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We consider weak solutions of second order nonlinear elliptic systems in divergence form or of quasi-
convex variational integrals with continuous coefficients under superquadratic growth conditions. Via
the method of A-harmonic approximation we give a characterization of regular boundary points using
and extending some new techniques recently developed by M. Foss & G. Mingione in [15].

1. Introduction and results

In this paper we present a characterization of regular boundary points in the regularity
theory of vectorial elliptic and variational problems by extending the techniques and the
results of Foss & Mingione in [15] to the boundary. We first consider weak solutions
u ∈ W 1,p(Ω,RN) of a general homogeneous system of second order elliptic equations in
divergence form

div a( · , u,Du) = 0 in Ω , (1)

where Ω is a bounded domain in R
n and a : Ω×R

N ×R
nN → R

nN is a continuous vector
field on which we impose standard boundedness, differentiability, growth and ellipticity
conditions: z 7→ a(·, ·, z) is of class C1, and for fixed 0 < ν ≤ L and all x, x̄ ∈ Ω,
u, ū ∈ R

N , and z, z̄, λ ∈ R
nN there holds:





|a(x, u, z)|+ |Dza(x, u, z)| (1 + |z|) ≤ L (1 + |z|)p−1 ,

Dza(x, u, z)λ · λ ≥ ν (1 + |z|)p−2 |λ|2 ,
|a(x, u, z)− a(x̄, ū, z)| ≤ L (1 + |z|)p−1 ω (|x− x̄|2 + |u− ū|2) .
|Dza(x, u, z)−Dza(x, u, z̄)| ≤ Lµ

(
|z−z̄|

1+|z|+|z̄|

)
(1 + |z|+ |z̄|)p−2 .

(2)

Here n,N ≥ 2, p ≥ 2, and µ, ω : R+ → R
+ are two moduli of continuity, i.e. bounded by

1 (without loss of generality), concave and non-decreasing such that limρ→0 ω(ρ) = 0 =
limρ→0 µ(ρ).

The role of the modulus of continuity ω(·) will be the crucial point in our paper; we
remark that, in the sequel, we confine ourselves to the vectorial case. For the scalar case
we refer to [15] and the references therein. If we assume a Hölder condition of the form

ω(t) ≤ t
α
2 for some α ∈ (0, 1), t ∈ R

+, i.e., (1 + |z|)1−pa(x, u, z) is Hölder continuous
in the variables (x, u) uniformly with respect to z, then it is known (see [17]; [14] for
the variational case) that standard growth and ellipticity assumptions on the coefficients
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imply partially Hölder continuous first derivatives of the weak solution u, which means
Hölder continuity outside the singular set of Lebesgue measure 0, with optimal Hölder
exponent α. Moreover, assuming that the boundary data are sufficiently smooth, general
criteria for Du to be regular in a neighbourhood of a given boundary point were obtained
by Grotowski and Hamburger (see [20, 21]) using boundary versions of the method of
A-harmonic approximation and of the blow-up technique, respectively. The assumption

on ω(·) was weakened to Dini-continuous coefficients, where
∫ r

0
ω(ρ)
ρ
dρ < ∞ is fulfilled for

some r > 0, which still allows to conclude a partial regularity result forDu (see [8, 27]; [9]
for the variational case). Moreover, a condition of the form lim supρ→0 ω(ρ) log(

1
ρ
) = 0

ensures in the case of variational functionals under non-standard growth without u-

dependency (see [3], Theorem 2.1) to infer u ∈ C0,α
loc (Ω,R

N) for every α ∈ (0, 1).

Assuming merely the continuity of the coefficients with respect to the variable (x, u)
without any further structural assumptions, Campanato proved low order partial regu-
larity in [5], namely that the weak solution u is Hölder continuous with every exponent
α ∈ (0, 1) outside a negligible closed subset of Ω, for the low dimensional case, where
n ≤ p + 2 (cf. [6] for similar estimates up to the boundary; see also [23] for the vari-
ational setting). Moreover, the Hausdorff dimension of the singular set is bounded by
n− p from above implying that actually almost every boundary point is verified to be a
regular one. In contrast, in the case of quasi-convex variational integrals, these methods
do not apply, and a similar low dimensional result was obtained only under the assump-
tion ω(t) ≤ t

α
2 (cf. [23], Theorem 1.5). However, for general dimensions, the question of

low order partial regularity under a continuity assumption remained unsolved for a long
time, until Foss & Mingione gave a positive answer in [15] both for weak solutions of
elliptic systems and for local minimizers of quasi-convex variational integrals. The aim
of our paper is now to extend the characterization of regular points up to the boundary.
For this purpose we denote by Reg∂Ω u the set of regular boundary points of u in the
sense that

Reg∂Ω u :=
{
x0 ∈ ∂Ω: u ∈ C0,α(U(x0) ∩ Ω̄,RN) for every α ∈ (0, 1)

and some neighbourhood U(x0) of x0

}
,

and the set of singular boundary points by Sing∂Ω u := ∂Ω \ Reg∂Ω u. Analogously for
fixed α ∈ (0, 1) we define

Reg∂Ω,α u :=
{
x0 ∈ Γ: u ∈ C0,α(U(x0) ∩ Ω̄,RN) for some neighbourhood U(x0) of x0

}

and Sing∂Ω,α u := ∂Ω \ Reg∂Ω,α u. Our first theorem then provides a characterization of
the regular boundary points analogous to the characterization of regular points in the
interior of Ω (see [15], Theorem 1.1):

Theorem 1.1. Consider p ≥ 2, Ω ⊂ R
n, n ≥ 2, a bounded domain of class C1 and a

map g ∈ C1(Ω̄,RN). Let u ∈ W 1,p(Ω,RN) be a weak solution of system (1) under the
assumptions (2) with boundary values u = g on ∂Ω. Then there holds:

Sing∂Ω u ⊆
{
x0 ∈ ∂Ω: lim inf

ρ→0+

∫
−
Ω∩Bρ(x0)

|Dν∂Ω(x0)u− (Dν∂Ω(x0)u)Ω∩Bρ(x0)|p
(1 + |(Dν∂Ω(x0)u)Ω∩Bρ(x0)|)p

dx > 0

or lim inf
ρ→0+

ρβ
∫
−
Ω∩Bρ(x0)

|Dν∂Ω(x0)u|2 dx > 0

}
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for every β ∈ (0, 2); here ν∂Ω(x0) denotes the inward-pointing unit normal vector to ∂Ω in
x0. Moreover, for every α ∈ (0, 1) there exists s > 0 depending only on n,N, p, ν, L, α, β,
∂Ω, g, ω(·) and µ(·) such that the following inclusion holds for every β ∈ (0, 2):

Sing∂Ω,α u ⊆
{
x0 ∈ ∂Ω: lim inf

ρ→0+

∫
−
Ω∩Bρ(x0)

|Dν∂Ω(x0)u− (Dν∂Ω(x0)u)x0,ρ|p
(1 + |(Dν∂Ω(x0)u)Ω∩Bρ(x0)|)p

dx ≥ s

or lim inf
ρ→0+

ρβ
∫
−
Ω∩Bρ(x0)

|Dν∂Ω(x0)u|2 dx ≥ s

}
.

We note that for general dimensions the problem of knowing whether there might exist
regular boundary points, even in the case of Hölder continuous coefficients with exponent
α < 1

2
, remains open (cf. [12]), unless we have some additional structural condition (as

e.g. a splitting condition, see [22] for minima).

In the second part of the paper we consider variational integrals of the form

F [u] :=

∫

Ω

F (x, u,Du) dx , (3)

where the integrand F : Ω̄ × R
N × RnN → R is strictly quasi-convex, continuous and

grows polynomially. More precisely, we assume that z 7→ F (·, ·, z) is of class C2 and that

F satisfies for fixed 0 < ν ≤ L and all x, x̄ ∈ Ω, u, ū ∈ R
N , and z, z̄ ∈ R

nN the following
assumptions:




ν (1 + |z|)p ≤ F (x, u, z) ≤ L (1 + |z|)p
ν
∫
(0,1)n

(1 + |z|+ |Dϕ(y)|)p−2|Dϕ(y)|2 dy ≤
∫
(0,1)n

[
F (x, u, z +Dϕ(y))− F (x, u, z)

]
dy

|F (x, u, z)− F (x̄, ū, z)| ≤ L (1 + |z|)p ω (|x− x̄|p + |u− ū|p) ,
|DzzF (x, u, z)−DzzF (x, u, z̄)| ≤ Lµ

(
|z−z̄|

1+|z|+|z̄|

)
(1 + |z|+ |z̄|)p−2 .

(4)
The functions µ(·) and ω(·) are those already considered in the elliptic case, and for
(4)2, which is called strict quasi-convexity condition, we assume ϕ ∈ C∞

0 ((0, 1)n,RN).
We note here that quasi-convexity is an extension of convexity to a global property
and is essentially equivalent to lower semicontinuity (cf. [1]). Applying Step 2 of page
6 in [25], we may also assume a growth condition on the first derivatives of the form
Dzf(x, u, z) ≤ L(1 + |z|)p−1. Moreover, it can be verified that the conditions (4) above
(see [26], Theorem 4.3) imply the strict ellipticity of the matrix D2f in the sense of
Legendre-Hadamard, and therefore we may also assume

ν (1 + |z|)p−2|ξ|2 |η|2 ≤ DzzF (x, u, z) ξ ⊗ η · ξ ⊗ η ≤ L (1 + |z|)p−2|ξ|2 |η|2

for all ξ ∈ R
N , η ∈ R

n.

We note that in the case of Hölder continuity of the coefficients a partial regularity
theory for the gradient of minimizers has been established in the by now classical papers
[14, 2, 7], while partial Hölder continuity in the interior in the case of general continuous
coefficients has been again proved in [15].

Our second theorem now yields a characterization of the regular boundary points of
minimizers of quasi-convex integrals corresponding to the elliptic case:
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Theorem 1.2. Consider p ≥ 2, Ω ⊂ R
n, n ≥ 2, a bounded domain of class C1 and a

map g ∈ C1(Ω̄,RN). Let u ∈ W 1,p(Ω,RN) be a local minimizer of the functional F [·] in
(3) under the assumptions (4) with boundary values u = g on ∂Ω. Then there holds:

Sing∂Ω u ⊆
{
x0 ∈ ∂Ω: lim inf

ρ→0+

∫
−
Ω∩Bρ(x0)

|Dν∂Ω(x0)u− (Dν∂Ω(x0)u)Ω∩Bρ(x0)|p
(1 + |(Dν∂Ω(x0)u)Ω∩Bρ(x0)|)p

dx > 0

or lim inf
ρ→0+

ρβ
∫
−
Ω∩Bρ(x0)

|Dν∂Ω(x0)u|p dx > 0

}

for every β ∈ (0, p). Moreover, for every α ∈ (0, 1) there exists s > 0 depending only
on n,N, p, ν, L, α, β, ∂Ω, g, ω(·) and µ(·) such that for every β ∈ (0, p) the following
inclusion holds:

Sing∂Ω,α u ⊆
{
x0 ∈ ∂Ω: lim inf

ρ→0+

∫
−
Ω∩Bρ(x0)

|Dν∂Ω(x0)u− (Dν∂Ω(x0)u)Ω∩Bρ(x0)|p
(1 + |(Dν∂Ω(x0)u)Ω∩Bρ(x0)|)p

dx ≥ s

or lim inf
ρ→0+

ρβ
∫
−
Ω∩Bρ(x0)

|Dν∂Ω(x0)u|p dx ≥ s

}
.

Finally we briefly comment on the techniques used in the proofs and on the modifications
necessary to handle the boundary situation: regularity proofs for both nonlinear systems
and functionals are usually based on a comparison principle in order to establish an
excess decay estimate. In the present situation, the excess quantity introduced by Foss
& Mingione consists of three terms: the first involving the averaged mean deviation of the
derivative of the weak solution (re-normalized by the factor (1 + |(Dν∂Ω(x0)u)Ω∩Bρ(x0)|)p
which might diverge due to the fact that we cannot expect to obtain Lipschitz estimates
even if the boundary data are smooth), the second involving the radius of the ball
Bρ(x0) and finally the Morrey-type excess M(x0, ρ) quantifying the oscillations of the
weak solution u. The appropriate decay of this excess quantity is now obtained by a
linearization argument (combined with the Ekeland variational principle in the case of
variational integrals), namely by freezing the coefficients and the functional, respectively,
in order to obtain an elliptic system A with constant coefficients. In the second step, the
comparison with an A-harmonic map (for which good a priori estimates are available up
to the boundary) is made possible by the technique of A-harmonic approximation (for
details we refer to [10] and, for a more general form in the setting of geometric measure
theory to [13]). Our main goal, the Hölder continuity of u on a relative neighbourhood
of a given boundary point x0 where the excess is small, can then be established in the
model case of the upper half unit ball (which is sufficient for the general situation) by
proceeding similarly to existing papers concerned with boundary regularity (see e.g. [20]);
here, we mention that our boundary excess describes only the behaviour of the normal
derivative of u but appropriate boundary versions of the Caccioppoli and the Poincaré
inequality allow us to control the full derivative of u. Hence, the excess at the boundary
is now used to get control over the corresponding excess quantity on balls in the interior
within a neighbourhood of x0, and a combination with the interior case then yields the
desired regularity result.

In the sequel, we set our main focus on the treatment of the boundary situation, but,
as indicated in [15], the methods also apply to cover inhomogeneous elliptic system and
almost minimizers of integral functionals.
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2. Preliminaries

We start with some remarks on the notation used below: we write Bρ(x0) = {x ∈ R
n :

|x− x0| < ρ} and B+
ρ (x0) = {x ∈ R

n : xn > 0, |x− x0| < ρ} for a ball or an upper half-

ball, respectively, centred on a point x0 (∈ R
n−1 × {0} in the latter case) with radius

ρ > 0. Sometimes it will be convenient to treat the n-th component of x ∈ R
n separately;

therefore, we set x = (x′, xn) where x′ = (x1, . . . , xn−1). Furthermore, we write

Γρ(x0) = {x ∈ R
n : |x− x0| < ρ, xn = 0} ,

for x0 ∈ R
n−1 × {0}. In the case x0 = 0 we set Bρ := Bρ(0), B := B1 as well as

B+
ρ := B+

ρ (0), B
+ := B+

1 with Γρ := Γρ(0), Γ := Γ1. We also introduce the following

notation for W 1,p-functions defined on some half-ball B+
ρ (x0) and which vanish (in the

sense of traces) on the flat part of the boundary:

W 1,p
Γ (B+

ρ (x0),R
N) :=

{
u ∈ W 1,p(B+

ρ (x0),R
N) : u = 0 on Γρ(x0)

}
.

Let Ln denote the n-dimensional Lebesgue measure. For any bounded, measurable set
X ⊂ R

n with Ln(X) =: |X| > 0, we denote the mean value of a function h ∈ L1(X,RN)
by (h)X =

∫
−

X
h dx, and, in particular, we use the abbreviation (h)x0,ρ for the mean

value on Bρ(x0) or on B+
ρ (x0), respectively. The constants c appearing in the different

estimates will all be chosen greater than or equal to 1, and they may vary from line to
line.

We consider a bounded domain Ω inR
n, for some n ≥ 2. The boundary of Ω is assumed to

be of class C1 with modulus of continuity τ(·); this means that for every point x0 ∈ ∂Ω
there exist a radius r > 0 and a function h : R

n−1 → R of class C1 such that (up
to an isometry) Ω is locally represented by Ω ∩ Br(x0) = {x ∈ Br(x0) : xn > h(x′)}.
Thus we can locally straighten the boundary ∂Ω via a C1-transformation T defined by
T (x′, xn) = (x′, xn − h(x′)).

We recall that u is a weak solution of (1) with boundary values g under the assumptions
(2) if u is a W 1,p(Ω,RN)-map such that

∫

Ω

a(x, u,Du)Dϕdx = 0 for every ϕ ∈ W 1,p
0 (Ω,RN)

and if u = g on ∂Ω in the sense of traces. Further, u is a local minimizers of the functional
F [·] with boundary values g under the assumptions (4) if u is a W 1,p(Ω,RN)-map such
that

F [u] ≤ F [v] for every v ∈ u+W 1,p
0 (Ω,RN)

and if u = g on ∂Ω in the sense of traces.

Firstly we recall a boundary version of Poincaré’s inequality W 1,p
Γ (B+

R ,R
N)-maps. The

fact that u vanishes on Γ allows to estimate the integral over u by the integral of the
normal derivative Dnu only rather than the full derivative.

Lemma 2.1 ([4], Lemma 3.4). For functions u ∈ W 1,p
Γ (B+

R(x0),R
N) with x0 ∈ R

n−1×
{0} there holds: ∫

B+
R(x0)

|u|p dx ≤ Rp

p

∫

B+
R(x0)

|Dnu|p dx .
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We next want to state results from the linear theory. Firstly, we recall the following
up-to-the-boundary version of the A-harmonic approximation lemma:

Lemma 2.2 ([19], Lemma 2.4; [20], Lemma 2.3.). Consider fixed positive ν and L,
and n, N ∈ N with n ≥ 2. Then for any given ǫ > 0 there exists δ = δ(n,N, λ, L, ǫ) ∈
(0, 1] with the following property: if A is a bilinear form on R

nN satisfying

ν |ξ|2 |η|2 ≤ A (ξ ⊗ η, ξ ⊗ η) ≤ L |ξ|2 |η|2 (5)

for all ξ ∈ R
N , η ∈ R

n, and if w ∈ W 1,2
Γ (B+

ρ (x0),R
N) (for some ρ > 0, x0 ∈ R

n−1×{0})
with

∫
−

B+
ρ (x0)

|Dw|2 dx ≤ 1 is approximately A-harmonic in the sense that

∣∣∣∣∣

∫
−
B+

ρ (x0)

A (Dw,Dϕ) dx

∣∣∣∣∣ ≤ δ sup
B+

ρ (x0)

|Dϕ|

for all ϕ ∈ C1
0(B

+
ρ (x0),R

N), then there exists an A-harmonic function h ∈ W 1,2
Γ (B+

ρ (x0),

R
N) such that

∫
−
B+

ρ (x0)

|Dh|2 dx ≤ 1 and ρ−2

∫
−
B+

ρ (x0)

|w − h|2 dx ≤ ǫ .

That A-harmonic maps are indeed smooth, is the statement of the next lemma:

Lemma 2.3 ([19], Theorem 2.3). Consider fixed positive ν and L, and n, N ∈ N

with n ≥ 2. Then there exists a constant ch depending only on n,N, L and ν such that
for every bilinear form A on R

nN with upper bound L and ellipticity constant ν and any

A-harmonic map h ∈ W 1,2
Γ (B+

ρ (x0),R
N) (for some ρ > 0, x0 ∈ R

n−1 × {0}) there holds:

ρ−2 sup
B+

ρ/2
(x0)

|Dh|2 + sup
B+

ρ/2
(x0)

|D2h|2 ≤ ch ρ
−2

∫
−
B+

ρ (x0)

|Dh|2 dx .

Given a functions u ∈ L2(B+
ρ (x0),R

N) we denote by P+
x0,ρ

the unique function minimizing

the functional P 7→
∫
B+

ρ (x0)
|u−P |2 dx amongst all functions P of the form P (x) = Qxn

for some Q ∈ R
N . P+

x0,ρ
= Q+

x0,ρ
xn is then given via

Q+
x0,ρ

:= cQ(n) ρ
−2

∫
−
B+

ρ (x0)

u(x)xn dx

for cQ = (
∫
−

B+
1
x2
n dx)

−1 = n + 2. The following lemma provides explicit estimates for

Q+
x0,ρ

similar to [24], Lemma 2:

Lemma 2.4. Let u ∈ W 1,2
Γ (B+

ρ (x0),R
N) for some x0 ∈ Γ, 0 < θ ≤ 1, P+

x0,ρ
the polyno-

mial defined above. Then the following estimates hold:

(i)
∣∣Q+

x0,θρ
−Q+

x0,ρ

∣∣2 ≤ c(n) (θρ)−2

∫
−
B+

θρ(x0)

|u− P+
x0,ρ

|2 dx

(ii)
∣∣Q+

x0,ρ
− ξ
∣∣2 ≤ c(n)

∫
−
B+

ρ (x0)

|Dnu− ξ|2 dx

where ξ ∈ R
N .
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Proof. Using both the definitions of Q+
x0,θρ

and of the constant cQ and Hölder’s inequal-
ity we compute

∣∣Q+
x0,θρ

−Q+
x0,ρ

∣∣2 =
∣∣∣∣∣cQ (θρ)−2

∫
−
B+

θρ(x0)

u(x)xn dx−Q+
x0,ρ

∣∣∣∣∣

2

=

∣∣∣∣∣cQ (θρ)−2

∫
−
B+

θρ(x0)

[
u(x)xn −Q+

x0,ρ
x2
n

]
dx

∣∣∣∣∣

2

≤ c2Q (θρ)−4

∫
−
B+

θρ(x0)

∣∣u(x)−Q+
x0,ρ

xn

∣∣2 dx

∫
−
B+

θρ(x0)

x2
n dx

≤ cQ (θρ)−2

∫
−
B+

θρ(x0)

∣∣u(x)−Q+
x0,ρ

xn

∣∣2 dx .

For the second inequality we proceed analogously and apply at the end the Poincaré-
inequality in the zero-boundary-data-version in order to derive:

∣∣Q+
x0,ρ

− ξ
∣∣2 =

∣∣∣∣∣cQ ρ−2

∫
−
B+

ρ (x0)

[
u(x)xn − ξ x2

n

]
dx

∣∣∣∣∣

2

≤ cQ ρ−2

∫
−
B+

ρ (x0)

|u(x)− ξ xn|2 dx

≤ cP cQ

∫
−
B+

ρ (x0)

|Dnu(x)− ξ|2 dx .

Moreover, we will need an iteration result (cf. [18], Lemma 7.3):

Lemma 2.5. Let ϕ : [0, ρ] → R be a positive non-decreasing function satisfying

ϕ(θk+1ρ) ≤ θγ ϕ(θkρ) +B (θkρ)n

for every k ∈ N, where θ ∈ (0, 1) and γ ∈ (0, n). Then there exists a constant c depending
only on n, θ and γ such that for every t ∈ (0, ρ] the following holds:

ϕ(t) ≤ c

[( t
ρ

)γ
ϕ(ρ) +B tγ

]
.

For the proof of the characterization of regular boundary points we will concentrate
on the model situation of a half ball and we will make use of a slight modification of
Campanato’s integral characterization of Hölder-continuity up to the boundary:

Theorem 2.6 ([20], Theorem 2.3). Consider n ∈ N, n ≥ 2 and x0 ∈ R
n−1 × {0}.

Suppose that there are positive constants α ∈ (0, 1], κ > 0 such that, for some v ∈
L2(B+

6R(x0)), there holds the following:

inf
µ∈R

{∫
−
B+

ρ (y)

|v − µ|2 dx
}

≤ κ2
( ρ
R

)2α
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for all y ∈ Γ2R(x0) and ρ ≤ 4R; and

inf
µ∈R

{∫
−
Bρ(y)

|v − µ|2 dx
}

≤ κ2
( ρ
R

)2α

for all y ∈ B+
2R(x0) with Bρ(y) ⊂ B+

2R(x0). Then there exists a Hölder-continuous

representative v̄ of v on B+
R(x0), and for v̄ there holds: |v̄(x)− v̄(z)| ≤ c κ

(
|x−z|
R

)α
for

all x, z ∈ B+
R(x0), for a constant c depending only on n and α.

3. Elliptic Systems

3.1. Decay estimate

The first step in proving a regularity theorem for solutions u of elliptic systems is to
establish a suitable reverse-Poincaré or Caccioppoli inequality. In the case of continuous
coefficients a(·, ·, ·) with respect to the first two variables (instead of Hölder or Dini
continuous coefficients) we have to state here the exact dependency for some linear
disturbance of the weak solution u for the system

div a( · , u,Du) = 0 in B+ . (6)

Lemma 3.1 (Caccioppoli inequality). Let u ∈ W 1,p
Γ (B+,RN) be a weak solution to

(6) under the assumptions (2), ξ ∈ R
N and B+

ρ (x0), x0 ∈ Γ, ρ < 1 − |x0| be an upper

half ball. Then there exists a constant c = c(n,N, p, L, ν) such that
∫
−
B+

ρ/2
(x0)

[
(1 + |ξ|)p−2|Du− ξ ⊗ en|2 + |Du− ξ ⊗ en|p

]
dx

≤ c

∫
−
B+

ρ (x0)

[
(1 + |ξ|)p−2

∣∣∣∣
u− ξxn

ρ

∣∣∣∣
2

+

∣∣∣∣
u− ξxn

ρ

∣∣∣∣
p
]
dx

+ c (1 + |ξ|)p
∫
−
B+

ρ (x0)

[
ω(ρ2) + ω(|u|2) + ω(ρ2 |ξ|2)

]
dx .

Proof. Since there holds u− ξ xn = 0 on Γ, the map ηp(u− ξ xn) with η ∈ C∞
0 (Bρ(x0),

[0, 1]) a standard cut-off function may be taken as a test function in the weak formulation
of (6). Now we refer to the proof of the Caccioppoli inequality for the interior case, see
[15], Proposition 3.1.

In the next step we define the excess functionals analogously to [15], Section 3.2, in a
boundary version (i.e., replacing full balls by half balls and restricting ourselves to the
mean value of the normal derivative instead of the full derivative of u): For any half-ball

B+
ρ (x0) ⊂ B+ with x0 ∈ Γ, a fixed function u ∈ W 1,p

Γ (B+,RN) and ξ ∈ R
N we define the

Campanato-type excess

C(x0, ρ) :=

∫
−
B+

ρ (x0)

[ |Du− (Dnu)x0,ρ ⊗ en|2
(1 + |(Dnu)x0,ρ|)2

+
|Du− (Dnu)x0,ρ ⊗ en|p

(1 + |(Dnu)x0,ρ|)p
]
dx ,

the Morrey-type excess

M(x0, ρ) := ρβ
∫
−
B+

ρ (x0)

|Dnu|2 dx for β ∈ (0, 2)
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and finally the excess functional

E(x0, ρ) := C(x0, ρ) +
√

ω(M(x0, ρ)) +
√

ω(ρ) .

The next proposition provides a suitable decay estimate, under the assumption that the
excess E(x0, ρ) and the radius ρ are sufficiently small, and will be an essential tool for
the iteration later on.

Proposition 3.2 (cf. [15], Propostion 3.2). For each β ∈ (0, 2) and θ ∈ (0, 1
4
) there

exist two positive numbers

ǫ0 = ǫ0 (n,N, p, ν, L, β, θ, µ(·)) > 0 and ǫ1(n, p, β, θ) > 0 (7)

such that the following is true: If u ∈ W 1,p(B+,RN) is a weak solution to (6) under
the assumptions (2), and if B+

ρ (x0), x0 ∈ Γ, ρ < 1 − |x0|, is a half ball satisfying the
smallness conditions

E(x0, ρ) < ǫ0 and ρ < ǫ1 , (8)

then we have
C(x0, θρ) ≤ c∗ θ

2E(x0, ρ) (9)

for a constant c∗ depending only on n,N, p, ν and L.

Proof. In the first step, we deduce an approximate A-harmonicity result following the
estimates in the proof of [15], Proposition 3.2, Step 1 and we obtain: for every B+

ρ (x0),

x0 ∈ Γ, ρ < 1 − |x0|, and all functions ϕ ∈ C1
0(B

+
ρ (x0),R

N) with ‖Dϕ‖L∞(B+
ρ (x0))

≤ 1

there holds
∣∣∣∣∣

∫
−
B+

ρ (x0)

Dza (x0, 0, (Dnu)x0,ρ ⊗ en) (Du− (Dnu)x0,ρ ⊗ en, Dϕ) dx

∣∣∣∣∣

≤ c (1 + |(Dnu)x0,ρ|)p−1

[
µ
(√

E(x0, ρ)
) 1

p
+
√
E(x0, ρ)

] [
E(x0, ρ)

1
2 + E(x0, ρ)

1− 1
p

]
,

and the constant c depends only on n,N, p and L (note µ(·) ≤ 1 and the fact that u = 0
on Γ in order to apply the Poincaré inequality in the boundary version). Now we define

A :=
Dza(x0, 0, (Dnu)x0,ρ ⊗ en)

(1 + |(Dnu)x0,ρ|)p−2
,

w :=
u− (Dnu)x0,ρ xn√

E(x0, ρ) (1 + |(Dnu)x0,ρ|)
,

H(t) :=

[
µ
(√

t
) 1

p
+
√
t

] [
1 + t

1
2
− 1

p

]
; (10)

we note here that A fulfills condition (5), i.e., it is bounded from below and above, and
further, by the definition of the excess functional E(x0, ρ), there holds

∫
−

B+
ρ (x0)

|Dw|2 dx
≤ 1. These definitions enable us to rewrite the previous estimate after a rescaling
argument:

∣∣∣∣∣

∫
−
B+

ρ (x0)

A (Dw,Dϕ) dx

∣∣∣∣∣ ≤ c1(n,N, p, L)H(E(x0, ρ)) ‖Dϕ‖L∞(B+
ρ (x0))
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for all ϕ ∈ C1
0(B

+
ρ (x0),R

N). For ǫ > 0 to be determined later, we now take δ =

δ(n,N, ν, L, ǫ) to be the corresponding constant from the A-harmonic approximation
Lemma 2.2. Provided that the smallness condition

H(E(x0, ρ)) ≤ δ/c1 (SC.1)

holds, we find, according to Lemma 2.2, an A-harmonic map h ∈ W 1,2
Γ (B+

ρ (x0),R
N) such

that ∫
−
B+

ρ (x0)

|Dh|2 dx ≤ 1 and ρ−2

∫
−
B+

ρ (x0)

|w − h|2 dx ≤ ǫ , (11)

and by Lemma 2.3 on A-harmonic maps h is indeed smooth and satisfies, due to the
last line, the estimate supB+

ρ/2
(x0)

|D2h|2 ≤ ch(n,N, ν, L)ρ−2. We now consider θ ∈ (0, 1
4
)

fixed, to be specified later, and deduce from Taylor’s theorem (keep in mind h = 0 on
Γρ(x0)):

sup
x∈B+

2θρ(x0)

|h(x)− h(x0)−Dh(x0)(x− x0)|2 = sup
x∈B+

2θρ(x0)

|h(x)−Dnh(x0)xn|2

≤ ch ρ
−2 (2θρ)4 = c θ4ρ2 , (12)

and the constant c depends only on n,N, ν and L. (11) and (12) now ensure that

(2θρ)−2

∫
−
B+

2θρ(x0)

|w(x)−Dnh(x0)xn|2 dx

≤ 2 (2θρ)−2

(∫
−
B+

2θρ(x0)

|w(x)− h(x)|2 dx+

∫
−
B+

2θρ(x0)

|h(x)−Dnh(x0)xn|2 dx
)

≤ 2 (2θρ)−2
(
(2θ)−nρ2ǫ+ c θ4ρ2

)
≤ c(n,N, ν, L) θ2

where we have chosen ǫ = θn+4 in the last inequality. By the definition of w we easily
conclude

(2θρ)−2

∫
−
B+

2θρ(x0)

∣∣∣u(x)− (Dnu)x0,ρ xn −
√

E(x0, ρ) (1 + |(Dnu)x0,ρ|)Dnh(x0)xn

∣∣∣
2

dx

≤ c(n,N, ν, L) θ2 (1 + |(Dnu)x0,ρ|)2E(x0, ρ) . (13)

Denoting by Q+
x0,2θρ

the value minimizing the functional Q 7→
∫
B+

ρ (x0)
|u − Qxn|2 dx

amongst all Q ∈ R
N , and P+

x0,ρ
= Q+

x0,ρ
xn we obtain from the last inequality

(2θρ)−2

∫
−
B+

2θρ(x0)

∣∣u− P+
x0,2θρ

∣∣2 dx ≤ c θ2 (1 + |(Dnu)x0,ρ|)2E(x0, ρ) (14)

with c still depending only on n,N, ν and L. To derive a corresponding estimate with
exponent p instead of 2 in (14) (in the case p > 2) we use an interpolation argument.
To this end we define p∗ the usual Sobolev-Exponent (i.e. p∗ = np

n−p
if p < n and p∗ > p

arbitrary if p ≥ n) and choose t ∈ (0, 1) such that 1
p
= 1−t

2
+ t 1

p∗ is satisfied. Using the
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inequalities of Hölder and of Sobolev-Poincaré and (14) we infer

∫
−
B+

2θρ(x0)

∣∣u− P+
x0,2θρ

∣∣p dx

≤
(∫
−
B+

2θρ(x0)

∣∣u− P+
x0,2θρ

∣∣2 dx
)(1−t) p

2
(∫
−
B+

2θρ(x0)

∣∣u− P+
x0,2θρ

∣∣p∗ dx
)t p

p∗

≤ c ρp θ(2−t)p(1 + |(Dnu)x0,ρ|)p(1−t)E(x0, ρ)
(1−t) p

2

(∫
−
B+

2θρ(x0)

∣∣Du−DP+
x0,2θρ

∣∣p dx
)t

where c depends now on n,N, p, ν and L. Applying Minkowski, Lemma 2.4 and the
Poincaré-inequality at the boundary (keep in mind that P+

x0,ρ
= Q+

x0,ρ
xn vanishes on Γ)

we obtain for the latter integral

(∫
−
B+

2θρ(x0)

∣∣Du−DP+
x0,2θρ

∣∣p dx
) 1

p

≤
(∫
−
B+

2θρ(x0)

|Du− (Dnu)x0,ρ ⊗ en|p dx
) 1

p
+
∣∣(Dnu)x0,ρ −Q+

x0,2θρ

∣∣

≤
(∫
−
B+

2θρ(x0)

|Du− (Dnu)x0,ρ ⊗ en|p dx
) 1

p
+ c(n)

(∫
−
B+

2θρ(x0)

|Dnu− (Dnu)x0,ρ|p dx
) 1

p

≤ c(n, p) θ−
n
p

(∫
−
B+

ρ (x0)

|Du− (Dnu)x0,ρ ⊗ en|p dx
) 1

p

= c(n, p) θ−
n
p (1 + |(Dnu)x0,ρ|)E(x0, ρ)

1
p .

Hence, inserting this in the inequality above, we get

(2θρ)−p

∫
−
B+

2θρ(x0)

∣∣u− P+
x0,2θρ

∣∣p dx

≤ c θ(1−t)p−ntE(x0, ρ)
(1−t) p−2

2 (1 + |(Dnu)x0,ρ|)pE(x0, ρ) .

We now assume the additional smallness assumption

E(x0, ρ) ≤ θ
2[(t−1)p+tn+2]

(1−t)(p−2) if p > 2 . (SC.2)

One easily checks that this condition is not necessary for p = 2. We finally arrive at

(2θρ)−p

∫
−
B+

2θρ(x0)

∣∣u− P+
x0,2θρ

∣∣p dx ≤ c θ2 (1 + |(Dnu)x0,ρ|)pE(x0, ρ) (15)

with a constant c = c(n,N, p, ν, L). We now want to produce mainly via Caccioppoli’s
inequality and dividing by (1 + |(Dnu)x0,ρ|)p the Campanato Excess quantity C(x0, θρ).
Hence we have to estimate (Dnu)x0,ρ̃ in terms of (Dnu)x0,θρ in the following form:

1 + |(Dnu)x0,ρ̃| ≤ 2 (1 + |(Dnu)x0,θρ|) for all ρ̃ ∈ [θρ, ρ] . (16)



298 L. Beck / Boundary Regularity for Elliptic Problems

To this end, we compute for all ρ̃ ∈ [θρ, ρ] via the minimizing property of the meanvalue:

1 + |(Dnu)x0,ρ̃| ≤ 1 + |(Dnu)x0,θρ − (Dnu)x0,ρ̃|+ |(Dnu)x0,θρ|

≤
(

ρ̃

θρ

)n
2

(∫
−
B+

ρ̃ (x0)

|Dnu− (Dnu)x0,ρ̃|2 dx
) 1

2

+ 1 + |(Dnu)x0,θρ|

≤ θ−
n
2

(∫
−
B+

ρ (x0)

|Dnu− (Dnu)x0,ρ|2 dx
) 1

2

+ 1 + |(Dnu)x0,θρ|

≤ θ−
n
2

√
E(x0, ρ) (1 + |(Dnu)x0,ρ|) + 1 + |(Dnu)x0,θρ| .

Therefore if we assume the smallness condition

2
√

E(x0, ρ) ≤ θ
n
2 (SC.3)

we obtain firstly by absorption in a standard way the result (16) in the special case
ρ̃ = ρ. Secondly we consider ρ̃ ∈ [θρ, ρ] arbitrary and now take into account (16) for
ρ̃ = ρ to infer (16) for all possible choices of ρ̃. Hence we may rewrite (14) and (15) in
the following form:





(2θρ)−2

∫
−
B+

2θρ(x0)

∣∣u− P+
x0,2θρ

∣∣2 dx ≤ c θ2 (1 + |(Dnu)x0,θρ|)2E(x0, ρ)

(2θρ)−p

∫
−
B+

2θρ(x0)

∣∣u− P+
x0,2θρ

∣∣p dx ≤ c θ2 (1 + |(Dnu)x0,θρ|)pE(x0, ρ)
(17)

for a constant c depending only on n,N, p, ν and L.

In the last step we have to derive the full decay estimate for the Campanato-type excess
C(x0, ρ). We apply the Caccioppoli inequality (Lemma 3.1) with the choice ξ = Q+

2θρ to

derive

∫
−
B+

θρ(x0)

[
(1 + |Q+

x0,2θρ
|)p−2

∣∣Du−Q+
x0,2θρ

⊗ en
∣∣2 +

∣∣Du−Q+
x0,2θρ

⊗ en
∣∣p
]
dx

≤ c

∫
−
B+

2θρ(x0)


(1 +

∣∣Q+
x0,2θρ

∣∣)p−2

∣∣∣∣∣
u−Q+

x0,2θρ
xn

2θρ

∣∣∣∣∣

2

+

∣∣∣∣∣
u−Q+

x0,2θρ
xn

2θρ

∣∣∣∣∣

p

 dx

+ c (1 + |Q+
x0,2θρ

|)p
∫
−
B+

2θρ(x0)

[
ω(ρ2) + ω(|u|2) + ω(ρ2 |Q+

x0,2θρ
|2)
]
dx (18)

with c = c(n,N, p, ν, L). We will now get the expressions comprising ω and Q+
x0,2θρ

,

which appear in the last formula, under control. Using Lemma 2.4 we have (keep in
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mind ρ ≤ 1):

ρ2 |Q+
x0,2θρ

|2 (19)

≤ 2 ρ2
(
|Q+

x0,2θρ
− (Dnu)x0,2θρ|2 + |(Dnu)x0,2θρ|2

)

≤ c ρ2

(∫
−
B+

2θρ(x0)

|Dnu− (Dnu)x0,ρ|2 dx+

∫
−
B+

2θρ(x0)

|Dnu|2 dx
)

≤ c θ−nρ2

(
(1 + |(Dnu)x0,ρ|)2

∫
−
B+

ρ (x0)

|Dnu− (Dnu)x0,ρ|2
(1 + |(Dnu)x0,ρ|)2

dx+

∫
−
B+

ρ (x0)

|Dnu|2 dx
)

≤ c2(n) θ
−n

(
ρ2E(x0, ρ) + ρ2E(x0, ρ)

∫
−
B+

ρ (x0)

|Dnu|2 dx+ ρ2
∫
−
B+

ρ (x0)

|Dnu|2 dx
)

≤ ρ2 +
ρ2

2

∫
−
B+

ρ (x0)

|Dnu|2 dx+
ρβ

2

∫
−
B+

ρ (x0)

|Dnu|2 dx

≤ ρ+M(x0, ρ) (20)

provided that the smallness conditions

E(x0, ρ) ≤ θn

2c2
and ρ ≤

(
θn

2c2

) 1
2−β

(SC.4)

hold true. We further have, by possibly increasing the value of c2, but keeping the
dependency on only n, via Poincaré’s inequality (Lemma 2.1) and (SC.4)

∫
−
B+

2θρ(x0)

|u|2 dx ≤ (2θ)−n

∫
−
B+

ρ (x0)

|u|2 dx ≤ c2 θ
−nρ2

∫
−
B+

ρ (x0)

|Dnu|2 dx ≤ M(x0, ρ) ;

combined with the concavity of ω(·) this implies immediately

∫
−
B+

2θρ(x0)

ω(|u|2) dx ≤ ω

(∫
−
B+

2θρ(x0)

|u|2 dx
)

≤ ω(M(x0, ρ))

meaning that we have (note that ω is sublinear)

∫
−
B+

2θρ(x0)

[
ω(ρ2) + ω(|u|2) + ω(ρ2 |Q+

x0,2θρ
|2)
]
dx ≤ 2ω(ρ) + 2ω(M(x0, ρ)) . (21)

Now it still remains to bound Q+
x0,2θρ

in terms of (Dnu)x0,θρ. Using again Lemma 2.4, the

smallness condition (SC.4) (possibly increasing c2), and (16) with ρ̃ = 2θρ and ρ̃ = ρ,
respectively, we see that

|Q+
x0,2θρ

| ≤ |Q+
x0,2θρ

− (Dnu)x0,2θρ|+ |(Dnu)x0,2θρ|

≤ c2(n) (1 + |(Dnu)x0,θρ|)
θn

∫
−
B+

ρ (x0)

|Dnu− (Dnu)x0,ρ|2
(1 + |(Dnu)x0,ρ|)2

dx+ 2 (1 + |(Dnu)x0,θρ|)

≤ 3 (1 + |(Dnu)x0,θρ|) . (22)
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Hence, if we employ the following smallness estimate
√

ω(M(x0, ρ))+
√

ω(ρ) ≤ E(x0, ρ)

≤ θn ≤ θ2 being derived from the latter smallness condition (SC.4) and combine this
with (22) and (21), we may estimate the second integral on the right-hand side of (18)
by

(1 + |Q+
x0,2θρ

|)p
∫
−
B+

2θρ(x0)

[
ω(ρ2) + ω(|u|2) + ω(ρ2 |Q+

x0,2θρ
|2)
]
dx

≤ c θ2 (1 + |(Dnu)x0,θρ|)p E(x0, ρ) . (23)

Next we turn to the left-hand side of (18) and find for p > 2 using Young’s inequality
and Lemma 2.4∫

−
B+

θρ(x0)

(1 + |(Dnu)x0,θρ|)p−2 |Du− (Dnu)x0,θρ ⊗ en|2 dx

≤ c(p)

∫
−
B+

θρ(x0)

[
(1 + |Q+

x0,2θρ
|)p−2 |Du− (Dnu)x0,θρ ⊗ en|2+ |Du− (Dnu)x0,θρ ⊗ en|p

]
dx

+ c(p) |(Dnu)x0,θρ −Q+
x0,θρ

|p + c(p) |Q+
x0,θρ

−Q+
x0,2θρ

|p

≤ c(n, p)

∫
−
B+

θρ(x0)

[
(1 + |Q+

x0,2θρ
|)p−2 |Du− (Dnu)x0,θρ ⊗ en|2+ |Du− (Dnu)x0,θρ ⊗ en|p

]
dx

+ c(n, p) (2θρ)−p

∫
−
B+

2θρ(x0)

|u− P+
2θρ|p dx . (24)

If we take into account the following two inequalities
∫
−
B+

θρ(x0)

|Du− (Dnu)x0,θρ ⊗ en|p dx ≤ 2p
∫
−
B+

θρ(x0)

|Du−Q+
x0,2θρ

⊗ en|p dx

and ∫
−
B+

θρ(x0)

|Du− (Dnu)x0,θρ ⊗ en|2 dx ≤
∫
−
B+

θρ(x0)

|Du−Q+
x0,2θρ

⊗ en|2 dx ,

we further calculate combining (24) with (18) and (23)
∫
−
B+

θρ(x0)

[
(1 + |(Dnu)x0,θρ|)p−2 |Du− (Dnu)x0,θρ ⊗ en|2 + |Du− (Dnu)x0,θρ ⊗ en|p

]
dx

≤ c

∫
−
B+

2θρ(x0)


(1 +

∣∣Q+
x0,2θρ

∣∣)p−2

∣∣∣∣∣
u−Q+

x0,2θρ
xn

2θρ

∣∣∣∣∣

2

+

∣∣∣∣∣
u−Q+

x0,2θρ
xn

2θρ

∣∣∣∣∣

p

 dx

+ c θ2 (1 + |(Dnu)x0,θρ|)p E(x0, ρ)

≤ c∗ θ
2 (1 + |(Dnu)x0,θρ|)p E(x0, ρ) (25)

where we took advantage of (17) and (22) in the last inequality and where the constant
c∗ depends only on n,N, p, ν and L. Dividing both sides by (1 + |(Dnu)x0,θρ|)p and
taking into account the definition of C(x0, θρ) this is exactly the desired excess decay
estimate stated in the proposition provided that all smallness conditions (SC.1), (SC.2)
and (SC.4) hold true (observe that the smallness assumption (SC.3) is weaker than
(SC.4)). The dependency of the constants ǫ0 and ǫ1 claimed in (7) is now obtained by
taking into consideration the dependencies in all the smallness conditions needed within
the proof.
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3.2. Proof of Theorem 1.1

In what follows we are going to combine the results concerning the decay estimates of the
interior situation in [15], Proposition 3.2, and the boundary situation, Proposition 3.2, in
which the constants c∗ and smallness parameters ǫ0 and ǫ1 have the same dependencies
(at least for the model situation). Therefore, we may assume without loss of generality
that both propositions are valid for the same set of parameters.

Step 1: Choice of the constants. We fix β ∈ (0, 2) and α ∈ (0, 1). We choose γ = γ(α) ∈
(n− 2, n) such that

α = 1− n− γ

2
(26)

and θ ∈ (0, 1
4
) such that

θ := min

{(
1

4

) 1
β

,

(
1

4 c∗

) 1
2

,

(
1

4

) 1
n−γ

}
, (27)

for c∗ being the constant according to Proposition 3.2. This choice fixes θ in dependency
of n,N, p, ν, L, α and β. We further fix a constant ǫ2 and an iteration quantity ǫit ≤ 1:

ǫ2 := min

{
θn

4
,
ǫ0
4

}
, ǫit :=

θn

43p 6n
(28)

where ǫ0 appears in Proposition 3.2, and therefore they depend on n,N, p, ν, L, α and β,
and ǫ2 additionally on µ(·). Next, we fix δ1 > 0 such that

√
ω(δ1) < ǫit ǫ2 (29)

(note that this implies due to the monotonicity of ω that
√
ω(t) < ǫitǫ2 whenever t ∈

[0, δ1]). This fixes δ1 in dependency of n,N, p, ν, L, α, β, µ(·) and ω(·). Lastly we define
the maximally admissible radius

ρm := min

{
δ

1
β

1 , δ1, ǫ1

}
> 0 . (30)

Here, ǫ1 is the radius from Proposition 3.2 and ρm depends on n,N, p, ν, L, α, β, µ(·) and
ω(·). For what follows we will always assume ρ ≤ ρm < 1.

Step 2: An almost BMO-estimate. We now consider a boundary point x0 ∈ Γ and a
radius ρ ≤ min{ρm, 1− |x0|} for which

C(x0, ρ) < ǫ̃it ǫ2 and M(x0, ρ) < ǫ̃it δ1 (31)

is satisfied for some iteration parameter ǫ̃it ∈ [ǫit, 1]. Without loss of generality we may
assume x0 = 0. We shall now show that due to the choice of constants above and due
to the decay estimate in Proposition 3.2 this smallness estimate is also valid on smaller
radii, namely for every k ∈ N0 there holds

C(0, θkρ) < ǫ̃it ǫ2 and M(0, θkρ) < ǫ̃it δ1 . (I)
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We shall establish (I)k by induction: k = 0 is given by (31), and therefore we assume (I)k
and prove (I)k+1. We begin by noting that by definition of C(0, θkρ) and the assumption
(I)k of the induction we calculate

∫
−
B+

θkρ

|Du− (Dnu)0,θkρ ⊗ en|2 dx ≤
(
1 + |(Dnu)0,θkρ|

)2
C(0, θkρ)

< 2 ǫ̃it ǫ2 + 2 ǫ̃it ǫ2

∫
−
B+

θkρ

|Dnu|2 dx . (32)

The latter estimate enables us to derive the second inequality in (I)k+1 exploiting the
choices of θ, ǫ2 and ρm in (27), (28) and (30), respectively:

M(0, θk+1ρ)

≤ 2 (θk+1ρ)β
∫
−
B+

θk+1ρ

|Du− (Dnu)0,θkρ ⊗ en|2 dx+ 2 (θk+1ρ)β |(Dnu)0,θkρ|2

≤ 2 θβ−n (θkρ)β
∫
−
B+

θkρ

|Du− (Dnu)0,θkρ ⊗ en|2 dx+ 2 θβ (θkρ)β
∫
−
B+

θkρ

|Dnu|2 dx

< 4 θβ−n ǫ̃it ǫ2
(
(θkρ)β +M(0, θkρ)

)
+ 2 θβ M(0, θkρ)

≤ 3 θβ M(0, θkρ) + ǫ̃it θ
β ρβ ≤ ǫ̃it δ1 .

Moreover, the first inequality in (I)k+1 is a direct consequence of Proposition 3.2: the
first assumptions in (8) is satisfied since (I)k and the choices in (28), (29) and (30) imply

E(0, θkρ) = C(0, θkρ) +
√

ω(M(0, θkρ)) +
√

ω(θkρ)

≤ ǫ̃it ǫ2 +
√
ω(δ1) +

√
ω(ρ) < 3 ǫ̃it ǫ2 < ǫ0 ,

and the second assumptions in (8) is fulfilled by the choice of ρm in (30). Hence, the
statement of Proposition 3.2 implies, taking into account (27), the following inequality:

C(0, θk+1ρ) ≤ c∗ θ
2E(0, θkρ) ≤ 3 c∗ θ

2 ǫ̃it ǫ2 < ǫ̃it ǫ2

which finishes the proof of (I)k+1 such that (I) holds for every k ∈ N0.

Step 3: Iteration. We still consider 0 ∈ Γ and a radius ρ ≤ ρm such that (31) (and hence
(I) for all k ∈ N0) is satisfied. Then the calculation (32) above and the choices of ǫ2 in
(28) and of θ in (27) yield with ωn = |B1| that
∫

B+

θk+1ρ

|Du|2 dx ≤ ωn (θ
k+1ρ)n

∣∣(Dnu)0,θkρ
∣∣2 + 2

∫

B+

θk+1ρ

∣∣Du− (Dnu)0,θkρ ⊗ en
∣∣2 dx

≤ 2 (θn + 2 ǫ2)

∫

B+

θkρ

|Dnu|2 dx+ 2ωn ǫ2 (θ
kρ)n

≤ 3 θn−γ θγ
∫

B+

θkρ

|Dnu|2 dx+ 2ωn (θ
kρ)n

≤ θγ
∫

B+

θkρ

|Du|2 dx+ 2ωn (θ
kρ)n
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for γ defined via equation (26) and where we have neglected the factor ǫit ≤ 1. Setting
ϕ(t) :=

∫
B+

t
|Du|2 dx the last inequality may be rewritten by

ϕ(θk+1ρ) ≤ θγ ϕ(θkρ) + 2ωn (θ
kρ)n

and the application of the iteration Lemma 2.5 yields

ϕ(t) ≤ c3

[(
t

ρ

)γ

ϕ(ρ) + tγ
]

for all t ≤ ρ for a constant c3 = c3(n,N, p, ν, L, α, β), i.e. there holds

∫

B+
t

|Du|2 dx ≤ c3
ργ

[∫

B+
ρ

|Du|2 dx+ 1

]
tγ for all t ≤ ρ . (33)

Step 4: Hölder continuity at boundary points. Now we are going to combine the estimates
in the interior and at the boundary. For fixed α ∈ (0, 1) we define

RegΓ,α u :=
{
x0 ∈ Γ: u ∈ C0,α(U(x0) ∩ B+,RN) for some neighbourhood U(x0) of x0

}
.

and SingΓ,α u := Γ \ RegΓ,α u. Now we set

s := min

{
ǫit δ1,

(ǫit ǫ2
2

) p
2

}
(34)

and choose a point x0 ∈ Γ, w.l.o.g. x0 = 0, for which the following two estimates hold
true:

lim inf
ρ→0+

∫
−
B+

ρ (0)

|Du− (Dnu)0,ρ ⊗ en|p
(1 + |(Dnu)0,ρ|)p

dx < s and lim inf
ρ→0+

ρβ
∫
−
B+

ρ (0)

|Dnu|2 dx < s .

The aim is now to show that 0 ∈ RegΓ,α u, i.e., that u is Hölder continuous with exponent

α in a neighbourhood of 0 in B+. For this purpose we first determine a radius ρ0 ≤ ρm
6

such that

∫
−
B+

6ρ0
(0)

|Du− (Dnu)0,6ρ0 ⊗ en|p
(1 + |(Dnu)0,6ρ0|)p

dx < s and (6ρ0)
β

∫
−
B+

6ρ0
(0)

|Dnu|2 dx < s .

(which is possible due to the two estimates above). Then, taking into account the
definitions of C(0, 6ρ0), M(0, 6ρ0) and the parameter s < 1 in (34), a straightforward
calculation yields

C(0, 6ρ0) < ǫit ǫ2 and M(0, 6ρ0) < ǫit δ1 ,

and therefore, the assumptions in (31) of Step 2 are satisfied for x0 = 0 such that also

C(0, 6 θkρ0) < ǫit ǫ2 and M(0, 6 θkρ0) < ǫit δ1 (35)
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is fulfilled for all k ∈ N0. In the remainder of the proof we will take advantage of the
following fact which is derived analogously to (16) in the proof of Proposition 3.2: when-

ever we have two (half-) balls B
(+)
ρ2 (x2) ⊂ B+

ρ1
(x1) (with x1 ∈ Γ), for which C(x1, ρ1) ≤ θn

4

(cf. (SC.3)) and ρ2
ρ1

≥ θ is satisfied, then we have:

1 + |(Dnu)x1,ρ1| ≤ 2 (1 + |(Dnu)x2,ρ2|) . (36)

This allows us to estimate the Campanato-type and the Morrey-type excess in 0 also for
intermediate radii: for any ρ̃ ∈ (0, 6ρ0] there exists a unique k ∈ N0 such that there holds
6 θk+1ρ0 < ρ̃ ≤ 6 θkρ0. Applying (36) with the centre x1 = x2 = 0 and radii ρ1 = 6 θkρ0.
ρ2 = ρ̃ we find:

C(0, ρ̃) =

∫
−
B+

ρ̃

[ |Du− (Dnu)0,ρ̃ ⊗ en|2
(1 + |(Dnu)0,ρ̃|)2

+
|Du− (Dnu)0,ρ̃ ⊗ en|p

(1 + |(Dnu)0,ρ̃|)p
]
dx

≤
∫
−
B+

ρ̃

[
22

|Du− (Dnu)0,6θkρ0 ⊗ en|2
(1 + |(Dnu)0,6θkρ0|)2

+ 22p
|Du− (Dnu)0,6θkρ0 ⊗ en|p

(1 + |(Dnu)0,6θkρ0|)p
]
dx

≤ 22p θ−nC(0, 6θkρ0) < 22p θ−n ǫit ǫ2 , (37)

M(0, ρ̃) = ρ̃β
∫
−
B+

ρ̃

|Dnu|2 dx ≤
(
6θkρ0
ρ̃

)n−β

(6θkρ0)
β

∫
−
B+

6θkρ0

|Dnu|2 dx

≤ θβ−nM(0, 6θkρ0) < θ−n ǫit δ1 . (38)

Similar to [20], p. 378–379, we now have to show decay estimates on a variety of balls
Bρ(y) and half balls B+

ρ (y):

Case 1: y ∈ Γ2ρ0 , |y| ≤ ρ ≤ 4ρ0:
Here, we may compare the excess functionals in B+

ρ (y) via (36) and (37) with the excess

functionals in B+
ρ+|y| and we obtain similar to the last computation

C(y, ρ) ≤ 22p+nC(0, ρ+ |y|) < 24p+nθ−n ǫit ǫ2 ,

M(y, ρ) ≤ 2n−β M(0, ρ+ |y|) < 2n θ−n ǫit δ1

and via (33) we find

∫

B+
ρ (y)

|Du|2 dx ≤
∫

B+
ρ+|y|

|Du|2 dx ≤ 2γ c3
(6ρ0)γ

[∫

B+

|Du|2 dx+ 1

]
ργ . (39)

Case 2: y ∈ Γ2ρ0 , 0 < ρ < |y| ≤ 2ρ0:
Here we have to verify that the assumptions (31) for the iteration are satisfied for the
half-ball B+

2ρ0
(y) (keep in mind θ ∈ (0, 1

4
) in order to apply (36)):

C(y, 2ρ0) ≤ 22p 3nC(0, 6ρ0) < 22p 3n ǫit ǫ2 ,

M(y, 2ρ0) ≤ 3n−β M(0, 6ρ0) < 3n ǫit δ1 .

i.e., (31) is valid for the iteration parameter ǫ̃it := 22p 3n ǫit ≤ 1 by definition of ǫit. There-
fore we may conclude for all k ∈ N0 there holds C(y, 2θkρ0), M(y, 2θkρ0) < 22p 3n ǫit ǫ2.
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From the calculations in (37) and (38) we now easily infer that the excess functionals
for intermediate radii can only be increased by the factor 22pθ−n such that for all radii
ρ̃ ∈ (0, 2ρ0] we have

C(y, ρ̃) < 42p 3n θ−n ǫit ǫ2 and M(y, ρ̃) < 3n 22p θ−n ǫit δ1 .

Moreover, as a consequence of (31) on the half-ball B+
2ρ0

(y), we note that due to the

calculations in Step 3 (see (33)) there holds

∫

B+
ρ (y)

|Du|2 dx ≤ c3
(2ρ0)γ

[∫

B+

|Du|2 dx+ 1

]
ργ . (40)

Case 3: y ∈ B+
2ρ0

, Bρ(y) ⊂ B+
2ρ0

:

Let y′′ = (y1, ..., yn−1, 0) be the projection of y onto R
n−1 × {0}. Here we have the

inclusions

Bρ(y) ⊂ Byn(y) ⊂ B+
2yn(y

′′) .

We shall now show that the assumptions for the iteration and thus for the excess-decay
estimate in the interior (see [15], (3.50) and (3.57)), which are analogous to (31) and
(33), respectively, are satisfied on the ball Byn(y). If |y′′| ≤ 2yn (≤ 4ρ0) we can apply
Case 1 with centre y′′ and radius 2yn, otherwise if 2yn < |y′′| < 2ρ0 we can apply Case
2 (note that we have in particular B+

2yn(y
′′) ⊂ B+

2ρ0
(y′′)) and we obtain for both cases

C(y′′, 2yn) < 42p 3n θ−n ǫit ǫ2 and M(y′′, 2yn) < 3n 22p θ−n ǫit δ1 .

Then, recalling (36) and the definition of ǫit, we arrive at the conclusion that

C(y, yn) :=

∫
−
Byn (y)

[ |Du− (Du)y,yn|2
(1 + |(Du)y,yn|)2

+
|Du− (Du)y,yn|p
(1 + |(Du)y,yn|)p

]
dx

≤
∫
−
Byn (y)

[
22

|Du− (Dnu)y′′,2yn ⊗ en|2
(1 + |(Dnu)y′′,2yn|)2

+ 22p
|Du− (Dnu)y′′,2yn ⊗ en|p

(1 + |(Dnu)y′′,2yn|)p
]
dx

≤ 2n+2pC(y′′, 2yn) < 43p 6n θ−n ǫit ǫ2 ≤ ǫ2 .

Moreover, we have

M(y, yn) := yβn

∫
−
Byn (y)

|Dnu|2 dx ≤ 2nM(y′′, 2yn) < 6n 22p θ−n ǫit δ1 ≤ δ1 .

Hence, the smallness conditions for the iteration in the interior are satisfied, and Step 2
in the Proof of [15], Theorem 1.1, combined with (39) and (40), respectively, yields

∫

Bρ(y)

|Du|2 dx ≤ c̃3

[
y−γ
n

∫

Byn (y)

|Du|2 dx+ 1

]
ργ

≤ c̃3

[
y−γ
n

∫

B+
2yn

(y′′)
|Du|2 dx+ 1

]
ργ ≤ c3 c̃3

ργ0

[∫

B+

|Du|2 dx+ 2

]
ργ

(41)
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where the constant c̃3 = c̃3(n,N, p, ν, L, α, β) denotes the corresponding constant ap-
pearing in the interior.

Combining (39), (40) and (41) and applying Poincaré’s inequality on the left-hand side
of each inequality, we may apply Theorem 2.6 to conclude: u ∈ C0,α(B+

ρ0
,RN) for α =

1− n−γ
2
, and therefore, 0 ∈ RegΓ,α u. This means, we have proved so far a model analogon

of Theorem 1.1 (in the sequel, we will now denote by ṽ the solution of the corresponding
problem on a half-ball), i.e., we have

Theorem 3.3. Let p ≥ 2 and ṽ ∈ W 1,p
Γ (B+,RN) be a weak solution of system (6) under

the assumptions (2). Then if y ∈ RegΓ,α ṽ there holds: for every α ∈ (0, 1) there exists

s̃ > 0 depending only on n,N, p, ν, L, α, β, ω(·) and µ(·) such that for every β ∈ (0, 2)
the following inclusion holds:

SingΓ,α ṽ ⊆
{
y0 ∈ Γ: lim inf

ρ→0+

∫
−
B+∩Bρ(y0)

|Dṽ − (Dnṽ)B+∩Bρ(y0) ⊗ en|p
(1 + |(Dnṽ)B+∩Bρ(y0)|)p

dx ≥ s̃

or lim inf
ρ→0+

ρβ
∫
−
B+∩Bρ(y0)

|Dnṽ|2 dx ≥ s̃

}
.

Step 5: Transformation of the system to the model situation. In the next step we sketch
for convenience of the reader why the handling of the model case of a half ball is sufficient
in order to deduce a criterion for a weak solution of a general elliptic system of type (1)
with boundary data g to be regular in the neighbourhood of a given boundary point
z ∈ ∂Ω. Without loss of generality we may assume z = 0 and ν∂Ω(z) = en where ν∂Ω(z)
denotes the inward-pointing unit normal vector to ∂Ω in z. The regularity assumption
on ∂Ω ensures the existence of a function h : Rn−1 → R of class C1 with modulus of
continuity τ(·), satisfying h(0) = 0 and ∇h(0) = 0, and the existence of a radius r > 0
such that Ω ∩ Br = {x ∈ Br : xn > h(x′)}. For ease of notation also the modulus of
continuity of Dg is denoted by τ(·). We further choose r sufficiently small such that
|∇h(x′)| < 1

2
for all x′ ∈ B√

2r. For the functions T (x) = (x′, xn − h(x′)) introduced

in Section 2 and its inverse T −1(y) = (y′, yn + h(y′)) (both of class C1 with modulus

of continuity τ(·)) we thus obtain Lipschitz constants between 1√
2
and

√
2 as well as

‖DT ‖∞, ‖DT −1‖∞ ≤
√
2. Furthermore, we have detDT = 1 = detDT −1 and the

inclusions
B+

ρ/
√
2
⊂ T (Ω ∩Bρ) ⊂ B+√

2ρ
.

for all ρ ≤
√
2r (cf. e.g. [19], Chapt. 3.7). Note that this also implies |B+

ρ/
√
2
| ≤ |Ω ∩

Bρ| ≤ |B+√
2ρ
|. Setting ṽ(y) := u ◦ T −1(y) − g ◦ T −1(y) allows us to calculate that

ṽ ∈ W 1,p
Γ (B+

r ,R
N) is weak solution of

div ã(·, ṽ, Dṽ) = 0 in B+
r

for coefficients ã(·, ·, ·) defined by

ã(y, v, z) := a
(
T −1(y), v + g̃(y), z DT (T −1(y)) +Dg(T −1(y))

)
DT t(T −1(y))

for all (y, v, z) ∈ B+
r ×R

N ×R
nN . Keeping in mind the the assumptions on a(·, ·, ·) given

in (2) we easily calculate that the new coefficients satisfy structure conditions analogous
to (2), namely that there holds for all y, ȳ ∈ B+

r , v, v̄ ∈ R
N and z, z̄, C ∈ R

nN :
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• |ã(y, v, z)| ≤ 2
p
2 L (1 + ‖Dg‖∞)p−1 (1 + |z|)p−1,

• |Dzã(y, v, z)| ≤ 2
p
2 L (1 + ‖Dg‖∞)p−2 (1 + |z|)p−2,

• Dzã(y, v, z) (C,C) ≥ ν (1 + ‖Dg‖∞)2−p 2−2p+2 (1 + |z|)p−2 |C|2,
• |(ã(y, v, z)− ã(ȳ, v̄, z))|

≤ 2p+2 L (1 + ‖Dg‖∞)p (1 + |z|)p−1 (ω (|y − ȳ|+ |v − v̄|) +τ (|y − ȳ|)),
• |Dzã(y, v, z)−Dzã(y, v, z̄)| ≤ 2

p
2
+3 L (1+‖Dg‖∞)p−1 (1 + |z|+ |z̄|)p−2 µ

(
|z−z̄|

1+|z|+|z̄|

)
.

Therefore, the corresponding assumptions in (2) are also satisfied for the new coefficients

ã(·, ·, ·) for L̃ = L c(p, ∂Ω, g), ν̃ = ν c(p, g) and ω̃(·) = ω(·) + τ(·).
Step 6: Transformation of the smallness conditions and final conclusion. In the last step
there still remains to show that the smallness conditions in Theorem 3.3 for the trans-
formed system are satisfied provided that the smallness conditions required in Theorem
1.1 are fulfilled. We still assume z = 0, ν∂Ω(z) = en and use the notation introduced in
Step 5. Keeping in mind DnT −1 = 1, hence Dn(u ◦ T −1)(y) = Dnu(T −1(y)), and the
inclusion T −1(B+

ρ ) ⊂ Ω ∩B√
2ρ we find for the second of the smallness conditions

ρβ
∫
−
B+

ρ

|Dnṽ|2 dx ≤
|Ω ∩B√

2ρ|
|B+

ρ |
ρβ
∫
−
Ω∩B√

2ρ

|Dn(u− g)|2 dx

≤ c(n)

[(√
2ρ
)β ∫

−
Ω∩B√

2ρ

|Dnu|2 dx+ ρβ ‖Dg‖∞
]
. (42)

Choosing s sufficiently small and using the change of variables formula we may proceed
similar to (16) to obtain

1 + |(Dnu)Ω∩B√
2ρ
|+ |(Dnṽ)B+

ρ
| ≤ c(‖Dg‖∞)

(
1 + |(Dnṽ)B+

ρ/2
|
)

(43)

for all ρ ≤ r√
2
. The latter inequality combined with the application of Caccioppoli’s

and Poincaré’s inequality (in the boundary version) yields for the first of the smallness
conditions in Theorem 3.3 that

∫
−
B+

ρ/2

|Dṽ − (Dnṽ)B+
ρ/2

⊗ en|p

(1 + |(Dnṽ)B+
ρ/2

|)p dx

≤ c

∫
−
B+

ρ

[
|Dnṽ − (Dnṽ)B+

ρ
|2

(1 + |(Dnṽ)B+
ρ
|)2 +

|Dnṽ − (Dnṽ)B+
ρ
|p

(1 + |(Dnṽ)B+
ρ
|)p

]
dx

+ c

∫
−
B+

ρ

[
ω̃(ρ2) + ω̃(|ṽ|2) + ω̃(ρ2 |(Dnṽ)B+

ρ/2
|2)
]
dx (44)

for a constant c depending only on n,N, p, ν̃, L̃ and ‖Dg‖∞. Moreover, applying the
diffeomorphism T and (43) we infer

∫
−
B+

ρ

|Dnṽ − (Dnṽ)B+
ρ
|p

(1 + |(Dnṽ)B+
ρ
|)p dx ≤ c

∫
−
B+

ρ

|Dn((u− g) ◦ T −1)− (Dn((u− g) ◦ T −1))B+
ρ
|p

(1 + |(Dnu)Ω∩B√
2ρ
|)p dx

≤ c

∫
−
Ω∩B√

2ρ

|Dnu− (Dnu)Ω∩B√
2ρ
|p

(1 + |(Dnu)Ω∩B√
2ρ
|)p dx+ c τ(ρ) (45)
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where the constant depends only on n, p and ‖Dg‖∞. Keeping in mind

∫
−
B+

ρ

[
ω̃(ρ2) + ω̃(|ṽ|2) + ω̃(ρ2 |(Dnṽ)B+

ρ/2
|2)
]
dx ≤ ω̃(ρ) + 2n+1 ω̃

(
ρβ
∫
−
B+

ρ

|Dnṽ|2 dx
)

we may combine (42), (44) and (45) and infer

lim inf
ρ→0+

∫
−
B+

ρ

|Dṽ − (Dnṽ)B+
ρ
⊗ en|p

(1 + |(Dnṽ)B+
ρ
|)p dx < s̃ and lim inf

ρ→0+
ρβ
∫
−
B+

ρ

|Dnṽ|2 dx < s̃

provided that

lim inf
ρ→0+

∫
−
Ω∩Bρ

|Du− (Dnu)Ω∩Bρ ⊗ en|p
(1 + |(Dnu)Ω∩Bρ |)p

dx < s and lim inf
ρ→0+

ρβ
∫
−
Ω∩Bρ

|Dnu|2 dx < s

for s sufficiently small. As a consequence of Step 4 we then obtain ṽ ∈ C0,α locally in a

neighbourhood of 0 in B+, and therefore, via transformation, u ∈ C0,α in a neighbour-
hood of 0 in Ω, i.e., 0 ∈ Reg∂Ω,α u. This finishes the proof of Theorem 1.1. �

Remark 3.4. Similar to the situation in the interior there are better inclusions available
for the singular set in the case p ≥ n. Via the Sobolev embedding we obtain that u is
Hölder continuous everywhere with exponent 1 − n

p
if p > n. Otherwise if p = n we

first deduce higher integrability of Du, i.e., Du ∈ Lq1(Ω̄,RnN) for some q1 > p, and
then conclude that u is Hölder continuous everywhere with exponent 1 − n

q1
(cf. [18],

Remark 6.13). Hence the existence of regular boundary points is ensured in this case,
actually we have Reg∂Ω,α u = ∂Ω for all α ≤ 1 − n

q1
. In contrast, Theorem 1.1 gives a

characterization of regular boundary points where u is locally Hölder continuous with
any exponent α < 1, even though now the question of existence of regular boundary
points is open. Moreover, we have the better inclusion for the singular set Sing∂Ω u given
by

Sing∂Ω u ⊆
{
x0 ∈ ∂Ω: lim inf

ρ→0+

∫
−
Ω∩Bρ(x0)

|Dν∂Ω(x0)u− (Dν∂Ω(x0)u)Ω∩Bρ(x0)|p
(1 + |(Dν∂Ω(x0)u)Ω∩Bρ(x0)|)p

dx > 0

}
.

To this aim we go back to the model situation: the application of Caccioppoli’s (note

ω(·) ≤ 1) and Poincaré’s inequality and the Hölder continuity ṽ ∈ C
0,1− n

q1 (B+,RN)
reveals

ρβ
∫
−
B+

ρ (x0)

|Dnṽ|2 dx ≤ ρβ

(∫
−
B+

ρ (x0)

|Dnṽ|p dx
) 2

p

≤ c ρβ

(∫
−
B+

2ρ(x0)

∣∣∣∣
ṽ

ρ

∣∣∣∣
p

dx+ 1

) 2
p

≤ c ρ
β−2 n

q1

where the constant c depends on n,N, p, L̃ and ν̃. Choosing β ∈ (2 n
q1
, 2) the left-hand

side of the last inequality converges to 0 for ρ → 0, and the smallness condition on
M(x0, ρ) in Theorem 3.3 and hence in Theorem 1.1 is trivially satisfied.
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4. Quasi-convex functionals

4.1. Decay estimate

Also in the case of minimizers we consider the model case of the unit half-ball, i.e., we

deal with local minimizers u ∈ W 1,p
Γ (B+,RN) of the functional

FB[u] :=

∫

B+

F (x, u,Du) dx . (46)

We start again by stating a Caccioppoli inequality involving the exact dependency for
some linear disturbance of u:

Lemma 4.1 (Caccioppoli inequality). Let u ∈ W 1,p
Γ (B+,RN) be a local minimizer

of (46) under the assumptions (4), ξ ∈ R
N and B+

ρ (x0), x0 ∈ Γ, ρ < 1−|x0| be an upper

half ball. Then there exists a constant c = c(n,N, p, L, ν) such that

∫
−
B+

ρ/2
(x0)

[
(1 + |ξ|)p−2|Du− ξ ⊗ en|2 + |Du− ξ ⊗ en|p

]
dx

≤ c

∫
−
B+

ρ (x0)

[
(1 + |ξ|)p−2

∣∣∣∣
u− ξxn

ρ

∣∣∣∣
2

+

∣∣∣∣
u− ξxn

ρ

∣∣∣∣
p
]
dx

+ c

∫
−
B+

ρ (x0)

[ω(ρp) + ω(|u|p) + ω(ρp |ξ|p)] (1 + |ξ|+ |Du|)p dx .

Proof. This lemma is proved as in the interior situation. We only have to pay attention
to the application of the quasi-convexity condition (4)2, where zero-boundary data of the
testfunction ϕ is requested: hence we have to choose ϕ = η(u− ξ xn) for a standard cut-
off function (for the later application of the hole-filling argument) η ∈ C∞

0 (Bt(x0), [0, 1]),
0 ≤ ρ/2 ≤ s < t ≤ ρ.

The second ingredient are two higher integrability results (in order to enable an appro-
priate estimate for the last integral arising on the right-hand side of the Caccioppoli
inequality): firstly, we may prove analogously to [16], Theorem 4.1, via the application
of a Gehring-Lemma in the up-to-the-boundary version, see [11], Theorem 2.4:

Lemma 4.2. Let u ∈ W 1,p
Γ (B+,RN) be a local minimizer of (46) under the assumptions

(4)1. Then there exists a higher integrability exponent q1 > p and a constant c both
depending only on n,N, p, ν and L such that for any half-ball B+

ρ (x0) ⊂ B+, x0 ∈ Γ
there holds

(∫
−
B+

ρ/2
(x0)

|Du|q1 dx
) 1

q1

≤ c

(∫
−
B+

ρ (x0)

(1 + |Du|)p dx

) 1
p

.

The second higher integrability result provides an estimate up to the boundary (provided
that the boundary values are higher integrable), concerns solutions of functionals without
(x, u)-dependency and will later be applied for the frozen functional F . For a proof we
refer to the similar result [11], Lemma 3.2.
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Lemma 4.3. Let u ∈ W 1,p
Γ (B+,RN) be a local minimizer of (46) under the assumptions

(4)1, and let v0 ∈ u+W 1,p
0 (B+

ρ/2(x0),R
N) be a solution of the following Dirichlet problem:

v0 7→ min
w

∫
−
B+

ρ/2
(x0)

G(Dw) dx with w ∈ u+W 1,p
0 (B+

ρ/2(x0),R
N) , (47)

where G : RnN → R is continuous and satisfies ν|z|p ≤ G(z) ≤ L(1 + |z|)p, and
B+

ρ/2(x0) ⊂ B+, x0 ∈ Γ a half-ball. Then there exists another higher integrability ex-

ponent q ∈ (p, q1] depending only on n,N, p, ν and L such that

(∫
−
B+

ρ/2
(x0)

|Dv0|q dx
) 1

q

≤ c

(∫
−
B+

ρ/2
(x0)

|Dv0|p dx
) 1

p

+ c

(∫
−
B+

ρ/2
(x0)

(1 + |Du|)q1 dx

) 1
q1

.

In the next step we define the excess functionals analogously to the elliptic case (cf.
[15], Section 4.2): For any half-ball B+

ρ (x0) ⊂ B+ with x0 ∈ Γ, a fixed function u ∈
W 1,p

Γ (B+,RN) and ξ ∈ R
N we define the Campanato-type excess C(x0, ρ) and as in the

elliptic setting, but we redefine the Morrey-type excessM(x0, ρ) and the excess functional
E(x0, ρ) by setting

M(x0, ρ) := ρβ
∫
−
B+

ρ (x0)

|Du|p dx for β ∈ (0, p)

E(x0, ρ) := C(x0, ρ) + ω(M(x0, ρ))
q−p
qp + ω(ρ)

q−p
qp ,

where q ∈ (p, q1] is the higher integrability exponent introduced in Lemma 4.3.

The technique for deriving a partial regularity result and the characterization of reg-
ular boundary points now consists in comparing the minimal map u on some half-ball
B+

ρ/2(x0) with the minimizer of the functional frozen in the first two variables (amongst

all functions w ∈ u + W 1,p
0 (B+

ρ/2(x0),R)). Via an approximation Theorem based on a

variational principle due to Ekeland (see e.g. [18], Chapter 5), we may now proceed as
in [15], Proposition 4.4, and obtain the existence of a function v which is close to the
original minimizer u with respect to the L2-distance and which is an almost minimizer
of the frozen functional; this provides the following comparison result:

Lemma 4.4. Let u ∈ W 1,p
Γ (B+,RN) be a local minimizer of (46) under the assumptions

(4), and let B+
ρ (x0) ⊂ B+, x0 ∈ Γ, be a half ball such that

E(x0, ρ) + ρ ≤ 1 . (48)

Then there exists a map v ∈ u+W 1,p
0 (B+

ρ/2(x0),R
N) such that

∫
−
B+

ρ/2
(x0)

|Dv −Du|p dx ≤ K(x0, ρ) (49)

and ∫
−
B+

ρ/2
(x0)

G(Dv) dx

≤
∫
−
B+

ρ/2
(x0)

G(Dv +Dϕ) dx+ ceK(x0, ρ)
1− 1

p

(∫
−
B+

ρ/2
(x0)

|Dϕ|p dx
) 1

p

, (50)
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for every ϕ ∈ W 1,p
0 (B+

ρ/2(x0),R
N), and ce is a constant depending only on n,N, p, ν

and L. The exponent q > p is the higher integrability exponent in Lemma 4.3, and the
integrand G(z) := F (x0, 0, z) is defined by freezing F (·, ·, z) and

K(x0, ρ) := (1 + |(Dnu)x0,ρ|)p
(
ω(M(x0, ρ))

q−p
q + ω(ρ)

q−p
q

)
.

Analogously to the elliptic case we next prove the excess decay estimate for the corre-
sponding excess quantities defined above:

Proposition 4.5 (cf. [15], Proposition 4.5). For each β ∈ (0, p) and θ ∈ (0, 1
8
) there

exist two positive numbers

ǫ0 = ǫ0 (n,N, p, ν, L, β, θ, µ(·)) > 0 and ǫ1(n, p, β, θ) > 0 (51)

such that the following is true: If u ∈ W 1,p(B+,RN) is a local minimizer to (46) under
the assumptions (4), and if B+

ρ (x0), x0 ∈ Γ, ρ < 1 − |x0|, is a half ball satisfying the
smallness conditions

E(x0, ρ) < ǫ0 and ρ < ǫ1 , (52)

then we have
C(x0, θρ) ≤ c∗ θ

2E(x0, ρ) (53)

for a constant c∗ depending only on n,N, p, ν and L.

Proof. In the first step of our proof, we infer approximate A-harmonicity (with A an
adequate freezing of DzzF introduced later on). For this linearization we will use the
last Proposition 4.4: Hence we assume the smallness condition (48), i.e.,

E(x0, ρ) + ρ ≤ 1 . (SCF-1)

Then the map v ∈ u+W 1,p
0 (B+

ρ/2(x0),R
N) found in Proposition 4.4 minimizes the func-

tional

ξ 7→
∫
−
B+

ρ/2
(x0)

G(Dξ) dx+ ceK(x0, ρ)
1− 1

p

(∫
−
B+

ρ/2
(x0)

|Dξ −Dv|p dx
) 1

p

,

for every ξ ∈ u + W 1,p
0 (B+

ρ/2(x0),R
N), G(z) := F (x0, 0, z), K(x0, ρ) and ce chosen ac-

cording to Proposition 4.4. Deriving the Euler-Lagrange equation for this variational
integral we see that there holds

0 =

∫
−
B+

ρ/2
(x0)

DzG(Dv)Dϕdx+ ceK(x0, ρ)
1− 1

p

(∫
−
B+

ρ/2
(x0)

|Dϕ|p dx
) 1

p

for all ϕ ∈ W 1,p
0 (B+

ρ/2(x0),R
N). Assuming ϕ ∈ C1

0(B
+
ρ/2(x0),R

N) with ‖Dϕ‖L∞(B+
ρ/2

(x0),RN )

≤ 1 we infer ∣∣∣∣∣

∫
−
B+

ρ/2
(x0)

DzG(Dv)Dϕdx

∣∣∣∣∣ ≤ ce K(x0, ρ)
1− 1

p ,
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and therefore, introducing the abbreviation Λρ := (Dnu)x0,ρ and taking into account (4)4
and the fact that

∫
−

B+
ρ/2

(x0)
DzG(Λρ ⊗ en)Dϕdx = 0, we have

∣∣∣∣∣

∫
−
B+

ρ/2
(x0)

DzzG (Λρ ⊗ en) (Dv − Λρ ⊗ en, Dϕ) dx

∣∣∣∣∣

≤
∣∣∣∣∣

∫
−
B+

ρ/2
(x0)

∫ 1

0

[
DzzG (Λρ ⊗ en)−DzzG (Λρ ⊗ en + t(Dv − Λρ ⊗ en))

(Dv − Λρ ⊗ en, Dϕ) dt dx

∣∣∣∣∣+
∣∣∣∣∣

∫
−
B+

ρ/2
(x0)

[
DzG (Dv)−DzG (Λρ ⊗ en) Dϕdx

∣∣∣∣∣

≤ L

∫
−
B+

ρ/2
(x0)

|Dv − Λρ ⊗ en| (1 + |Λρ|+ |Dv − Λρ ⊗ en|)p−2 µ

( |Dv − Λρ ⊗ en|
1 + |Λρ|

)
dx

+

∣∣∣∣∣

∫
−
B+

ρ/2
(x0)

DzG (Dv) Dϕdx

∣∣∣∣∣

≤ I + ceK(x0, ρ)
1− 1

p (54)

with the obvious labelling. To estimate I we first have to derive some preliminary
estimates: via (49) we find

∫
−
B+

ρ/2
(x0)

|Dv − Λρ ⊗ en|p dx

≤ c

∫
−
B+

ρ/2
(x0)

|Dv −Du|p dx+ c

∫
−
B+

ρ/2
(x0)

|Du− Λρ ⊗ en|p dx

≤ cK(x0, ρ) + c (1 + |Λρ|)p C(x0, ρ)

≤ c (1 + |Λρ|)p E(x0, ρ)

for a constant c = c(n, p), and where we used the estimateK(x0, ρ) ≤ (1+|Λρ|)pE(x0, ρ)
p

≤ (1 + |Λρ|)pE(x0, ρ) in the last line. Applying Hölder’s inequality and the same calcu-
lations, we obtain the analogous result for the exponent p replaced by 2:

∫
−
B+

ρ/2
(x0)

|Dv − Λρ ⊗ en|2 dx

≤ c

(∫
−
B+

ρ/2
(x0)

|Dv −Du|p dx
) 2

p

+ c

∫
−
B+

ρ/2
(x0)

|Du− Λρ ⊗ en|2 dx

≤ c(n, p) (1 + |Λρ|)2 E(x0, ρ) .

Combining the last two estimates we find an estimate for the excess functional concerning
Dv instead of Du:

∫
−
B+

ρ/2
(x0)

[ |Dv − Λρ ⊗ en|2
(1 + |Λρ|)2

+
|Dv − Λρ ⊗ en|p

(1 + |Λρ|)p
]
dx ≤ cv E(x0, ρ) , (55)
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and the constant cv depends only on the parameters n and p. (55) now allows us to
estimate I using Hölder’s and Jensen’s inequality (note µ(·) ≤ 1):

I = L

∫
−
B+

ρ/2
(x0)

|Dv − Λρ ⊗ en| (1 + |Λρ|+ |Dv − Λρ ⊗ en|)p−2 µ

( |Dv − Λρ ⊗ en|
1 + |Λρ|

)
dx

≤ c (1 + |Λρ|)p−1

∫
−
B+

ρ/2
(x0)

|Dv − Λρ ⊗ en|
(1 + |Λρ|)

µ

( |Dv − Λρ ⊗ en|
1 + |Λρ|

)
dx

+ c (1 + |Λρ|)p−1

∫
−
B+

ρ/2
(x0)

|Dv − Λρ ⊗ en|p−1

(1 + |Λρ|)p−1
µ

( |Dv − Λρ ⊗ en|
1 + |Λρ|

)
dx

≤ c(1 + |Λρ|)p−1

(∫
−
B+

ρ/2
(x0)

|Dv − Λρ ⊗ en|2
(1 + |Λρ|)2

dx

)1
2
(∫
−
B+

ρ/2
(x0)

µ

( |Dv − Λρ ⊗ en|
1 + |Λρ|

)
dx

)1
2

+c(1 + |Λρ|)p−1

(∫
−
B+

ρ/2
(x0)

|Dv − Λρ ⊗ en|p
(1 + |Λρ|)p

dx

)p−1
p
(∫
−
B+

ρ/2
(x0)

µ

( |Dv − Λρ ⊗ en|
1 + |Λρ|

)
dx

)1
p

≤ c (1 + |Λρ|)p−1

(
E(x0, ρ)

1
2 µ
(√

E(x0, ρ)
) 1

2
+ E(x0, ρ)

p−1
p µ

(√
E(x0, ρ)

) 1
p

)

≤ c (1 + |Λρ|)p−1
[
E(x0, ρ)

1
2 + E(x0, ρ)

1− 1
p

]
µ
(√

E(x0, ρ)
) 1

p
,

where the constant c depends only on n, p and L. Combining the latter estimate for I
with (54) and

K(x0, ρ)
1− 1

p ≤ (1 + |Λρ|)p−1E(x0, ρ)
p−1 ≤ (1 + |Λρ|)p−1E(x0, ρ)

we finally arrive at
∣∣∣∣∣

∫
−
B+

ρ/2
(x0)

DzzG (Λρ ⊗ en) (Dv − Λρ ⊗ en, Dϕ) dx

∣∣∣∣∣

≤ c (1 + |Λρ|)p−1

[
µ
(√

E(x0, ρ)
) 1

p
+
√
E(x0, ρ)

] [
E(x0, ρ)

1
2 + E(x0, ρ)

1− 1
p

]

for all ϕ ∈ C1
0(B

+
ρ/2(x0),R

N) with ‖Dϕ‖L∞(B+
ρ/2

(x0))
≤ 1 and c = c(n,N, p, ν, L). Now we

define the functions A and w analogously to the elliptic case

A :=
DzzF (x0, 0,Λρ ⊗ en)

(1 + |Λρ|)p−2
,

w :=
v − Λρ xn√

cv E(x0, ρ) (1 + |Λρ|)

andH(t) as in (10); we note thatA fulfills condition (5), i.e., it is bounded from below (in
the sense of Legendre-Hadamard) and above, and further, by the definition of the excess
functional E(x0, ρ) and the constant cv, see (55), there holds

∫
−

B+
ρ/2

(x0)
|Dw|2 dx ≤ 1.

These definitions enable us to rewrite the previous estimate after a rescaling argument:
∣∣∣∣∣

∫
−
B+

ρ/2
(x0)

A (Dw,Dϕ) dx

∣∣∣∣∣ ≤ c4(n,N, p, ν, L)H(E(x0, ρ)) ‖Dϕ‖L∞(B+
ρ/2

(x0))
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for all ϕ ∈ C1
0(B

+
ρ/2(x0),R

N), which is completely analogous to the elliptic situation,

apart from the fact that we have the take the radius ρ
2
instead of ρ due to the comparison

technique. For ǫ > 0 to be determined later, we now take δ = δ(n,N, ν, L, ǫ) to be the
corresponding constant from the A-harmonic approximation Lemma 2.2. Provided that
the smallness condition

H(E(x0, ρ)) ≤ δ/c4 (SCF.2)

holds, we find, according to Lemma 2.2, an A-harmonic map h ∈ W 1,2
Γ (B+

ρ/2(x0),R
N)

such that ∫
−
B+

ρ/2
(x0)

|Dh|2 dx ≤ 1 and ρ−2

∫
−
B+

ρ/2
(x0)

|w − h|2 dx ≤ ǫ , (56)

and via Lemma 2.3 we see supB+
ρ/4

(x0)
|D2h|2 ≤ ch(n,N, ν, L)ρ−2. We now consider θ ∈

(0, 1/8) fixed, to be specified later, choose ǫ = θn+4 and deduce for the polynomial

P̃ := Λρ xn +
√

cv E(x0, ρ) (1 + |Λρ|)Dnh(x0)xn

exactly as in (13)

(2θρ)−2

∫
−
B+

2θρ(x0)

∣∣∣v − P̃
∣∣∣
2

dx ≤ c(n,N, ν, L) θ2 (1 + |Λρ|)2E(x0, ρ) .

Provided that the smallness condition

E(x0, ρ) ≤ θn+4 (SCF.3)

is fulfilled, this estimate is easily carried over to u using Poincaré’s and Jensen’s inequality
and the comparison estimate (49):

(2θρ)−2

∫
−
B+

2θρ(x0)

∣∣∣u− P̃
∣∣∣
2

dx

≤ 2 (2θρ)−2

∫
−
B+

2θρ(x0)

|u− v|2 dx+ 2 (2θρ)−2

∫
−
B+

2θρ(x0)

∣∣∣v − P̃
∣∣∣
2

dx

≤ c θ−n−2

∫
−
B+

ρ/2
(x0)

|Du−Dv|2 dx+ c θ2 (1 + |Λρ|)2E(x0, ρ)

≤ c(n,N, ν, L) θ2 (1 + |Λρ|)2E(x0, ρ) .

Denoting by Q+
x0,2θρ

the value minimizing the functional Q 7→
∫
B+

ρ (x0)
|u − Qxn|2 dx

amongst all Q ∈ R
N , and P+

x0,ρ
= Q+

x0,ρ
xn, we can proceed as in (14)–(17) to derive

under the additional smallness assumption (see (SC.2) if p > 2)

E(x0, ρ) ≤ θ
2[(t−1)p+tn+2]

(1−t)(p−2) (SCF.4)

and (SCF.3) that there holds

1 + |Λρ|+ |Λ2θρ| ≤ 4 (1 + |Λθρ|) (57)
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and further




(2θρ)−2

∫
−
B+

2θρ(x0)

∣∣u− P+
x0,2θρ

∣∣2 dx ≤ c θ2 (1 + |Λθρ|)2E(x0, ρ)

(2θρ)−p

∫
−
B+

2θρ(x0)

∣∣u− P+
x0,2θρ

∣∣p dx ≤ c θ2 (1 + |Λθρ|)pE(x0, ρ)
(58)

for a constant c depending only on n,N, p, ν and L.

In the last step we have to derive the full decay estimate for the Campanato-type excess
C(x0, ρ). We apply the Caccioppoli Lemma 4.1 with the choice ξ = Q+

2θρ to derive
∫
−
B+

θρ(x0)

[
(1 + |Q+

x0,2θρ
|)p−2

∣∣Du−Q+
x0,2θρ

⊗ en
∣∣2 +

∣∣Du−Q+
x0,2θρ

⊗ en
∣∣p
]
dx

≤ c

∫
−
B+

2θρ(x0)


(1 + |Q+

x0,2θρ
|)p−2

∣∣∣∣∣
u−Q+

x0,2θρ
xn

2θρ

∣∣∣∣∣

2

+

∣∣∣∣∣
u−Q+

x0,2θρ
xn

2θρ

∣∣∣∣∣

p

 dx

+ c ω(ρp)

∫
−
B+

2θρ(x0)

(1 + |Q+
2θρ|+ |Du|)p dx

+ c

∫
−
B+

2θρ(x0)

ω(|u|p) (1 + |Q+
2θρ|+ |Du|)p dx

+

∫
−
B+

2θρ(x0)

ω(ρp |Q+
2θρ|p) (1 + |Q+

2θρ|+ |Du|)p dx

=: II + III + IV + V (59)

with c = c(n,N, p, ν, L) and the obvious labelling. In what follows we shall assume
smallness conditions of the type (SC.4):

E(x0, ρ) ≤ θn

2c5
and ρ ≤

(
θn

2c5

) 1
p−β

(SCF.5)

for a constant c5 being determined in the course of the proof in dependency of n,N, p, ν
and L analogously to the proof of Proposition 3.2. First we calculate using the definition
of E(x0, ρ) and (57)

∫
−
B+

2θρ(x0)

(1 + |Du|)p dx ≤ c(p)

∫
−
B+

2θρ(x0)

|Du− Λρ ⊗ en|p dx+ c(p) (1 + |Λρ|)p

≤ c(n, p)
[
θ−nE(x0, ρ) + 1

]
(1 + |Λρ|)p

≤ c(p) (1 + |Λθρ|)p (60)

and, with 4θ ≤ 1, we also have
∫
−
B+

4θρ(x0)

(1 + |Du|)p dx ≤ c(p) (1 + |Λθρ|)p . (61)

The smallness assumptions in (SCF.5) allow us in particular to proceed as in (19) and
(22) to derive

ρp |Q+
2θρ|p ≤ ρ+M(x0, ρ) and |Q+

2θρ|p ≤ c (1 + |Λθρ|)p .
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We shall start to estimate the terms III, IV and V : the latter estimate combined with
(61) allows us to compute

III ≤ c ω(ρp)

∫
−
B+

2θρ(x0)

(1 + |Q+
2θρ|+ |Du|)p dx ≤ c ω(ρ) (1 + |Λθρ|)p .

Moreover, by concavity of the modulus of continuity ω, Jensen’s inequality, Poincaré
and (SCF.4) we find

∫
−

B+
2θρ(x0)

ω(|u|p) dx ≤ ω(M(x0, ρ)) and hence, applying Hölder and

Lemma 4.2 on the higher integrability of Du (keep in mind q ≤ q1), we see that

IV ≤ c

(∫
−
B+

2θρ(x0)

ω(|u|p)
q

q−p dx

) q−p
q
(∫
−
B+

2θρ(x0)

(1 + |Q+
2θρ|+ |Du|)q dx

) p
q

≤ c

(∫
−
B+

2θρ(x0)

ω(|u|p) dx
) q−p

q ∫
−
B+

4θρ(x0)

(1 + |Q+
2θρ|+ |Du|)p dx

≤ c ω (M(x0, ρ))
q−p
q (1 + |Λθρ|)p .

Finally, the last term is estimated via the bound for ρp|Q+
2θρ|p above and the sublinearity

of ω by

V ≤ c ω(ρ+M(x0, ρ))

∫
−
B+

2θρ(x0)

(1 + |Q+
2θρ|+ |Du|)p dx

≤ c
[
ω(ρ)

q−p
q + ω (M(x0, ρ))

q−p
q

]
(1 + |Λθρ|)p ,

where all the constants c depend only on n,N, p, ν and L. Collecting now the estimates
for the various terms (note ω(·) ≤ 1) we come to the conclusion that

III + IV + V ≤ c
[
ω(ρ)

q−p
q + ω (M(x0, ρ))

q−p
q

]
(1 + |Λθρ|)p

≤ cE(x0, ρ)
p−1 (1 + |Λθρ|)pE(x0, ρ)

≤ c θ2 (1 + |Λθρ|)pE(x0, ρ) .

In the last line we used the fact that E(x0, ρ)
p−1 ≤ θ(n+4) (p−1) ≤ θ2 due to (SCF.3).

Combining the latter inequality with (59) we arrive at
∫
−
B+

θρ(x0)

[
(1 + |Q+

x0,2θρ
|)p−2

∣∣Du−Q+
x0,2θρ

⊗ en
∣∣2 +

∣∣Du−Q+
x0,2θρ

⊗ en
∣∣p
]
dx

≤ c

∫
−
B+

2θρ(x0)


(1 + |Q+

x0,2θρ
|)p−2

∣∣∣∣∣
u−Q+

x0,2θρ
xn

2θρ

∣∣∣∣∣

2

+

∣∣∣∣∣
u−Q+

x0,2θρ
xn

2θρ

∣∣∣∣∣

p

 dx

+ c θ2 (1 + |Λθρ|)pE(x0, ρ)

and the constant c depends only on n,N, p, ν and L. At this stage we argue exactly as
we did to achieve (25) in the elliptic situation, i.e., we replace in the inequality above
Q+

x0,2θρ
by Λθρ = (Dnu)x0,θρ, and via (58) we obtain

∫
−
B+

θρ(x0)

[
(1 + |(Dnu)x0,θρ|)p−2 |Du− (Dnu)x0,θρ ⊗ en|2 + |Du− (Dnu)x0,θρ ⊗ en|p

]
dx

≤ c∗ θ
2 (1 + |(Dnu)x0,θρ|)p E(x0, ρ) ,
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where the constant c∗ depends only on n,N, p, ν and L. Dividing both sides by (1 +
|(Dnu)x0,θρ|)p and taking into account the definition of C(x0, θρ) this is the desired ex-
cess decay estimate provided that all smallness conditions (SCF-1), (SCF.2), (SCF.3),
(SCF.4) and (SCF.5) hold true. The dependency of the constants ǫ0 and ǫ1 claimed
in (51) is obtained by taking into consideration the dependencies in all the smallness
conditions needed within the proof.

4.2. Proof of Theorem 1.2

Here, we will only sketch the proof and remark the necessary modification with respect
to the proof of Theorem 1.1 in Section 3.2.

Step 1: Choice of the constants. We first fix β ∈ (0, p), and for the choice of α we now
distinguish two situations: if n > p we choose α ∈ (0, 1) arbitrary. Otherwise if n ≤ p,
due to the Sobolev embedding, only the case α ∈ (1− n

p
, 1) has to be considered. Hence,

we choose γ = γ(α) ∈ (max{0, n− p}, n) such that

α = 1− n− γ

p
(62)

and θ ∈ (0, 1
8
) such that

θ := min

{(
1

2p

) 1
β

,

(
1

4 c∗

) 1
2

,

(
1

2p

) 1
n−γ

}
, (63)

for c∗ from Proposition 4.5. Further we fix a constant ǫ2 and an iteration quantity ǫit ≤ 1
via

ǫ2 := min

{
θn

2p
,
ǫ0
4

}
, ǫit :=

θn

43p 6n
(64)

with ǫ0 from Proposition 4.5. Next, we fix δ1 > 0 such that

ω(δ1)
q−p
qp < ǫit ǫ2

with q the higher integrability exponent determined in Lemma 4.3. Lastly we define the
maximally admissible radius as in (30) via

ρm := min

{
δ

1
β

1 , δ1, ǫ1

}
> 0 .

Here, ǫ1 is the radius from Proposition 4.5 and in conclusion, all the quantities θ, ǫ2, δ1
and ρm have the same dependencies as in Section 3.2 for the elliptic case. Note that in
the definitions of α, θ and ǫ2 there appears the the parameter p (instead of 2 in (26),
(27) and (28), respectively) due to the fact that the Campanato-type excess C(x0, ρ)
was redefined with exponent p instead of 2 for the case of variational integrals. For what
follows we will always assume ρ ≤ ρm < 1.

Step 2: An almost BMO-estimate. We consider a boundary point x0 ∈ Γ, without loss
of generality we may assume x0 = 0, and a radius ρ for which

C(x0, ρ) < ǫ̃it ǫ2 and M(x0, ρ) < ǫ̃it δ1 (65)
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is satisfied for some iteration parameter ǫ̃it ∈ [ǫit, 1]. Taking into account that this time
we have

∫
−
B+

θkρ

|Du− (Dnu)θkρ ⊗ en|2 dx < 2p−1 ǫ̃it ǫ2 + 2p−1 ǫ̃it ǫ2

∫
−
B+

θkρ

|Dnu|2 dx (66)

we prove exactly as in Section 3.2 that, due to the choice of constants above and due to
the decay estimate in Proposition 4.5, there holds for every k ∈ N0

C(θkρ) < ǫ̃it ǫ2 and M(θkρ) < ǫ̃it δ1 .

Step 3: Iteration. We still consider 0 ∈ Γ and a radius ρ ≤ ρm such that (65) is satisfied.
Then the inequality (66) above and the choices of ǫ2 in (64) and of θ in (63) yield that

∫

B+

θk+1ρ

|Du|p dx ≤ θγ
∫

B+

θkρ

|Du|p dx+ 4p ωn (θ
kρ)n

for γ defined via equation (62). Setting ϕ(t) :=
∫
B+

t
|Du|p dx and applying the iteration

Lemma 2.5 in a standard way we obtain

∫

B+
t

|Du|p dx ≤ c6
ργ

[∫

B+
ρ

|Du|p dx+ 1

]
tγ for all t ≤ ρ. (67)

Step 4: Hölder continuity at boundary points. Exactly as we proceeded in Step 4 of the
proof of Theorem 1.1 we combine the estimates in the interior and at the boundary. For
fixed α ∈ (0, 1) we consider the quantities defined in Step 1, we set

s := min

{
ǫit δ1,

(ǫit ǫ2
2

) p
2

}

and we look at a point x0 ∈ Γ, w.l.o.g. x0 = 0, for which

lim inf
ρ→0+

∫
−
B+

ρ (0)

|Du− (Dnu)0,ρ ⊗ en|p dx < s and lim inf
ρ→0+

ρβ
∫
−
B+

ρ (0)

|Du|2 dx < s

holds true. Then we conclude, again by deriving decay estimates of the form (67) on
various balls and half balls and applying Theorem 2.6, that 0 ∈ RegΓ,α u, i.e., that

u is Hölder continuous with exponent α in a neighbourhood of 0 in B+. Hence, we
have proved a result corresponding to Theorem 3.3 for variational integrals in the model
situation of the half ball.

Step 5: Transformation to the model situation. We assume z = 0 and ν∂Ω(z) = en.
Keeping the notation of Step 5 in Section 3.2, we choose r > 0 sufficiently small such
that |∇h(x′)| < 1

2
for all x′ ∈ B√

2r. Setting ṽ(y) := u ◦ T −1(y)− g ◦ T −1(y) here allows

us to calculate that ṽ ∈ W 1,p
Γ (B+

r ,R
N) is a local minimizer of

F [v] :=

∫

Ω

F̃ (y, v,Dv) dy ,
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where the integrand is defined by

F̃ (y, v, z) := F
(
T −1(y), v + g̃(y), z DT (T −1(y)) +Dg(T −1(y))

)
,

and proceeding as in Section 3.2 we calculate that F̃ satisfies structure conditions analo-
gous to (4) for new coefficients (depending on the original constants, the boundary data
and p), namely that there holds for all y, ȳ ∈ B+

r , v, v̄ ∈ R
N and z, z̄ ∈ R

nN the following
estimates:

• 2−2p ν (1 + ‖Dg‖∞)−p (1 + |z|)p ≤ F̃ (y, v, z) ≤ 2
p
2 L (1 + ‖Dg‖∞)p (1 + |z|)p,

• 2−2p+2 ν (1 + ‖Dg‖∞)2−p
∫
(0,1)n

(1 + |z|+ |Dϕ(x)|)p−2|Dϕ(x)|2 dx
≤
∫
(0,1)n

[
F̃ (y, v, z +Dϕ(x))− F̃ (y, v, z)

]
dx for all ϕ ∈ C1

0((0, 1)
n,RN),

•
∣∣∣F̃ (y, v, z)− F̃ (ȳ, v̄, z)

∣∣∣
≤ 2p+1 L (1 + ‖Dg‖∞)p (1 + |z|)p (ω (|y − ȳ|+ |v − v̄|) + τ (|y − ȳ|)),

•
∣∣∣DzzF̃ (y, v, z)−DzzF̃ (y, v, z̄)

∣∣∣

≤ 2
p
2
+3 L (1 + ‖Dg‖∞)p−1 (1 + |z|+ |z̄|)p−2 µ

(
|z−z̄|

1+|z|+|z̄|

)
.

Step 6: Transformation of the smallness conditions and final conclusion. The last step
of Theorem 1.2 is achieved as in the setting of elliptic systems. The only point where we
have to proceed by a slight modifications of the arguments above is when transforming
the second of the smallness assumptions since in the case of variational integrals, we
have defined the Morrey-type excess M(x0, ρ) using the full derivative instead of only the
normal derivative. Applying Caccioppoli’s and Poincaré’s inequality, M(x0, ρ) is reduced
to considering only the normal part of the derivatives of ṽ, and the result follows as in
the proof of Theorem 1.1. �

Remark 4.6. Also in the case of variational integrals, we obtain for n ≤ p a better
inclusion presented in Remark 3.4.
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