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A d.c. (delta-convex) function on a normed linear space is a function representable as a difference of
two continuous convex functions. We show that an infinite dimensional analogue of Hartman’s theorem
on stability of d.c. functions under compositions does not hold in general. However, we prove that it
holds in some interesting particular cases. Our main results about compositions are proved in the more
general context of d.c. mappings between normed linear spaces.
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Introduction

Let C be a convex set in a (real) normed linear space X. A function f : C → R is
called d.c. or delta-convex if it can be represented as a difference of two continuous
convex functions on C. We say that f is locally d.c. on C if each c ∈ C has a convex
neighbourhood U such that f is d.c. on U ∩C. A mapping F : C → R

n is a d.c. mapping
if each of its n components is a d.c. function. There are many articles which work with
d.c. functions (see, e.g., the references in [11] and [7]).

In 1959, P. Hartman [10] proved the following interesting now well-known results.

(I) Let A ⊂ R
m be a convex set which is either open or closed. Let f : A→ R be locally

d.c. on A. Then f is d.c. on A.

(II) Let X be a normed linear space, A ⊂ X a convex set which is either open or closed,
and B ⊂ R

n an open convex set. If F : A → B is a d.c. mapping and g : B → R is
a d.c. function, then the function g ◦ F is locally d.c. on A.

In fact, Hartman [10] formulated (II) only for the case X = R
m, but he mentioned (see

∗The research of the first author was partially supported by the Ministero dell’Università e della Ricerca
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the end of p. 707) that his proof clearly works also in more general settings (we could
even suppose that X is a topological linear space and A is an arbitrary convex set). For
a generalization of (II), proved in a quite different way, see Proposition 3.1.

Hartman also remarked that his proof of (I) does not work for infinite dimensional spaces.
A corresponding counterexample was provided by E. Kopecká and J. Malý [14]: given a
nonempty open convex set A ⊂ ℓ2, there exists a locally d.c. function on A which is not
d.c. on A. (They also remark without proof that a similar example can be constructed
in each infinite dimensional normed linear space; we prove this claim in Corollary 5.6.)

The results (I) and (II) immediately imply the following superposition theorem.

Theorem H. Let A ⊂ R
m and B ⊂ R

n be convex sets. Let A be either open or closed,
and let B be open. If F : A→ B and g : B → R are d.c., then the function g ◦ F is d.c.

Note that Hartman did not mention Theorem H explicitly, but he formulated its corollary
(obtained by putting F := (f1, f2) and g(x, y) := xy or g(x, y) := x/y):

Corollary H. Let A ⊂ R
m be either an open or a closed convex set. Let f1, f2 be d.c.

on A. Then the product f1 ·f2 and, if f2(x) 6= 0 for x ∈ A, the quotient f1/f2 are d.c.
functions on A.

Note that the case of the product can be proved in a more elementary way (see [11]),
but the stability with respect to quotients probably cannot be proved more easily.

Though (I) cannot be used to generalize Theorem H to infinite dimensions, it remained
open whether such a generalization is possible. The present paper concerns this ques-
tion. We show that an infinite dimensional analogue of Theorem H does not hold (see
Corollary 5.6):

For each infinite dimensional normed linear space X, there exists a positive d.c. function
f on X such that 1/f is not d.c.

However, using a modification of Hartman’s methods, we prove (Theorem 4.1) the fol-
lowing variant of Theorem H (for other variants see Theorem 4.2), in which the function
g is defined on the whole R

n.

Let X be a normed linear space. Let A ⊂ X be an open convex set, and F : A→ R
n and

g : Rn → R be d.c. Then the function g ◦ F is d.c.

Consequently, if f , h are d.c. on A, then, for instance, exp(f) and fh
1+f2+h2 are d.c. on A

(see the text after Theorem 4.1).

Another positive result, in which F is a real continuous convex (or concave) function, is
Proposition 3.4. It implies (see Remark 3.5(i)) the following:

Let X be a reflexive Banach space and f1, f2 be continuous convex functions on X. If
the quotient f1/f2 is defined on X, then it is d.c.

(Note that the above statement is true only in reflexive spaces, see [12].)

We prove our results in a more general context of d.c. mappings between normed linear
spaces. In particular, we prove (see Corollary 3.9) that, in some interesting cases, the
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inner product (and even a general “product� given by a bilinear mapping) of two d.c.
mappings is d.c. as well.

1. Preliminaries

We consider only normed linear spaces over the reals R. If X is a normed linear space,
we denote by BX its closed unit ball. By B(x, r) we denote the open ball with center
x and radius r. We say that a Lipschitz mapping F is L-Lipschitz if LipF ≤ L, where
LipF is the (least) Lipschitz constant of F .

Throughout the paper, all mappings and functions are supposed to be defined on non-
empty sets.

Definition 1.1 ([16]). Let X, Y be normed linear spaces, C ⊂ X be a convex set, and
F : C → Y be a continuous mapping. We say that F is d.c. (or delta-convex) if there
exists a continuous (necessarily convex) function f : C → R such that y∗◦F+f is convex
on C whenever y∗ ∈ Y ∗, ‖y∗‖ ≤ 1. In this case we say that f controls F , or that f is a
control function for F .

Remark 1.2. The following facts are easy to prove (cf. [16]).

(a) For Y = R
n, the above definition of a d.c. mapping coincides with the one in the

beginning of Introduction. Moreover, if F = (F1, . . . , Fn) and fi controls Fi, then f :=
f1 + · · ·+ fn controls F .

(b) If g = f1 − f2, where f1, f2 are continuous convex functions on a convex subset of a
normed linear space, then f1 + f2 controls g.

(c) The notion of delta-convexity does not depend on the choice of equivalent norms on
X and Y .

A theory of d.c. mappings on open convex sets was developed in [16]. Some further
results, together with a survey of main results from [16], can be found in [7]. We shall
need the following two propositions.

Proposition 1.3 ([16]). Let X, Y, Z be normed linear spaces, and let A ⊂ X and B ⊂
Y be convex sets. Let F : A→ B and G : B → Z be d.c. mappings with control functions
f : A → R and g : B → R, respectively. If G and g are Lipschitz on B, then G ◦ F is
d.c. on A with a control function h = g ◦ F + (LipG+ Lipg)f .

Proof. This was proved in [16, Proposition 4.1] assuming that the sets A,B are also
open, since this was the context the authors were interested in. However, it is easy to
see that the proof does not need this additional assumption. Indeed, the proof is based
on the equivalence of (i) and (iii) in [16, Proposition 1.13], whose proof does not use the
openness of A.

Proposition 1.4. Let X, Y be normed linear spaces, C ⊂ X a bounded open convex set,
and F : C → Y a d.c. mapping with a Lipschitz control function. Then F is Lipschitz.

Proof. This was stated in [7, Theorem 18(i)] for X and Y Banach spaces, but the proof
therein works for normed linear spaces as well. (Note that the question for which open
convex sets C the proposition holds was answered in [3].)
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Notation 1.5. Let A,B,An, Bn (n ∈ N) be subsets of a normed linear space X. We
shall use the notation:

• A ⊂⊂ B whenever there exists ε > 0 such that A+B(0, ε) ⊂ B;

• An ր A whenever An ⊂ An+1 for each n ∈ N, and
⋃

n∈NAn = A;

• An րր A whenever An ⊂⊂ An+1 for each n ∈ N, and
⋃

n∈NAn = A.

Fact 1.6. Let C be a nonempty convex set in a normed linear space X, and f : C → R

a convex function.

(a) If C is open and bounded, and f is continuous, then f is bounded below on C.

(b) If f is bounded on C, then f is Lipschitz on each D ⊂⊂ C.

(c) If f is L-Lipschitz on C, then f admits a convex L-Lipschitz extension to the whole
X.

Proof. (a) follows from the fact that f is minorized by a continuous affine function (by
the Hahn-Banach theorem).

(b) can be proved in the same way as local Lipschitz continuity of continuous convex
functions. For the sake of completeness, we give a sketch of proof. Let |f | ≤ M on C,

r > 0 be such that D + B(0, 2r) ⊂ C, and x, y ∈ D, x 6= y. Then z := y + r(y−x)
‖y−x‖ ∈ C,

and y = r
‖y−x‖+r

x+ ‖y−x‖
‖y−x‖+r

z. By convexity, f(y) ≤ r
‖y−x‖+r

f(x) + ‖y−x‖
‖y−x‖+r

f(z). It easily

follows that f(y)−f(x) ≤ ‖y−x‖(f(z)−f(y))
r

≤ 2M
r
‖y−x‖. The rest follows by interchanging

x and y.

(c) It is well-known (and easy-to-prove) that the function f̂ : X → R, given by f̂(x) =
inf

{
f(c) + L‖x− c‖ : c ∈ C

}
, is a convex, L-Lipschitz extension of f (cf. [4]).

We shall need the following well-known and very easy fact. Let us recall that dist(A,B) =
inf{‖a− b‖ : a ∈ A, b ∈ B} with the usual agreement that inf ∅ = +∞.

Fact 1.7. Let C be a convex set in a normed linear space X, and r > 0. Then the sets
(called “inner parallel set� and “outer parallel set� of C)

D := {x ∈ C : dist(x,X \ C) > r}, E := {x ∈ X : dist(x,C) < r}

are convex.

Observation 1.8. Let X, Y be normed linear spaces, C ⊂ X a convex set, and F : C →
Y a d.c. mapping with a bounded above control function f . Then both F and f are
Lipschitz on each bounded convex set B ⊂⊂ C.

Proof. By Fact 1.7, there exist open, bounded, convex sets D and E such that B ⊂
D ⊂⊂ E ⊂ C. By Fact 1.6(a), f is bounded on E. Hence f is Lipschitz on D by
Fact 1.6(b), and F is Lipschitz on D by Proposition 1.4.

Definition 1.9. A normed linear space X is said to have modulus of convexity of power
type 2 if there exists a > 0 such that δX(ε) ≥ aε2 for each ε ∈ (0, 2] (where δX denotes
the classical modulus of convexity of X; see, e.g., [5] for the definition).
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Fact 1.10.

(a) The ℓ2-direct sum (X ⊕ Y )ℓ2 has modulus of convexity of power type 2 whenever
both X and Y do.

(b) All Lp(µ) spaces with 1 < p ≤ 2 (µ arbitrary nonnegative measure) have modulus
of convexity of power type 2 (in their canonical norms).

Proof. (a) follows immediately from the following result by Bynum [1]: X has modulus
of convexity of power type 2 if and only if there exists b > 0 such that 2‖x‖2 + 2‖y‖2 ≥
‖x+ y‖2 + b‖x− y‖2 for each x, y ∈ X.

(b) is due to Hanner [9].

Let X, Y be normed linear spaces, and A ⊂ X an open set. Recall that a mapping
F : A → Y is said to be C1,1 on A if its Fréchet derivative F ′(x) exists at each point
x ∈ A and F ′ : A→ L(X, Y ) is Lipschitz.
The next proposition follows from the proof of the implication (i)⇒ (ii) in [7, Theo-
rem 11].

Proposition 1.11. Let X, Y be normed linear spaces, A ⊂ X an open convex set,
F : A→ Y a C1,1 mapping. If X admits an equivalent norm |·| with modulus of convexity
of power type 2, then F is d.c. on A with a control function of the form f(x) = c| · |2 for
some c > 0.

2. A consequence of Hartman’s construction

Hartman’s construction [10], which gives the proof that locally d.c. functions in R
n

are d.c., has some consequences also in infinite dimensional spaces. It was observed
(independently) already in [15] and [14] (cf. Remark 2.6). The main new observation
of the present article is that Hartman’s construction gives even a characterization of
d.c. mappings on open sets (Proposition 2.4) which (together with Proposition 1.3)
implies some infinite dimensional versions of Hartman’s superposition theorem. First we
formulate a lemma which describes Hartman’s construction in a general setting.

Lemma 2.1. Let X, Y be normed linear spaces, C ⊂ X a nonempty convex set, and
F : C → Y a mapping. Let ∅ 6= Dn ⊂ C (n ∈ N) be convex sets such that Dn ր C and,
for each n, dist(Dn, C \Dn+1) > 0, Dn is relatively open in C, and F |Dn

is d.c. with a
control function γn : Dn → R which is either bounded or Lipschitz. Then F is d.c. on C.

Proof. First, fix a ∈ D1, and observe that the bounded sets D̃n := Dn ∩B(a, n) satisfy
the same assumptions as the sets Dn. Thus we can (and do) suppose that each Dn is
bounded, and hence each γn is bounded on Dn. Adding a constant to γn if necessary, we
can suppose that 0 < γn(x) < bn <∞ for each n ∈ N and x ∈ Dn.

For each n ∈ N, choose 0 < dn < dist(Dn, C \Dn+1), and consider the Lipschitz convex
functions ϕn(x) :=

bn+1

dn
dist(x,Dn) on C. Define

hn(x) := max{γn+1(x), ϕn(x)}, x ∈ Dn+1, and hn(x) := ϕn(x), x ∈ C \Dn+1.

If z ∈ Dn+1, then there exists ε > 0 such that hn(x) = max{γn+1(x), ϕn(x)} for x ∈
C ∩ B(z, ε), since Dn+1 is open in C. If z ∈ C \ Dn+1, then dist(z,Dn) > dn and
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therefore there exists ε > 0 such that ϕn(x) > bn+1, and thus hn(x) = ϕn(x), for each
x ∈ C ∩B(z, ε). Therefore, hn is continuous and convex on C. Moreover, clearly

• hn ≥ 0, and hn is bounded on each bounded subset of C.

Since ϕn(x) = 0 for x ∈ Dn, we see that hn(x) = γn+1(x) for x ∈ Dn. So,

• hn is a control function for F on Dn.

Let us define, by induction, a sequence {fn} of continuous convex functions on C such
that:

(a) fn is bounded on bounded subsets of C,

(b) fn ≥ 0,

(c) fn controls F on Dn+1, and

(d) fn+1 = fn on Dn.

Put f1 := h2. Suppose we already have f1, . . . , fn. Set

s := sup fn(Dn+2) , σ := suphn+2(Dn) and

gn(x) := hn+2(x)− σ +
σ + s+ 1

dn
dist(x,Dn) for x ∈ C.

Then clearly gn is continuous and convex on C, and it controls F on Dn+2. Define
fn+1 = max{fn, gn}. Clearly fn+1 is continuous convex, fn+1 ≥ fn ≥ 0, and fn+1 is
bounded on bounded subsets of C. If x ∈ Dn, then gn(x) ≤ 0 ≤ fn(x), consequently
fn+1 = fn on Dn.

Let us show that fn+1 controls F on Dn+2; i.e., that the function ϕy∗ := y∗ ◦F + fn+1 =
max{y∗ ◦ F + fn, y

∗ ◦ F + gn} is continuous and convex on Dn+2 for each y∗ ∈ BX∗ .
To this end, fix y∗ ∈ BX∗ and z ∈ Dn+2. If z ∈ Dn+1, then there is ε > 0 such that
ϕy∗ is continuous and convex on B(z, ε) ∩ C (since Dn+1 is open in C and both fn and
gn control F on Dn+1). If z ∈ Dn+2 \ Dn+1, then dist(z,Dn) ≥ dn, and consequently
gn(z) ≥ 0 − σ + (σ + s + 1) > fn(z). Therefore there exists ε > 0 such that U :=
B(z, ε) ∩C ⊂ Dn+2 and ϕy∗ equals to the continuous convex function y∗ ◦ F + gn on U .
Hence we can conclude that ϕy∗ is continuous and convex on Dn+2.

Now, for each x ∈ C, the sequence
{
fn(x)

}
is constant for large n’s, hence f(x) :=

limn→∞ fn(x) is well defined on C. Since f = fn on Dn, (c) easily implies that f is a
continuous convex function which controls F on C.

Remark 2.2. The assumptions of Lemma 2.1 allow the possibility that Dn = Dn+1 =
· · · = C for some n.

Lemma 2.3. Let X be a normed linear space and let C ⊂ X be nonempty, open and
convex. Let {Cn} be a sequence of convex sets with nonempty interior, such that Cn ր C.
Then there exists a sequence {Dn} of nonempty bounded open convex sets such that
Dn րր C, and Dn ⊂⊂ Cn for each n.

Proof. We can (and do) suppose that each Cn is bounded. (If this is not the case,
replace, for each n, the set Cn with the set Cn∩B(x0, n) where x0 is an arbitrary interior
point of C1.)
First we claim that C =

⋃
n intCn. Indeed, let x ∈ C be any point. Then x ∈ Cn for
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some n. If x /∈ intCn, choose any y ∈ intCn. There exists z ∈ C such that x ∈ (y, z)
(i.e., x is a relative interior point of the segment [y, z]). There exists k > n such that
z ∈ Ck. Then x ∈ intCk, since y ∈ intCk.
Now, fix δ > 0 such that C1 contains an open ball of radius 2δ, and define

Dn := {x ∈ Cn : dist(x,X \ Cn) > δ/n}.
Obviously Dn ⊂⊂ Cn for each n, and the sets Dn are nonempty, open and (by Fact 1.7)
convex. Moreover

Dn ⊂⊂ {x ∈ Cn : dist(x,X \ Cn) > δ/(n+ 1)} ⊂ Dn+1.

To finish the proof, fix x ∈ C. Then x ∈ intCn for some n. Fix k > n such that
dist(x,X \ Cn) > δ/k. Then dist(x,X \ Ck) ≥ dist(x,X \ Cn) > δ/k which means that
x belongs to Dk.

Now, we are ready to state the main result of this section.

Proposition 2.4. Let X, Y be normed linear spaces, C ⊂ X a nonempty open convex
set, and F : C → Y a mapping. Then the following assertions are equivalent:

(i) F is d.c. on C;

(ii) there exists a sequence {Cn} of convex sets with nonempty interior such that Cn ր
C and, for each n, F |Cn

is d.c. with a control function that is bounded above on
Cn;

(iii) there exists a sequence {Dn} of bounded open convex sets such that Dn րր C and,
for each n, F |Dn

is Lipschitz and d.c. with a Lipschitz control function on Dn.

Proof. (i) ⇒ (ii). Let f : C → R be a control function for F . Fix x0 ∈ C and consider
the sets Cn = {x ∈ C : f(x) < f(x0) + n} (n ∈ N). They are nonempty, open and
convex, and they obviously satisfy (ii).

(ii) ⇒ (iii). Let {Cn} be as in (ii). Let Dn (n ∈ N) be the bounded, open, convex
sets constructed in Lemma 2.3 from the sets Cn. Then (iii) follows immediately from
Observation 1.8.

(iii) ⇒ (i) follows from Lemma 2.1.

Proposition 2.4 easily implies the following generalization of Hartman’s result (I) from
Introduction, which was stated (for open A) already in [16, Theorem 1.20] with only a
hint for the proof.

Corollary 2.5. Let A ⊂ R
d be a convex set which is either open or closed, and let Y be

a normed linear space. Then each locally d.c. mapping F : A→ Y is d.c. on A.

Proof. First we will show that F is d.c. on each compact convex set C ⊂ A. Using
compactness of C and [10, Lemma 1], we easily see that there exist continuous convex
functions fi on A, xi ∈ C, and ri > 0, i = 1, . . . , k, such that C ⊂ ⋃k

i=1B(xi, ri) and fi
controls F on C ∩B(xi, ri). Consequently, fC = f1 + · · ·+ fk controls F on C.

Now, distinguish two cases. First suppose that A is open. Then choose compact con-
vex sets Cn with nonempty interior such that Cn ր A. Since fCn

is bounded on Cn,
Proposition 2.4 implies that F is d.c.



430 L. Veselý, L. Zaj́ıček / Compositions of D.C. Mappings

If A is closed, choose z ∈ A and put Dn := A ∩ B(z, n). Since Dn ⊂ A is compact and
convex, F is d.c. on Dn (with a bounded control function), and we can apply Lemma
2.1.

Remark 2.6. It is known (see [2]) that, on each infinite dimensional Banach space,
there exists a continuous convex function which is unbounded on a ball. This implies
(via Fact 1.6(b) and Proposition 1.4) that the implication (ii) ⇒ (i) in Proposition 2.4
is a strict generalization of both [15, Theorem 2.3] and [14, Corollary 18], where delta-
convexity of F was proved under the following stronger assumption: F is d.c. on each
bounded closed convex B ⊂ C with a Lipschitz ([15]) or bounded ([14]) control function
on B.

3. Global delta-convexity of composed mappings

Let us start with the following generalization of (II) (see Introduction) which is essentially
proved in [16, Theorem 4.2].

Proposition 3.1. Let X, Y, Z be normed linear spaces, A ⊂ X a convex set, and B ⊂ Y
an open set. Let F : A → B and G : B → Z be locally d.c. mappings. Then G ◦ F is
locally d.c.

Proof. Fix a ∈ A. Since G is locally d.c. and each d.c. mapping on an open convex
subset of Y is locally Lipschitz (see [16, Proposition 1.10]), there exists an open convex
neighborhood B0 ⊂ B of F (a) on which G is Lipschitz and d.c. with a Lipschitz control
function. Find δ > 0 such that, for A0 := B(a, δ) ∩ A, we have that F (A0) ⊂ B0 and
F |A0

is d.c. Then G ◦ F |A0
= (G|B0

) ◦ (F |A0
) is d.c. by Proposition 1.3.

Our results on global delta-convexity of composed mappings will follow from the next
basic lemma.

Lemma 3.2. Let X, Y, Z be normed linear spaces, let A ⊂ X and B ⊂ Y be convex
sets, and let F : A → B and G : B → Z be mappings. Suppose there exist sequences of
convex sets An ⊂ A, Bn ⊂ B such that F (An) ⊂ Bn, G|Bn

is Lipschitz and d.c. with a
Lipschitz control function, and at least one of the following conditions holds:

(i) An is relatively open in A, An ր A, dist(An, A\An+1) > 0, F |An
is either bounded

or Lipschitz and it is d.c. with a control function which is either bounded or Lips-
chitz.

(ii) A is open, F is d.c., intAn 6= ∅, and An ր A.

Then G ◦ F is d.c. on A.

Proof. Let (i) hold. As in the proof of Lemma 2.1, we can (and do) suppose that the
sets An are bounded. Then, on each An, F is bounded and admits a bounded control
function. Proposition 1.3 implies that the mapping G ◦ F |An

= (G|Bn
) ◦ (F |An

) is d.c.
with a bounded control function. By Lemma 2.1, G ◦ F is d.c.

Now, suppose that (ii) holds. By Lemma 2.3, we can (and do) suppose that An րր A
and each An is open. By Proposition 2.4, there exists a sequence {Dn} of bounded,
open, convex sets such that Dn րր A and, for each n, F |Dn

is Lipschitz and d.c.

with a Lipschitz control function. Then the sets Ãn := An ∩ Dn are open and convex,
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F (Ãn) ⊂ Bn, and Ãn րր A. Thus the condition (i) holds with An replaced by Ãn. So
G ◦ F is d.c. by the first part of the proof.

As a simpler but still rather general consequence we obtain:

Proposition 3.3. Let X, Y, Z be normed linear spaces, let A ⊂ X and B ⊂ Y be convex
sets, and let F : A→ B and G : B → Z be mappings. Suppose that the restriction of G to
each bounded convex subset of B is Lipschitz and d.c. with a Lipschitz control function,
and at least one of the following conditions holds.

(i) The restriction of F to each bounded convex subset of A is bounded and d.c. with
a bounded control function.

(ii) A is open and F is d.c.

Then G ◦ F is d.c.

Proof. To prove (i), choose an arbitrary a ∈ A and, for each n ∈ N, set An := B(a, n)∩
A, Bn := convF (An). It is easy to see that dist(An, A \ An+1) > 0 and Bn ⊂ B is
bounded for each n. Thus G ◦ F is d.c. by Lemma 3.2.

To prove (ii), use Proposition 2.4 to choose a sequence {An} of bounded open convex
sets such that An րր A and, for each n, F |An

is Lipschitz and d.c. with a Lipschitz
control function. Then Bn := convF (An) is clearly bounded and convex, and thus G|Bn

is Lipschitz and d.c. with a Lipschitz control function. Apply Lemma 3.2.

Most of the next results are corollaries of Proposition 3.3. One of the exceptions is the
following interesting proposition.

Proposition 3.4. Let C be an open convex subset of a reflexive Banach space X, and
f : C → R be a continuous convex function. Let I ⊂ R be an open interval containing
f(C). Then, for every normed linear space Z and every d.c. mapping G : I → Z, the
composed map G ◦ f is d.c. on C.

Proof. Let {bn} ⊂
(
inf f(C), sup I

)
be an increasing sequence tending to sup I. Then

clearly the sets Cn := {x ∈ C : f(x) < bn} are nonempty, open and convex, and
Cn ր C. By Lemma 2.3, there exist nonempty bounded open convex sets Dn ⊂⊂ Cn

(n ∈ N) with Dn րր C. Since f attains its infimum on the weakly compact set Dn

(see e.g. [6, Theorem 25.1(b)]), we have an := min f
(
Dn

)
> inf I and hence f(Dn) ⊂

[an, bn] ⊂ I (n ∈ N). Since G and its control function are locally Lipschitz on I (cf. [16,
Proposition 1.10]), they are Lipschitz on each [an, bn]. Apply Lemma 3.2 with A := C,
An := Dn, and Bn := [an, bn].

Remark 3.5. (i) Proposition 3.4 implies that 1/f is d.c. whenever f is a positive con-
tinuous convex function on an open convex subset of a reflexive Banach space.

(ii) It is easy to see that Proposition 3.4 holds for concave (instead of convex) f as well.
However it is not true for all d.c. functions f (see Corollary 5.6).

(iii) Proposition 3.4 fails in any nonreflexive Banach space X: by [12], a Banach space
X is reflexive if and only if 1/f is d.c. for each positive continuous convex function f on
X.
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Theorem 3.6. Let X, Y, Z be normed linear spaces, let A ⊂ X and B ⊂ Y be open
convex sets, and let F : A→ B and G : B → Z be d.c. mappings. Then G ◦ F is d.c. on
A, provided at least one of the following conditions is satisfied:

(a) B = Y and G admits a control function g that is bounded on bounded sets;

(b) Y is finite-dimensional and F (A) ⊂ B;

(c) Y admits a renorming with modulus of convexity of power type 2, and G is C1,1 on
bounded open subsets of B.

Proof. Let (a) hold. Let E ⊂ Y be an arbitrary bounded convex set. Choose a bounded
convex set C such that E ⊂⊂ C. Since g is bounded on C, Observation 1.8 implies that
both G and g are Lipschitz on E. Thus G ◦ F is d.c. by Proposition 3.3 .

Now, suppose (b) holds. By Proposition 2.4, there exists a sequence {An} of nonempty
bounded open convex sets such that An ր A and F is Lipschitz on each An. Since each
F (An) is a compact subset of B (Y is finite-dimensional!), Bn := convF (An) ⊂⊂ B is a
compact convex subset of B. Let g̃ be a control function of G. We can clearly find ε > 0
such that g̃ is bounded on C := Bn +B(0, ε) ⊂ B. Observation 1.8 implies that both G
and g̃ are Lipschitz on Bn. Now, Lemma 3.2 shows that G ◦ F is d.c.

Finally, let (c) hold. For each bounded convex set E ⊂ B, let B0 ⊂ B be a bounded
convex open set containing E. Since G is C1,1 on B0, it is also Lipschitz on B0. Moreover,
Proposition 1.11 easily implies that G admits a Lipschitz control function on B0, and
hence also on E. Thus, we can apply Proposition 3.3.

Let X, Y be vector spaces. Recall that a mapping Q : X → Y is quadratic if there exists
a bilinear mapping B : X × X → Y such that Q(x) = B(x, x) for each x ∈ X. In this
case, we say that Q is generated by B.

Definition 3.7 ([13]). A normed linear spaceX is said to have the property (D) if every
continuous quadratic form on X can be represented as a difference of two nonnegative
continuous quadratic forms.

Proposition 3.8. Let X, Y, Z be normed linear spaces, C ⊂ X an open convex set,
F : C → Y a d.c. mapping, and Q : Y → Z a continuous quadratic mapping. Then
Q ◦ F is d.c. on C, provided at least one of the following conditions is satisfied:

(a) Y admits a renorming with modulus of convexity of power type 2;

(b) Z is finite-dimensional and Y has the property (D).

Proof. The case (a) follows immediately from Theorem 3.6(c), since each continuous
quadratic mapping is C1,1.

Suppose (b) holds. We can suppose that Z = R
d for some d ∈ N. Then the components

Qj (j = 1, . . . , d) of the quadratic mapping Q are continuous quadratic forms. Since Y
has (D), we can write Qj = pj − qj where pj, qj are nonnegative continuous quadratic
forms, in particular, they are convex continuous functions that are bounded on bounded
sets. By Remark 1.2(a) and (b), Q is d.c. with a control function which is bounded on
bounded subsets of Y . Apply Theorem 3.6(a).
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The following Corollary 3.9 improves [16, Corollary 4.3.] which states only thatB◦(F,G)
is locally d.c. whenever Y and V are Hilbert spaces.

Corollary 3.9. Let X, Y, V, Z be normed linear spaces, C ⊂ X an open convex set,
F : C → Y and G : C → V d.c. mappings, and B : Y × V → Z a continuous bilinear
mapping. Then the mapping B ◦ (F,G) : x 7→ B

(
F (x), G(x)

)
is d.c. on C, provided at

least one of the following conditions is satisfied:

(a) both Y and V admit renormings with modulus of convexity of power type 2;

(b) Z is finite-dimensional and Y × V has the property (D).

Proof. Observe that B is also a quadratic mapping on Y × V ; indeed, it is generated
by the bilinear mapping B̃

(
(y, v), (y′, v′)

)
= B(y, v′) on (Y × V )× (Y × V ). Moreover,

by [16, Lemma 1.7], the mapping x 7→
(
F (x), G(x)

)
is d.c. on C. Apply Fact 1.10(a)

and Proposition 3.8.

Remark 3.10. (a) By Fact 1.10(b), the assumptions in Proposition 3.8(a) and Corol-
lary 3.9(a) are satisfied, for instance, if each of Y, V is isomorphic to a subspace of some
Lp(µ) with 1 < p ≤ 2 (not necessarily with the same p and µ).

(b) By [13, Theorem 1.6 and Observation 3.13], the assumptions in Proposition 3.8(b)
and Corollary 3.9(b) are satisfied, for instance, if each of Y, V is isomorphic to one (not
necessarily the same) of the spaces C(K), c0(Γ), Lp(µ) with 2 ≤ p ≤ ∞.

4. Global delta-convexity of composed functions

Here we present positive results which are formulated without using the notion of d.c.
operators, i.e., those which directly concern Hartman’s results. Probably most interesting
is the following immediate consequence of Theorem 3.6(a). Note that it is important
that the function g is defined on the whole R

n (see Corollary 5.6(a)).

Theorem 4.1. Let X be a normed linear space. Let A ⊂ X be an open convex set, and
F : A→ R

n and g : Rn → R be d.c. Then the composed function g ◦ F is d.c.

Since each C2 function g : Rn → R is d.c by Proposition 1.11 and (I) from Introduction,
applying Theorem 4.1 to F = (f, h) and g(x, y) = xy, we obtain that f ·h is d.c. on A,
whenever f and h are real d.c. functions on A. However, this fact is well-known (cf. [11])
and can be proved in a quite elementary way. But the fact that, for instance, exp(f)
and fh

1+f2+h2 are d.c. on A seems to be new. (Hartman’s results only imply that these

functions are locally d.c.)

For compositions of special d.c. functions, we obtain the following.

Theorem 4.2. Let X be a normed linear space and A ⊂ X, B ⊂ R
n convex sets. Let

F = (F1, . . . , Fn) : A→ B be a d.c. mapping and g : B → R a d.c. function. Then g ◦ F
is d.c. on A, provided at least one of the following conditions is satisfied:

(a) A is open, F is d.c., and g is a difference of two Lipschitz convex functions;

(b) each Fi is a difference of two continuous convex functions which are bounded on
bounded subsets of A, and the restriction of g to each bounded convex subset of B
is a difference of two Lipschitz convex functions;
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(c) X = R
k, A is open or closed, F is d.c., and, for each a ∈ A, there exists ε > 0

such that g is a difference of two Lipschitz convex functions on B ∩B(F (a), ε).

Proof. To prove (a), observe that, by Fact 1.6(c), we can suppose that g is a difference
of two Lipschitz convex functions on the whole Rn. Hence g ◦F is d.c. on A by Theorem
4.1.

The part (b) follows from Remark 1.2(a) and (b), and Proposition 3.3.

Let (c) hold. By Corollary 2.5 (or (I)), it is sufficient to show that g ◦ F is locally d.c.
on A. To this end, choose an a ∈ A and find ε > 0 such g is a difference of two Lipschitz
convex functions on B ∩B(F (a), ε). Since F is continuous, we can find δ > 0 such that
F (B(a, δ)∩A) ⊂ B∩B(F (a), ε). Using Proposition 1.3 (and Remark 1.2(b)), we obtain
that g ◦ F is d.c. on B(a, δ) ∩ A.

Note that the case (c) follows also from proofs in [10]. However, a claim of P. Hartman
(see [10], p. 708, lines 12–17), which would imply (via (I) from Introduction) that, in
(c), it is sufficient to write “g is d.c. and Lipschitz� instead of “g is a difference of two
Lipschitz convex functions�, is false (presumably due to a misprint). This is shown by
the following example.

Example 4.3. Let d : R→R be the characteristic function of the set S :=
⋃

n∈N[−2−2n+2,
−2−2n+1) and put g(x) :=

∫ x

−1
d for x ∈ [−1, 0]. First we will show that g is a Lipschitz

d.c. function which is not a difference of two Lipschitz convex functions on [−1/2, 0].
Since d is bounded, g is clearly Lipschitz. Clearly g′+(x) = d(x), x ∈ [−1, 0), since d
is right continuous. For x ∈ [−1, 0), let v(x) be the total variation of d on the interval
[−1, x]. It is easy to check that v(x) = n − 1 for x ∈ [−21−n,−2−n), and consequently∫ 0

−1
v =

∑∞
n=1(n − 1)2−n < ∞. Thus both v and w := v − d are nondecreasing and

(Lebesgue) integrable on [−1, 0). So, c1(x) :=
∫ x

−1
v and c2(x) :=

∫ x

−1
w are continuous

convex functions on [−1, 0], and

g(x) =

∫ x

−1

d =

∫ x

−1

(v − w) = c1(x)− c2(x), x ∈ [−1, 0].

Therefore, g is d.c. on [−1, 0].

Now, suppose to the contrary that g = p−q on [−1/2, 0], where p, q are convex Lipschitz
functions on [−1/2, 0]. It is well-known that then the right derivatives p′+, q

′
+ are finite,

bounded and nondecreasing functions on [−1/2, 0]. Further d = g′+ = p′+ − q′+ on
[−1/2, 0). Let V b

aϕ denote the total variation of ϕ on [a, b]. Then, for x ∈ [−1/2, 0),

v(x)− v(−1/2) = V x
−1/2(p

′
+ − q′+) ≤ V x

−1/2 p
′
+ + V x

−1/2 q
′
+

=
(
p′+(x)− p′+(−1/2)

)
+
(
q′+(x)− q′+(−1/2)

)
=: z(x),

which is a contradiction, since limx→0− v(x) = ∞ and z is a bounded function.

Now, set F (x) := −|x| for x ∈ [−1, 1]. Then g ◦ F is not d.c. even on (−1, 1). Indeed,
otherwise g ◦ F would be a difference of two Lipschitz convex functions on [−1/2, 0],
which is not true, since g ◦ F = g on [−1/2, 0].
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5. The main counterexample

The main result of this section (Theorem 5.5) provides a general construction of non-d.c.
composed mappings. Its proof uses some ideas from [14].

The following lemma, implicitly contained in [14], is useful for showing that certain
functions or mappings are not d.c.

Lemma 5.1. Let X, Y be normed linear spaces, let A ⊂ X be an open convex set with
0 ∈ A, and let F : A→ Y be a mapping. Suppose there exist λ ∈ (0, 1) and a sequence of
balls B(xn, δn) ⊂ A such that {xn} ⊂ λA, δn → 0 and F is unbounded on each B(xn, δn).
Then F is not d.c. on A.

Proof. Suppose the contrary. Let f be a control function for F on A. We can suppose
f ≥ 0 (otherwise choose an affine function g such that g ≤ f on A, and consider
f − g instead of f). For each n, let zn ∈ A be such that xn = λzn. Observe that
‖h‖ < δn implies xn + h = λzn + (1 − λ) h

1−λ
and ‖ h

1−λ
‖ < δn

1−λ
. Now, fix m ∈ N so

large that B(0, δm
1−λ

) ⊂ A and both F and f are bounded on B(0, δm
1−λ

). Then, using [16,
Proposition 1.13] or [7, Theorem 1], we get

‖λF (zm) + (1− λ)F

(
h

1− λ

)
− F (xm + h)‖ (1)

≤ λf(zm) + (1− λ)f

(
h

1− λ

)
− f(xm + h)

≤ λf(zm) + (1− λ)f

(
h

1− λ

)
(2)

whenever ‖h‖ < δm. But this is a contradiction since the expression (2) is bounded on
{h : ‖h‖ < δm} while (1) is not (because F is unbounded on B(xm, δm)).

Lemma 5.2. Let X be a normed linear space. Let e ∈ SX , e
∗ ∈ SX∗ and c > 0 be such

that e∗(e) = 1 and the implication

e∗(u) > 1− ε and ‖u‖ ≤ 1 ⇒ ‖u− e‖ ≤ c ε (3)

holds for u ∈ X and ε > 0. Then the following implication holds for x ∈ X and
0 < δ < 1

2
:

1

2
‖x‖2 < 1

2
‖e‖2 + e∗(x− e) + δ ⇒ ‖x− e‖ < (1 + 2c)

√
2δ . (4)

Proof. Let x ∈ X and 0 < δ < 1
2
satisfy the left-hand side of (4). Then

1

2
‖x‖2 < e∗(x)− 1

2
+ δ ≤ ‖x‖ − 1

2
+ δ

which implies 1
2
(1− ‖x‖)2 < δ. Thus 0 < 1−

√
2δ < ‖x‖ < 1 +

√
2δ.

If ‖x‖ ≤ 1, then e∗(x) > 1
2
‖x‖2 + 1

2
− δ > 1

2
(1 −

√
2δ)2 + 1

2
− δ = 1 −

√
2δ. By the

assumption (3), ‖x− e‖ ≤ c
√
2δ < (1 + 2c)

√
2δ.
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If ‖x‖ > 1, then (as above) e∗( x
‖x‖) >

1
‖x‖

(
1
2
‖x‖2 + 1

2
− δ

)
> 1−

√
2δ

‖x‖ > 1−
√
2δ

1+
√
2δ

= 1− 2
√
2δ

1+
√
2δ
.

By (3), we have ‖ x
‖x‖ − e‖ ≤ c 2

√
2δ

1+
√
2δ
. Consequently, ‖x− e‖ ≤ ‖x− x

‖x‖‖+ ‖ x
‖x‖ − e‖ ≤

(‖x‖ − 1) + 2c
√
2δ

1+
√
2δ
<

√
2δ

(
1 + 2c

1+
√
2δ

)
< (1 + 2c)

√
2δ.

Lemma 5.3. For each infinite dimensional normed linear space, there exists a countable
biorthogonal system {en, e∗n} ⊂ X ×X∗ such that:

‖en‖ = 1 (n ∈ N), R := sup
n

‖e∗n‖ <∞, r := inf
m6=n

‖em − en‖ > 0.

Proof. The completion of X contains a normalized basic sequence {en} (see [8, Theo-
rem 6.14]). By the “small perturbation lemma� [8, Theorem 6.18], we may assume that
{en} ⊂ X. Let e∗n (n ∈ N) be Hahn-Banach extensions of the corresponding coefficient
functionals; it is well-known that they are equi-bounded (cf. [8, p. 164]). Moreover, for
m 6= n, we have ‖en − em‖ ≥ 1/R, since 1 = e∗n(en − em) ≤ R ‖en − em‖.
Lemma 5.4. Let X, Y be normed linear spaces, X infinite dimensional. Then, for each
bounded sequence {yn} ⊂ Y , there exists a d.c. mapping Φ: X → Y such that:

(a) Φ = 0 outside BX ;

(b) Φ admits a control function that is Lipschitz on bounded sets;

(c) {yn} ⊂ Φ(BX) and Φ(X) ⊂ conv
[
{0} ∪ {yn}n∈N

]
.

Proof. Let {en}, {e∗n}, R and r be as in Lemma 5.3. Observe thatR ≥ 1 since e∗1(e1) = 1.
Fix an arbitrary ρ ∈ (0, 1

R
). The symmetric closed convex set

C := conv
(
ρBX ∪ {±en}n∈N

)

is the unit ball of an equivalent norm ||| · ||| on X since ρBX ⊂ C ⊂ BX .

Fix an arbitrary n ∈ N. It is easy to see that |||e∗n||| = max e∗n(C) = e∗n(en) = 1, which
implies that also |||en||| = 1. Let ε > 0 and u ∈ C be such that

e∗n(u) > 1− ε.

Observe that C = conv ({en} ∪ Cn) where

Cn = conv
(
ρBX ∪ {−ek}k∈N ∪ {ek}k∈N\{n}

)
.

Thus we can write u = (1− λ)en + λv where v ∈ Cn and 0 ≤ λ ≤ 1. Since

1− ε < e∗n(u) ≤ 1− λ+ λ sup e∗n(Cn) ≤ 1− λ+ λRρ,

we easily get λ < ε
1−Rρ

. Consequently,

|||u− en||| = λ|||v − en||| ≤
2ε

1−Rρ
.

Denote g(x) = 1
2
|||x|||2. By Lemma 5.2, for n ∈ N, x ∈ X and 0 < δ < 1

2
the following

implication holds:

g(x) < g(en) + e∗n(x− en) + δ ⇒ ‖x− en‖ ≤ |||x− en||| <
(
1 +

4

1−Rρ

)√
2δ.
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Since the sequence {en} is uniformly discrete, it is possible to fix a δ ∈ (0, 1
2
) so small

that the open convex sets

Dn = {x ∈ X : g(x) < g(en) + e∗n(x− en) + δ}

satisfy dist‖·‖(Dm, Dn) > δ whenever m 6= n. We have en ∈ Dn for each n.

Define H : X → Y by

H(x) =





1

δ
[g(en) + e∗n(x− en) + δ − g(x)] yn if x ∈ Dn;

0 for x /∈ ⋃
n∈NDn.

It is easy to see that H is continuous since we have

H(x) =
1

δ
[max{g(x), g(en) + e∗n(x− en) + δ} − g(x)] yn , x ∈ Dn + δBX . (5)

Put s := supn∈N ‖yn‖. We claim that the formula

h(x) =
s

δ
sup
n∈N

(
max{g(x), g(en) + e∗n(x− en) + δ}

)
+
s

δ
g(x) (6)

defines a control function for H, which is Lipschitz on bounded sets. First, observe that
h(0) = s

δ
max{0, 1

2
− 1 + δ} = 0. Moreover, since g is Lipschitz on bounded sets and

the functionals e∗n (n ∈ N) are equi-Lipschitz, (6) defines a real convex function that is
Lipschitz on bounded sets. Fix y∗ ∈ BY ∗ . To prove that the function ψ := y∗ ◦ H + h
is convex, it is sufficient to show that it is locally convex. For x /∈ ⋃

nDn =
⋃

nDn, we
have ψ(x) = h(x). For x ∈ Dn + δBX , we have g(x) ≥ g(ek) + e∗k(x− ek) + δ whenever
k 6= n, and hence

h(x) =
s

δ
max{g(x), g(en) + e∗n(x− en) + δ} +

s

δ
g(x) , x ∈ Dn + δBX .

Consequently, (5) implies that, on the set Dn + δBX , the function

ψ(x) =
s+ y∗(yn)

δ
max{g(x), g(en) + e∗n(x− en) + δ} +

s− y∗(yn)

δ
g(x)

is convex (since it is a sum of convex functions).

Observe that H(en) = yn. Moreover, for each x ∈ Dn,

0 < g(en) + e∗n(x− en) + δ − g(x) ≤ 1

2
+ |||x||| − 1 + δ − 1

2
|||x|||2

= δ − 1

2

(
|||x||| − 1

)2 ≤ δ .

Thus, for each n, the image H(Dn) is contained in the segment [0, yn]. Since the support
of H is contained in 2BX , the mapping Φ(x) := H(2x) has all the required properties
(note that ϕ(x) := h(2x) clearly controls Φ, cf. [16, Lemma 1.5]).
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Theorem 5.5. Let X, Y, Z be normed linear spaces, X infinite dimensional. Let A ⊂ X
be an open convex set, let B ⊂ Y be a convex set, and let G : B → Z be a mapping which
is unbounded on a bounded subset of B. Then there exists a d.c. mapping F : A → B
such that G ◦ F is not d.c. on A.

Proof. We can (and do) suppose that 0 ∈ A. Fix r ∈ (0, 1) such that B(0, 2r) ⊂
A. By [2], there exists a continuous convex function h on X such that h(0) = 0 and
supx∈B(0,r) h(x) = ∞. For k ∈ N, set

Ak := {x ∈ A : h(x) < k, ‖x‖ < k}.

Clearly each Ak contains 0, is open and convex; moreover, Ak ր A. It is easy to
see that, for each k ∈ N, we can choose vk ∈ B(0, r) and 0 < δk < 1/k such that
B(vk, 2δk) ⊂ Ak+1 \ Ak.

We can (and do) suppose that 0 ∈ B. Let {yn} ⊂ B be a bounded sequence such that
‖G(yn)‖ → ∞, and let Φ be the corresponding mapping from Lemma 5.4. For each
k ∈ N, define Fk : X → Y by

Fk(x) = Φ

(
x− vk
δk

)
.

Since the supports of these mappings are pairwise disjoint and each Ak intersects only
finitely many of them, the mapping

F : A→ Y , F (x) :=
∑

k∈N
Fk(x)

is well-defined and continuous. Observing that ϕk(x) := ϕ(x−vk
δk

) controls Fk if ϕ controls

Φ (cf. [16, Lemma 1.5]), we obtain that F is d.c. on each Ak with a Lipschitz (hence
bounded) control function. By Proposition 2.4, F is d.c. on A. Moreover, F (A) ⊂⋃

k Fk(X) ⊂ B by Lemma 5.4(c). Since G ◦ F is unbounded on each B(vk, δk) and
vk ∈ 1

2
A, Lemma 5.1 implies that G ◦ F is not d.c. on A.

Corollary 5.6. Let X be an infinite dimensional normed linear space, and A ⊂ X a
nonempty open convex set.

(a) There exists a positive d.c. function f on A such that 1/f is not d.c.

(b) There exists a locally d.c. function g on A, which is not d.c.

Proof. Applying Theorem 5.5 with B = (0,∞) and G(y) = 1/y, we obtain (a). Now, (b)
follows from (a), since g := 1/f is locally d.c. by Proposition 3.1 (or (II) in Introduction).
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