 6≡ 0.
In this case, since x′′

1 = x′
2 = u − x1, we have x1(θ) = Au sin(θ − αu) + u, for some

constants Au and αu, in each interval where u is constant.

Summarizing what we said until now, we have to analyze the case λ = −1, p2 − x1 6= 0.
With these conditions, the problem can be written as

(1) H = p1x2 + p2(u− x1)− x1u;

(2)

{

p′1 = p2 + u

p′2 = −p1,
therefore p′′2 = −p2 − u and p2(θ) = B sin(θ − γ)− u;

(3) H reaches its maximum value if u =

{

1 if p2 − x1 > 0

−1 if p2 − x1 < 0;

(4) x′′
1 = u− x1, therefore x1(θ) = A sin(θ − α) + u and x2(θ) = A cos(θ − α) .

The mean values for h and u in [0, 2π] are fixed; indeed,

∫

2π

0

h(θ)dθ =

∫ π

0

h(θ)dθ +

∫

2π

π

h(θ)dθ

=

∫ π

0

h(θ)dθ +

∫ π

0

h(θ + π)dθ =

∫ π

0

1dθ = π,

which is just the perimeter of the body having support function equal to h.
Moreover, we use (14) and get

∫

2π

0

u(θ)dθ =

∫

2π

0

(2ρ(θ)− 1)dθ =

∫

2π

0

2(h(θ) + h′′(θ))dθ − 2π

= 2

∫

2π

0

h(θ)dθ + 2[h′]2π0 − 2π = 2

∫

2π

0

h(θ)dθ − 2π = 0.

Given z = p2 − x1, we get

z′′ = p′′2 − x′′
1 = −p2 − u− u+ x1 = −z − 2u

and u = sign z.
Therefore, z(θ) = C sin(θ − δ)− 2sign z and z′ = C cos(θ − δ), where z and z′ belong to
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the class C1.
Moreover, since x1(0) = 1 = −A sinα ± 1 and x2(0) = 0 = A cosα, we get α = π

2
, A =

−2, z(0) < 0; this implies C sin δ − 2 > 0, that is |C| > 2.
Let τ be the first point after which z changes from negative to positive; if z(θ) =

C sin(θ − ϕ)− 2 for some θ bigger than τ and z(τ) = 0, the following conditions imply
the connection of the curves representing z and z′ for θ < τ, with the same curves for
θ > τ :

{

C sin(τ − δ) + 2 = C sin(τ − ϕ)− 2 = 0

C cos(τ − δ) = C cos(τ − ϕ).

From the first equation we get

C = − 2

sin(τ − δ)
, C =

2

sin(τ − ϕ)
;

substituting in the second equation, we have tan(τ − δ) = − tan(τ − ϕ), that is,

τ − δ = ϕ− τ or τ − δ = π + ϕ− τ.

Then,

C =
2

− sin(τ − δ)
or C =

2

sin(τ − δ)
,

that is |C| = |C|.
Now we conclude the proof showing that the interval [0, π] can be divided in an odd
number of intervals; in each of them, z can be written as

z(θ) = G sin(θ − ν)± 2.

The condition |C| = |C| tells us that the bodies corresponding to such functions z are
regular Reuleaux polygons.
Indeed, the graph of the functions z can be drawn in the following way:

y

2

−2

x

Figure 3.2:

we start with the function y(θ) = C sin θ and consider the piece of graph outside the strip
|y| ≤ 2. In this way, we obtain several arcs of the curve, which are defined in particular
subintervals of [0, 2π] and that are suitably connected.
To be able to do this, the length of the subintervals must be always the same.
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Moreover, since z(0) = z(2π), u = sign z, and
∫

2π

0
u(θ)dθ = 0, the number of intervals of

the subdivision of [0, 2π] is integer and even.
This implies that [0, π] is split in M subintervals, where M is integer, in which u is 1 or
-1 in turn.
To be even more precise, M is necessarily odd, otherwise the corresponding bodies don’t
have constant width. We already said, indeed, that you can construct Reuleaux polygons
only with an odd number of sides.
Leaving the degenerate case M = 1, we can conclude that the Reuleaux triangle is the
solution to the Blaschke-Lebesgue problem, since the area is an increasing function with
respect to M.
This propriety can be directly verified and the explicit calculus can be found in [10].
So, the minimum is given by the Reuleaux triangle with width 1, whose function ρ is 1
or 0 in turn, on intervals of length π

3
.

4. The Blaschke-Lebesgue Theorem in the 3-dimensional case for bodies of
revolution

In this section, we apply the Pontryagin Maximum Principle [20, 21] to the Blaschke-
Lebesgue Theorem in the three-dimensional case, as it can be written for bodies of
revolution.
The Theorem we refer to is the following [5]:

Theorem 4.1 (Blaschke-Lebesgue for bodies of revolution). Among all 3-dimen-

sional bodies of revolution having constant width, the body obtained by rotating a Reuleaux

triangle around one of its axis of symmetry has the least volume.

If the rotating figure of the extremal body is placed in a coordinate system, such as to
be symmetric with respect to the y axis, and h (θ) is its support function, to find the
minimum volume means to find the minimum of the integral

∫ π

2

−π

2

(h(θ) cos θ − h′(θ) sin θ)ρ(θ) dθ.

The plane figure we are studying has to be of constant width 1, so that we work under
the following conditions:
ρ(θ) = h(θ)+h′′(θ), h(θ)+h(−θ) = 1, ρ(θ)+ρ(−θ) = 1; the integral above then becomes

∫

0

−π

2

(h(θ) cos θ − h′(θ) sin θ)ρ(θ)dθ +

∫ π

2

0

(h(θ) cos θ − h′(θ) sin θ)ρ(θ)dθ

=

∫ π

2

0

(h(−θ) cos(−θ)− h′(−θ) sin(−θ))ρ(−θ)dθ +

∫ π

2

0

(h(θ) cos θ − h′(θ) sin θ)ρ(θ)dθ

=

∫ π

2

0

((1− h(θ)) cos θ + h′(θ) sin θ)(1− ρ(θ))dθ +

∫ π

2

0

(h(θ) cos θ − h′(θ) sin θ)ρ(θ)dθ

=

∫ π

2

0

(cos θ − h cos θ + h′ sin θ + ρ(2h cos θ − 2h′ sin θ − cos θ))dθ

=

∫ π

2

0

(2ρ(h cos θ − h′ sin θ)− 2h cos θ)dθ + 1 + h′(0),
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where
∫ π

2

0
ρ cos θ dθ =

∫ π

2

0
(h cos θ + h′′ cos θ)dθ =

∫ π

2

0
h cos θ dθ + [h′ cos θ]

π

2

0

+
∫ π

2

0
h′ sin θ dθ.

Since
∫ π

2

0
ρ(θ)h′(θ) sin θ dθ = [1

2
(h2 +h′2)(θ) sin θ]

π

2

0 − 1

2

∫ π

2

0
cos θ(h2 +h′2)(θ)dθ and inte-

grating by parts
∫

h′2(θ) cos θ dθ, we get

∫ π

2

0

(

2ρ(θ)h(θ) cos θ − 2h(θ) cos θ + h′2(θ) cos θ + h2(θ) cos θ
)

dθ + constant

=

∫ π

2

0

(

3h2(θ) cos θ + 2h(θ)h′′(θ) cos θ − 2h(θ) cos θ

−h(θ)h′′(θ) cos θ − h2(θ)

2
cos θ

)

dθ + constant

=

∫ π

2

0

h(θ) cos θ

(

ρ(θ) +
3h(θ)

2
− 2

)

dθ + 1 + h′(0)

− h2

(π

2

)

− h′2
(π

2

)

+
h2

2

(π

2

)

− h(0)h′(0).

Let us now introduce the new variables x1 and x2 and the control u such that











ρ(θ) = u(θ), 0 ≤ u ≤ 1,

x1(θ) = h(θ),

x2(θ) = x′
1(θ) = h′(θ).

Due to the regularity of the figure as concerns symmetry and width, we have, up to
vertical translations, h(0) = 1

2
; moreover, since we are working with convex bodies,

h′(π
2
) = 0. The only uncertain boundary condition is h′(0), but we can say h′(0) = 0 and

consider that h(π
2
) belongs to the interval (0, 1). Summarizing we have to solve















































min

∫ π

2

0

x1 cos θ

(

u+
3x1

2
− 2

)

dθ such that

ρ(θ) = u(θ) 0 ≤ u ≤ 1

x1(θ) = h(θ)

x2(θ) = x′
1(θ) = h′(θ)

x1(0) =
1

2
, x2(0) = 0

x1(
π
2
) = a ∈ (0, 1), x2(

π
2
) = 0.

The differential equation for x1 can be written as x′
2 = x′′

1 = u− x1 ⇒ x′′
1 + x1 = u ⇒

x1 = A sin(θ − α) + u, in those intervals where u is constant.
The Hamiltonian function is

H = λx1 cos θ

(

u+
3x1

2
− 2

)

+ p2 (u− x1) + p1 x2

= u(p2 + λx1 cos θ) + λx1 cos θ

(

3x1

2
− 2

)

− p2 x1 + p1 x2,
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which is linear with respect to the control u.
Therefore, p′1 = −λ cos θ(u− 2 + 3x1) + p2, p

′
2 = −p1 and

p′′2 + p2 = λ cos θ(u− 2 + 3x1).

The function H reaches its maximum value if

u =

{

1, p2 + λx1 cos θ > 0

0, p2 + λx1 cos θ < 0.

Case λ = 0: x1 = A sin(θ − α) + u, x2 = A cos(θ − α), p2 = B sin(θ − γ), for some
constant A, α, B, γ.
Using the boundary conditions, we get

x2(0) = A cosα = 0,

x1(0) = −A sinα+ 1 =
1

2
∨ x1(0) = −A sinα+ 0 =

1

2
,

and, consequently,

x1(θ) =











1− 1

2
cos θ u(0) = 1,

1

2
cos θ u(0) = 0,

in a right neighbourhood of θ = 0.
As we said in the plane case, the function p2 satisfies p′′2 + p2 = 0, therefore, if γ > 0,
it is negative in a right neighborhood [0, τ1) of 0, it is positive in (τ1, τ1 + π) and again
negative in (τ1 + π, 2π). Consequently, we have

u =











−1, in [0, τ1),

1, in (τ1, π + τ1),

−1, in (π + τ1, 2π),

and then

ρ =











0, in [0, τ1),

1, in (τ1, π + τ1),

0, in (π + τ1, 2π),

The symmetry conditions of our bodies further restrict the possible choices for τ1, but,
in any case, we conclude that ρ = 0 in an interval of length π. Such a case corresponds
to a degenerate convex body (i.e. a convex body with empty interior). Then, this case
must be excluded.

Case λ = −1 and p2+λx1 cos θ ≡ 0: The auxiliary vector p satisfies p2 = x1 cos θ, p′2 =
x′
1 cos θ− x1 sin θ = x2 cos θ− x1 sin θ = −p1, p

′
1 = p2 +cos θ(u− 2+ 3x1) = 2x1 cos θ+

2x2 sin θ−u cos θ. Then, x1 cos θ+(u−2) cos θ+3x1 cos θ = 2x1 cos θ+2x2 sin θ−u cos θ
if and only if (u − 1 + x1) cos θ = x2 sin θ. Replacing u with x′′

1 + x1, this leads us to
solve the differential equation h′′ = h′ tan θ − 2h + 1 for the support function h. Given
the boundary conditions h(0) = 1

2
and h′(0) = 0, since the coefficients are continuous,
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the equation above has a unique solution in [0, π
2
) which is the constant function h = 1

2
.

That means that our solution is the circle of radius 1

2
. This case also has to be excluded.

Case λ = −1 and p2 − x1 cos θ = z ≡ 0 on certain subintervals Ij of [0, π
2
]: Suppose

that p2 6= x1 cos θ on the interval Ii and p2 = x1 cos θ on the interval Ii+1 or viceversa.
As we said in the previous case, the Hamiltonian system in Ii+1 gives us the condition
(u− 1 + x1) cos θ = x2 sin θ, that is, u = x2 tan θ + 1− h = h′ tan θ + 1− h, θ 6= π

2
.

The differential equation h(θ) + h′′(θ) = ρ(θ) becomes

h′′ + 2h = h′ tan θ + 1. (23)

The function h(θ) = 1

2
+ A sin θ is the unique solution of equation (23), for all A ∈ R.

This implies ρ(θ) ≡ 1

2
, and we find the same configuration as in the plane case of a figure

bounded by two circular arcs of radius 1

2
centered in the origin and facing one another.

An analogous argument as in the planar case, leads us to the conclusion that the volume
of the bodies obtained by those figures is bigger than the volume of the bodies we get
under rotation of the figure of smaller area we can construct cutting the boundary of the
previous ones (see Figure 3.1).
Actually, not only the area of the rotating bodies decreases, but also the center of mass
moves on average towards the origin.

In conclusion, the only acceptable case is λ = −1 and z = p2 − x1 cos θ 6= 0.

The differential equation for the function z which determines the change in the control u
is z′′+z = 2[(1−u−x1) cos θ+x2 sin θ]. Let us analyze the different situations occurring
when the number of switching points varies.
First of all, we observe that the case u = 0 is similar to the case u = 1 in a right neigh-
bourhood of θ = 0, since they both produce the same rotating figure up to symmetries
with respect to the horizontal axes. Case 1: one switching point δ

 

 

A

B0

1

2

δ > π

3

δ

Figure 4.1: One switching point δ > π
3

As is shown in Figures 4.1 and 4.2, if we want to preserve the symmetry of the figure
with respect to the θ axes and to avoid new vertices, it is necessary that the arc on the
boundary drawn in the interval θ ∈ [0, δ] ends on the vertical axes; therefore δ = π

3
and,
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A

B

0 1

2

δ < π

3

δ D

Figure 4.2: One switching point δ < π
3

in case u(0) = 1,

h(θ) =















1− 1

2
cos θ 0 ≤ θ ≤ π

3

√
3

2
sin θ π

3
≤ θ ≤ π

2
.

The rotating figure we get is a Reuleaux triangle.

Case 2: two switching points δ1 and δ2

A

B

C

1

2

0 δ1

δ2

Figure 4.3: Two switching points δ1 and δ2

Again, as one can see from Figure 4.3, if we want to preserve the symmetry of the figure
with respect to the θ axes and to avoid new vertices, it is necessary that the arc BC ends
on the vertical axes and the center of the arc AB is on the same vertical axes.
The configuration we obtain is that of a regular star with sides of length 1, connecting
the vertices, while δ1 = δ2 =

π
5
(see Figure 4.4)

The rotating figure of the extremal body is a regular Reuleaux pentagon.

Case 3 on: three or more switching points Again, the optimal configuration is that of
a regular Reuleaux polygon with n sides and switching points δi =

π
n
.

Now, both the area of a regular Reuleaux polygon (as we already said) and the x-
coordinate of the center of mass xB of half a Reuleaux polygon (which is our rotating
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0

v1

v2
v3

v4

v5 δ =
π

5

Figure 4.4: Two switching points: final configuration

body) is an increasing function with respect to the number of sides (see footnote).1

The conclusion is that the volume of the revolution bodies obtained by the rotation of
regular Reuleaux polygons around one of their axes of symmetries is also an increasing
function with respect to the number of sides and the solution to the initial problem is
the body generated by a Reuleaux triangle.
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