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We consider decompositions S of a closed, convex set P into smaller, closed and convex regions. The
thin convex decompositions are those having a certain strong convexity property as a set of sets.
Thin convexity is directly connected to our intended application in voting theory (see [8, 9]), via the
consistency property for abstract voting systems. The facial decompositions are those for which
each intersecting pair of regions meet at a common face. The class of neat decompositions is defined
by a separation property, neat separability by a hyperplane, applied to the regions. The regular
decompositions are those whose regions, when we take cross sections by lines, reduce to closed intervals,
any two of which are equal, or are disjoint, or overlap only at their endpoints. Our main result is that
for polytopes P these four classes of decompositions are the same. The Voronoi decompositions of P
are those whose regions are determined by the point (chosen from a designated finite subset Y of P ) to
which they are closest. These form a fifth class of decompositions, which is strictly contained in any of
the first four classes.
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1. Introduction

We divide a closed and convex set P into smaller closed and convex regions, and consider
properties of the resulting decomposition. Our goal is to provide useful characterizations
of the class of thin convex decompositions, which plays a role in geometric representations
of voting systems (see [8, 9]). We begin with a few key definitions.

Definition 1.1. If X = {x1, x2, . . . , xm} is a finite set of points of Rn, then an affine

combination of X is a sum of the form
∑m

i=1 αixi, where the αj are real numbers, not
necessarily positive, that sum to 1. The affine span Aff(r) of a set r ⊆ Rn is the set
of all affine combinations of finite sets X ⊆ r. A set Y ⊆ Rn is affinely independent

if no member y of Y lies in the affine span Aff(Y − {y}) of the other points. The
affine dimension of a set r ⊆ Rn is m − 1, where m is the maximal size of an affinely
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independent subset Y ⊆ r. The relative interior r. i.(r) of a set r ⊆ Rn is the interior of
r as taken according to the induced or relative topology on Aff(r), taken as a subset of
Rn with the standard topology. A convex polyhedron is an intersection of finitely many
closed half spaces of Rn. A polytope is a bounded convex polyhedron; equivalently, it is
the convex hull of some finite set V of points of Rn.

Definition 1.2. Let P be a convex, closed subset of Rn. A closed decomposition of P
is a finite set S of non-empty closed subsets of P , called regions, whose union is P . A
non-empty intersection of one or more regions of S will be called a subregion.

Definition 1.3. A point q of a subset P of Rn is strictly between two other points q1 and
q2 of P if q lies on the open line segment from q1 to q2 (equivalently, q = αq1 + (1−α)q2
for some α in (0, 1)).

The first class of decompositions we consider is the one most directly suggested by the
intended application to voting systems that are based on the mean.

Definition 1.4. A closed decomposition S of P is thin convex if whenever q1 and q2 lie
in at least one common region of S, and q is strictly between q1 and q2, the regions of
S containing q as a member are precisely those regions that contain both q1 and q2 as
members.

Notice that thin convexity implies, but is strictly stronger than, the requirement that
every region (and subregion) of S be convex. For example, the closed decomposition of
Figure 1.1a, in which the members of S are the three planar regions r, u, and v, is thin
convex. In particular, for the labeled points q1, q2, and q, we see that q is strictly between
q1 and q2, that the set of regions containing q1 as a member is {r, u}, the set containing
q2 as a member is {u, v} and the set containing q as a member is {u} = {r, u} ∩ {u, v}.
This decomposition S would still be thin convex if we added, as additional members of
S, any or all of the lower dimensional subregions r ∩ u, r ∩ v, u ∩ v, or r ∩ u ∩ v. The
decompositions of Figure 1.1b and 1.1c fail to be thin convex, however, as witnessed by
the labeled points p1, p2, and p; and t1, t2, and t, respectively.

The definition of thin convexity is inspired by the voting-theoretic property of consis-
tency, as introduced by Smith [4] and Young [6, 7]. Our first characterization of thin
convexity is based on the strong similarity between this definition and the standard
notion of a face in convexity theory (see Weber [5] or Rockafellar [3], for example).

Definition 1.5. A face of a set u of points of Rn is a subset f of u with the property
that whenever two points p and q of u have a point of f lying strictly between them,
both p and q belong to f .

Definition 1.6. A closed decomposition S of P is facial if every region of S is convex,
and every intersection of two regions is a face of each of the regions.

Observation 1.7. Let S be a closed decomposition of a closed, convex set P . Then S
is thin convex if and only if it is facial.

We leave the proof of Observation 1.7 as an exercise for the reader. While this observation
already begins to give us some insight into what thin convex decompositions look like, the
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Figure 1.1: Three closed decompositions.

examples in Figure 1.1 suggest that there may be a more constructive characterization,
posed in terms of the hyperplanes that slice up P .

Definition 1.8. Two sets u and v of points of Rn are weakly separated by a hyperplane

h of Rn if every point of u lies either on h or to one side of h, and every point of v
lies either on h or to the other side of h. These sets are properly separated by h if they
are weakly separated and they are not both contained as subsets of h, and are neatly

separated by h if they are weakly separated by h and satisfy the additional requirement
that u∩ v = h∩ u = h∩ v. They are strictly separated by h if they are weakly separated
and each is disjoint from h.

The definition mentions these four properties in the order of (strictly) increasing strength,
if we limit ourselves to distinct sets u 6= v. To get a feel for the meaning of neat separa-
tion, the one property that is new, note that in the closed decomposition of Figure 1.1a,
P is a 2-simplex ∆2 in R2 and there are three slicing hyperplanes, which are lines. Each
pair of regions is neatly separated by one of these lines. In the closed decomposition of
Figure 1.1b, however, the line labeled h2 is the only hyperplane weakly (and properly)
separating regions r and u, and h2 does not separate neatly. In the decomposition of
Figure 1.1c, regions r and u cannot be weakly separated.

Definition 1.9. A closed decomposition of P is neat if each pair of distinct regions of
S is neatly separated by some hyperplane.

Before turning to the proof that neat is equivalent to thin convex, we consider an addi-
tional condition on closed decompositions that facilitates this argument. This regularity
condition also provides some intuition for these decompositions. The main idea arises
from considering cross sections of decompositions.

Definition 1.10. If S is a closed decomposition of the closed, convex set P ⊆ Rn, and
A is a closed and convex subset of Rn that meets P , then the restriction of S to A is
given by S|A = { r ∩ A | r ∈ S and r ∩ A 6= ∅ }.
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It is immediate that S|A in the above definition will always be a closed decomposition of
the closed, convex set P ∩A ⊆ Rn. Note that the restriction of a decomposition to a set
A may have fewer regions than does S, even when A meets every region of S, because
two distinct regions u and v of S may intersect A in the same region. In Figure 1.1a, for
example, when we restrict S to the hyperplane h1 the resulting decomposition S|h1

has
only two regions, one of which is equal both to u ∩ h1 and to v ∩ h1.

Proposition 1.11. Let S be a closed decomposition of the closed, convex set P ⊆ Rn,

and A be a closed, convex subset of Rn with P ∩A 6= ∅. Then if S is neat, its restriction

S|A is also neat as a decomposition of P ∩ A, and if S is thin convex then S|A is also

thin convex.

Proof. If some hyperplane k neatly separates regions r and u of S, and r ∩A 6= u ∩A,
then the same hyperplane k neatly separates regions r ∩A and u∩A of S|A. Thus, if S
is neat, S|A is also neat. The proof for thin convexity is immediate.

In particular, Proposition 1.11 holds when A is a hyperplane, a line, or a line segment.
In fact, the definition of neat can be simplified when applied to decompositions of a line
segment. This allows us to state several equivalent reformulations.

Proposition 1.12. Let S be a closed decomposition of a closed, convex set P ⊆ Rn, and

L be any line of Rn that meets P . Then the following conditions on S|L are equivalent:

(a) S|L is thin convex.

(b) S|L is neat.

(c) Every region of S|L is a closed interval of L, and every two such regions are either

identical or have no common points in the relative interior of either.

(d) Every region of S|L is a closed interval of L, and if any such region r contains a

point lying in the relative interior of another such region u, then u ⊆ r.

(e) Every region of S|L is a closed interval, and every two such regions are equal, or

are disjoint, or overlap only at a single point which is an endpoint of each.

Proof. Note that for the purposes of this proposition we classify a singleton set {a} as a
closed interval [a, a] of any line through a. Condition (e) thus requires that any overlap
between two regions [a, a] and [b, c] of S|L implies a = b or a = c. It is routine to check
that conditions (c), (d), and (e) are equivalent. If S|L is neat then each neatly separating
hyperplane intersects L in a single point. (Observe that neat and proper separation are
equivalent in the case of closed subsets of a line L.) It follows easily that condition (e)
is satisfied, with some of these single points serving as the endpoints of regions of S|L.
Conversely, if condition (e) is satisfied, then each endpoint a of a region of S|L may
be extended to the hyperplane ha,L through a that is normal to L, and these special
hyperplanes suffice to obtain all the neat separations required to confirm condition (b).
It remains to show that condition (a) is equivalent to the others.

(a) ⇒ (d) Assume S|L is thin convex. It follows immediately that each region r of S|L is
an interval, which must be closed as the regions of S are closed. Let r and u be regions
of S|L, and assume point q lies both in r and in the relative interior of u. To see that
u ⊆ r, let p be any other point of u. As q is in the relative interior of u we can find a
point t in u such that q lies strictly between p and t on L. Thin convexity now implies
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that as p and t lie in a common region u, and the point q (lying strictly between p and
t) is a member of r, then p ∈ r.

(c) ⇒ (a) Assume S|L satisfies condition (c). Let q1 and q2 be distinct points lying in
some common region r of S|L, and let q be any point in the interior of the line segment
q1q2. Let r′ be any region of S|L. If both q1 ∈ r′ and q2 ∈ r′ hold, then as r′ is an
interval, q ∈ r′. Now assume q ∈ r′. Then there exists a point of r′ lying in the interior
of r, so r = r′, and thus q1, q2 ∈ r′. Hence q ∈ r′ if and only if both q1 ∈ r′ and q2 ∈ r′,
as required.

Note that a set P ⊆ Rn is convex if and only if every line L of Rn has a convex
intersection P ∩ L with P . This suggests that perhaps Proposition 1.11 has a converse
given in terms of all linear cross sections, and inspires the following definition:

Definition 1.13. Let S be a closed decomposition of the closed, convex set P ⊆ Rn.
Then S is regular if for every line L of Rn that meets P , S|L satisfies any or all of the
equivalent conditions of Proposition 1.12.

This preservation under cross-section is a key property that distinguishes the classes we
have been discussing from a narrower, closely related class that is of direct interest to
the voting-theoretic properties considered in [8, 9]. One easy way to generate a neat
decomposition of a closed, convex set P is to choose a finite set Y of points of Rn, and
for each y ∈ Y let

Vy =
{

q ∈ Rn
∣

∣ ‖q − y‖ ≤ ‖q − z‖ for each z ∈ Y
}

.

These proximity regions Vy of points that are at least as close to y as to any other point
of Y are called Voronoi regions (see, for example, [2]).

Definition 1.14. Let P be a closed and convex subset of Rn and Y be a finite set of
points of P . Then the Voronoi decomposition VY of P is given by

VY = {Vy ∩ P | y ∈ Y and Vy ∩ P 6= ∅ },

and S is said to be a Voronoi decomposition of P if S = VY for some finite set Y of
points in P .

Proposition 1.15. Let P be a closed and convex subset of Rn and Y be a finite set of

points of P . Then the Voronoi decomposition VY of P is neat.

Proof. Let Vy ∩ P and Vz ∩ P be distinct regions of VY , and hy,z be the hyperplane
consisting of all points that are equidistant from y and z. Then it is straightforward to
check that hy,z neatly separates Vy ∩ P and Vz ∩ P .

For the applications to voting in [8, 9], it would in some respects be preferable to char-
acterize Voronoi decompositions, rather than neat decompositions, but we do not at this
time see how to do this in a way that establishes a clear link with representations of
voting systems. One obstacle seems to be that Voronoi decompositions fail to have the
sort of hereditary behavior (as revealed by Proposition 1.11 and Theorem 2.1) exhibited
by our other classes. In fact, it is easy to see that if P is a line segment, and S∗ is a closed
decomposition of P into five intervals whose lengths alternate long-short-long-short-long
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(where a long interval is more than twice as long as a short one) then it is impossible to
position points y1, y2, y3, y4, y5 on P (or to position them anywhere on the straight line
extending P ) in any way that makes the decomposition Voronoi. It is possible, however,
to position the yj off to the side of L, as in Figure 2.1, which depicts a decomposition
S∗ that is a non-Voronoi restriction (to a line) of a Voronoi decomposition of a planar
polytope into hexagonal proximity regions.

L

Figure 1.2: A Voronoi decomposition whose restriction to the line L is neat, but not
Voronoi.

In one sense, the difficulty may be said to lie with our choice of definition for “Voronoi
decomposition.� Suppose we define quasi-Voronoi decomposition by dropping the re-
quirement, in the definition above, that members of Y must lie inside P , and allowing
them to lie anywhere in a Euclidean space E of dimension possibly higher than that of P .
Then it is clear that restrictions (to affine subspaces) of quasi-Voronoi decompositions
are quasi-Voronoi. The twisted triangle example in [1] provides a neat decomposition
that fails to be quasi-Voronoi. With the help of a more recent example of Juan Enrique
Mart́ınez-Legaz we have formulated some new axioms – strong forms of thin convexity –
that may help characterize the class of quasi-Voronoi decompositions. Appropriate char-
acterizations of these classes would lead to characterizations of some large and natural
classes of voting systems – results in the same spirit as the main theorem of [9], which
would settle a question left open in [1].

2. Proof of the Main Theorem

Our goal is to prove the following result:

Theorem 2.1. Let S be a closed decomposition of a polytope P ⊆ Rn. Then the follow-

ing are equivalent:

(a) S is thin convex,

(b) S is facial,

(c) S is neat,

(d) S is regular.

We begin by pointing out that, with the exception of the following Lemma, the proof of
equivalence is clear.
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Lemma 2.2. Let S be a closed decomposition of a polytope P ⊆ Rn. Then if S is

regular, it is neat.

Proof of Theorem 2.1. We’ve already seen that (a) is equivalent to (b). It is imme-
diate from the definition that S is thin convex if and only if every restriction S|L to a
straight line is thin convex, so the equivalence of (a) and (d) follows. From Proposi-
tions 1.11 and 1.12, it is also immediate that if S is neat then S is regular. It remains
only to establish the lemma.

Proof of Lemma 2.2. 1 Assume S is regular. As each linear cross sections of each
region of S is an interval, it follows that the regions of S are convex. We divide the main
argument into following series of four claims:

Claim 2.3. The relative interiors of the regions of S are pairwise disjoint.

Claim 2.4. Every pair of distinct regions of S can be properly separated by a hyperplane.

Claim 2.5. Each region r of S is a polytope.

Claim 2.6. S is neat.

Proof of Claim 2.3. Suppose by way of contradiction that x is any element of r. i.(r)∩
r. i.(u). As r and u are different regions, without loss of generality assume that the set
difference r − u is nonempty, and choose a point y in this difference. Let L be the line
containing x and y.

Case 1: Assume that y ∈ Aff(u). Then any point on L lying strictly between x and y,
and sufficiently close to x, is an element of u. So S|L is not thin convex, violating our
assumption that S is regular.

Case 2: Assume that y /∈ Aff(u). Then any point z on L having the property that x lies
strictly between y and z and such that z is sufficiently close to x, will be a member of r
and not of u (as z /∈ Aff(u)). Again, this violates our assumption that S is regular.

Proof of Claim 2.4. The following separation theorem, which appears as Corollory
2.4.11 on page 71 of [5], now establishes proper separability via some hyperplane h:

Theorem 2.7. Each pair of nonempty convex sets A and B whose relative interiors are

disjoint can be properly separated by a hyperplane.

Proof of Claim 2.5. Boundedness of r follows from boundedness of P . Assume that
r has dimension k, so that Aff(r) may be identified with Rk. Then Aff(r) is itself a
finite intersection of closed half spaces of Rn. We will prove that r, viewed as a subset
of Aff(r), is a finite intersection of closed half-spaces of Aff(r). As each half space H of
Aff(r) has an extension to a half-space H∗ of Rn for which H∗ ∩ Aff(r) = H, it then
follows that r is a polytope. Note that as S is regular, so is its restriction S|Aff(r).

We’ll work inside Aff(r), thinking of Aff(r) as a “copy� of Rk; all references to “int(X)�
in the proof of Claim 2.5 will refer to X’s interior according to the relative topology of

1Juan Enrique Mart́ınez-Legaz has an alternate proof, which uses Motzkin’s Theorem of the Alternative
in place of the argument via rotating hyperplanes.
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Aff(r). For each non-empty region t of S|Aff(r) with t 6= r choose hr,t to be a hyperplane
of Aff(r) weakly separating t and r, and let Hr,t be the corresponding closed half space of
Aff(r) containing r. Let wr be the closed polyhedron of Aff(r) formed as the intersection
of all Hr,t for t 6= r, and let pr be the polytope wr ∩ P . We’ll show that r = pr. Clearly
r ⊆ pr, so it suffices to prove the reverse containment.

First, we’ll show int(pr) ⊆ r. If not, choose z ∈ int(pr) − r. Then z ∈ int(Hr,t) for
each Hr,t, so z /∈ hr,t. As z ∈ pr − r ⊆ P − r, z ∈ u for some region u of S|Aff(r) with
u 6= r. But then z ∈ Hr,u ∩ u, so z ∈ hr,u, a contradiction. Finally, as int(pr) ⊆ r,

pr = int(pr) ⊆ r = r.2

Proof of Claim 2.6. The argument is by induction on j, the dimension of P , with the
dimension n ≥ j of the ambient space Rn being held fixed. If j = 1, then S is neat by
Proposition 1.12 and the definition (1.13) of regularity.

Now assume that every regular closed decomposition of a dimension j closed polytope
P ⊆ Rn is neat. Let P be a dimension j+1 closed polytope in Rn, S be a regular closed
decomposition of P , and r and u be any two distinct regions of S. We need to neatly
separate r and u. Choose any hyperplane h that properly separates r and u; assume
that the equation of h is α · x = β, and that each point x of r satisfies α · x ≥ β. If h
neatly separates r and u we are done. If r ∩ h = ∅ then any sufficiently small increase
in β yields a parallel hyperplane h′ that strictly separates r and u, while if u ∩ h = ∅ a
small decrease in β achieves strict separation.

So, assume ∅ 6= r ∩ h 6= u ∩ h 6= ∅ (see Figure 2.1). Consider the restriction S|h,
which is a closed decomposition of P ∩ h, and is regular. As h does not contain r ∪ u,
dim(P ∩ h) ≤ j, so by our inductive hypothesis, we may choose a hyperplane k′ of Rn

that neatly separates the distinct regions r∩h and u∩h of S|h. It is impossible for k′ to
equal h, or else r ∩ h∩ k′ = r ∩ h 6= u∩ h = u∩ h∩ k′, and k′ would not separate neatly.
It is also impossible for k′ to be parallel to h, because r and u both include points on
h, and these points would all lie strictly on the same side of k′. It follows that if we set
k = k′ ∩ h then k is a codimension 2 affine subspace of Rn.

As h properly separates r and u, let ~v be a normal to h pointing to the u side of h (so
that no member of r lies strictly on the ~v side of h). As k′ neatly separates r ∩ h and
u ∩ h, r ∩ k = u ∩ k. Let ~w be any vector that lies in h, is normal to k, and points to
the u∩h side of k (so that, inside h, no member of r∩h lies strictly on the ~w side of k).
Let hε be the hyperplane obtained by rotating h about k, taking ~v toward ~w through an
angle of ε.

Subclaim 2.4.1. For any sufficiently small value of ε > 0, hε neatly separates r and u.

Proof of Subclaim 2.4.1. As h ∩ hε = k, clearly hε ∩ r contains k ∩ r and hε ∩ u
contains k ∩ u. Also k ∩ r = k ∩ u. As r and u are polytopes, they are convex hulls of

2As pr is closed, to see that pr = int(pr), it suffices to show that each point x1 of pr is arbitrarily close
to some point of int(pr). Expand {x1} to a set X = {x1, x2, . . . , xk+1} of k + 1 affinely independent
points of pr. Consider all convex combinations α1x1 +α2x2 + . . . αk+1xk+1 for which each αj is strictly
positive. These points form the interior (in the induced topology on Aff(r)) of the convex hull of X,
which is entirely contained in pr, as pr is convex. As such points come arbitrarily close to x1, we can
locate an open ball B of Aff(r) with B ⊆ pr, and such that all points of B are as close as desired to x1.
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Figure 2.1: Regions u and r are rectangular solids. Plane h separates them weakly, and
rotates into hε which separates them neatly.

finite sets Tr and Tu, respectively, of vertices.
3 Let T = (Tr ∪ Tu) − k consist of those

vertices lying off k.

For each vertex s in T there is a unique angle θ(s) with 0 < θ(s) ≤ π such that s lies in
hθ(s). Let ε < π/2 be any angle satisfying 0 < ε < θ(s) for each θ(s). We claim that hε

neatly separates r and u.

First note that every vertex of r either lies on k or lies strictly on the −~v side of hε, as
follows: if s ∈ Tr − k and s ∈ h, then any rotation of h toward ~v by less than π leaves s
strictly on the −~v side of hε, while if s /∈ h then, as ε < θ(s), s starts strictly on the −~v
side of h and the rotation by ε is too small to change this fact.

It follows that

(i) every point in r lies on hε or strictly on the −~v side of hε, and

(ii) r ∩ hε = r ∩ k.

By the same reasoning, we get

(iii) every point in u lies on hε or strictly on the ~v side of hε, and

(iv) u ∩ hε = u ∩ k.

From points (i) and (iii) we see that hε separates weakly, and from (ii) and (iv) it follows
that this separation is neat.
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3This application of the Krein-Milman theorem is the only place we use our assumption that P is
bounded – i.e., that P is a polytope as well as a convex polyhedron. It seems possible that a suitable
extension of Krein-Milman would yield a version of Theorem 2.1 for all convex polyhedra.
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