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Extending results of Rogers, Burton and Mani to the case of unbounded convex sets, we prove that
line-free closed convex sets K1 and K2 of dimension n in R

n, n ≥ 4, are homothetic provided there are
points p1 ∈ intK1 and p2 ∈ intK2 such that for every pair of parallel 2-dimensional planes L1 and L2

through p1 and p2, respectively, the sections K1∩L1 and K2∩L2 are homothetic. Furthermore, if there
is a homothety f : Rn → R

n such that f(K1) = K2 and f(p1) 6= p2, then K1 and K2 are convex cones
or their boundaries are convex quadric surfaces. Related results on elliptic and centrally symmetric
2-dimensional bounded sections of convex sets are considered.
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1. Introduction and Main Results

A well-known result of convex geometry states that convex bodies K1 and K2 in R
n,

n ≥ 3, are homothetic if and only if the orthogonal projections of K1 and K2 on every
hyperplane in R

n are homothetic, where similarity ratio may depend on the projection
hyperplane (see, e.g., Bonnesen and Fenchel [2] for historical references and Gardner [7]
for an overview and further results). This statement was refined by Rogers [16], who
proved that the bodiesK1 andK2 are homothetic if and only if the orthogonal projections
of K1 and K2 on every 2-dimensional plane are homothetic. (In a standard way, sets F1

and F2 in R
n are homothetic provided F1 = z + λF2 for a suitable point z ∈ R

n and a
scalar λ > 0.)

Similar results involving planar sections of convex bodies were obtained by Rogers [16]
(for the case when p1 ∈ intK1 and p2 ∈ intK2) and later by Burton [3], who proved
that convex bodies K1 and K2 in R

n, n ≥ 3, are homothetic provided there are points p1
and p2 in R

n such that for every pair of parallel 2-dimensional planes L1 and L2 through
p1 and p2, respectively, the sections K1 ∩ L1 and K2 ∩ L2 are homothetic or empty.
Furthermore, as shown by Burton and Mani [4], K1 and K2 are homothetic ellipsoids
provided there is a homothety f : Rn → R

n such that f(K1) = K2 and f(p1) 6= p2. (Let
us recall that a mapping f : Rn → R

n of the form f(x) = z + λx is the homothety with
center z ∈ R

n and ratio λ > 0.)

In this paper we discuss possible extensions of the results above to the case of unbounded
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convex sets in R
n, motivated by the demands of convex analysis in the study of non-

compact convex sets in R
n (see, e.g., [6, 8, 15]). In what follows, by a convex solid we

mean a closed convex set, possibly unbounded, with nonempty interior in R
n. A convex

solid is called line-free provided it contains no line. As usual, bdK, rbdK, intK, and
rintK stand, respectively, for the boundary, relative boundary, interior, and relative
interior of a convex set K ⊂ R

n.

In view of the results above, the following two problems were posed in [18] and confirmed
for the case of translates in R

n.

Problem 1.1. Is it true that convex solids K1 and K2 in R
n, n ≥ 3, are homothetic

provided the orthogonal projections of K1 and K2 on each 2-dimensional plane are ho-
mothetic?

Problem 1.2. Is it true that convex solids K1 and K2 in R
n, n ≥ 3, are homothetic

provided there are points p1 and p2 in R
n such that for every pair of parallel 2-dimensional

planes L1 and L2 through p1 and p2, respectively, the sections K1 ∩ L1 and K2 ∩ L2 are
homothetic or empty?

Even for the case of translates, 2-dimensional planes in Problem 1.2 cannot be replaced by
lines. Indeed, Larman and Morales-Amaya [13] gave an example of a pair of unbounded
line-free convex solidsK1, K2 in R

2 with the following properties: (i)K1 is not a translate
of K2 or of −K2, (ii) there are points p1 ∈ intK1 and p2 ∈ intK2 such that any two
parallel chords of K1 and K2 that contain p1 and p2, respectively, are of equal length.

As proved in [18], convex solidsK1 and K2 in R
n, n ≥ 3, are homothetic if and only if the

orthogonal projections of K1 and K2 on each 3-dimensional plane are homothetic. Our
first statement here is that Problem 1.1 has a surprisingly negative answer, as follows
from the example below.

Example 1.3. Let K1 and K2 be solid paraboloids in R
3, given, respectively, by

K1 = {(x, y, z) | x2 + y2 ≤ z} and K2 = {(x, y, z) | 2x2 + y2 ≤ z}.

Obviously,K1 andK2 are not homothetic. At the same time, their orthogonal projections
πL(K1) and πL(K2) on each 2-dimensional plane L ⊂ R

3 are homothetic. Indeed, if
L = {(x, y, z) | z = const}, then πL(K1) = πL(K2) = L. For any other 2-dimensional
plane L in R

3, the projections πL(K1) and πL(K2) are planar convex solids bounded by
parabolas with axis of symmetry parallel to the projection of the z-axis on L. Since
any two parabolas in the plane with parallel axes of symmetry are homothetic, the sets
πL(K1) and πL(K2) are also homothetic.

Theorem 1.4 below partly solves Problem 1.2 and extends the results from [4, 16] to the
case of convex solids K1 and K2 in R

n, n ≥ 4, with p1 ∈ intK1 and p2 ∈ intK2. The
question whether Theorem 1.4 holds for n = 3 remains open.

Theorem 1.4. Let K1 and K2 be line-free convex solids in R
n, n ≥ 4, and let points

p1 ∈ intK1 and p2 ∈ intK2 be such that for every pair of parallel 2-dimensional planes L1

and L2 through p1 and p2, respectively, the sections K1∩L1 and K2∩L2 are homothetic.

Then K1 and K2 are homothetic. Furthermore, if there is a homothety f : Rn → R
n such

that f(K1) = K2 and f(p1) 6= p2, then K1 and K2 are convex cones or their boundaries

are convex quadric surfaces.



V. Soltan / Convex Solids with Planar Homothetic Sections Through Given Points 475

In our terminology, convex cones can have nonzero apices: a convex set C ⊂ R
n is a cone

with apex p ∈ R
n provided p+λ(x−p) ∈ C for all x ∈ C and λ ≥ 0. By a convex surface

in R
n we mean the boundary of a convex solid. This definition includes a hyperplane or

a pair of parallel hyperplanes. We say that a convex surface in R
n is a convex quadric

surface provided it is a connected component of a quadric surface. The classification of
quadric surfaces (see, for example, [17]) implies that a convex quadric surface in R

n that
contains no line can be expressed in suitable coordinates by one of the equations:

α1x
2
1 + · · ·+ αnx

2
n = 1, (ellipsoid)

α1x
2
1 − α2x

2
2 − · · · − αnx

2
n = 1, x1 ≥ 0, (convex elliptic hyperboloid)

α1x
2
1 − α2x

2
2 − · · · − αnx

2
n = 0, x1 ≥ 0, (convex elliptic cone)

α1x
2
1 + · · ·+ αn−1x

2
n−1 = xn, (elliptic paraboloid)

where all scalars α1, . . . , αn are positive. Convex quadric surfaces containing lines are
both-way unbounded cylinders based on convex quadrics of the same type that are
situated in proper subspaces of Rn.

Analysis of the proof of Theorem 1.4 reveals the following corollary. The question
whether Corollary 1.5 holds for n = 3 remains open.

Corollary 1.5. Let K ⊂ R
n, n ≥ 4, be a line-free convex solid and p1, p2 ∈ intK be

distinct points such that for every pair of parallel 2-dimensional planes L1 and L2 through

p1 and p2, respectively, the sections K ∩L1 and K ∩L2 are homothetic. Then bdK is a

convex quadric surface or K is a convex cone whose apex belongs to the line through p1
and p2.

We note that Corollary 1.5 fails provided K is not line-free. Indeed, if K is a both-way
infinite cylinder in R

n, n ≥ 3, given by

K = {(x1, . . . , xn) | 0 ≤ x1, x2 ≤ 1, x3, . . . , xn ∈ R},

and if p1 = 1

4
(1, 1, 0, . . . , 0), p2 = 1

2
(1, 1, 0, . . . , 0), then for any 2-dimensional subspace

L ⊂ R
n the sections K ∩ (p1 + L) and K ∩ (p2 + L) are homothetic, while neither bdK

is a convex quadric surface nor K is a convex cone.

Let us recall that the recession cone of a convex set K ⊂ R
n is defined by

recK = {y ∈ R
n | x+ αy ∈ K for all x ∈ K and α ≥ 0}.

We will be using the “double cone� (p + recK) ∪ (p − recK) with apex p, as depicted
below.

����������������
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@@R
K

p
p+ recKp− recK

bdK

`
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The proof of Theorem 1.4 is based on Theorem 1.6 below. By an m-dimensional plane
in R

n we mean a translate of an m-dimensional subspace. We say that a plane F ⊂ R
n

properly intersects a convex solid K ⊂ R
n (or, equivalently, the boundary ofK) provided

it intersects both the boundary bdK and the interior intK of K.

Theorem 1.6. For a line-free convex solid K ⊂ R
n and a point p ∈ R

n, n ≥ 3, the
following conditions are equivalent:

1) all proper bounded sections of bdK by 2-dimensional planes through p are ellipses,

2) the set bdK \ [(p+ recK) ∪ (p− recK)] lies in a convex quadric surface.

We remark that condition 1) of Theorem 1.6 implicitly covers the trivial case when no
proper section of bdK by a 2-dimensional plane through p is bounded. For the line-free
convex solid K, this happens if and only if K ⊂ p+recK, or, equivalently, when the set
bdK \ [(p + recK) ∪ (p− recK)] is empty, thus ensuring the equivalence of conditions
1) and 2) of the theorem.

Since a convex solid K ⊂ R
n with recK = {0 } is compact, Theorem 1.6 is an extension

of a well-known result of convex geometry, which states that the boundary of a convex
body K ⊂ R

n, n ≥ 3, is an ellipsoid if and only if there is a point p ∈ intK such that
all sections of bdK by 2-dimensional planes through p are ellipses (see Kubota [11] for
n = 3 and Busemann [5, pp. 91–92] for n ≥ 3). Höbinger [9, Theorems 2 and 6] and
independently Burton [3] refined Busemann’s statement by showing that the point p
above can be chosen arbitrarily in R

n. A similar result, which includes unbounded sets
into consideration, is proved in [19]: the boundary of a convex solid K ⊂ R

n, n ≥ 3, is a
convex quadric surface if and only if there is a point p ∈ intK such that all sections of
bdK by 2-dimensional planes through p are convex quadric curves.

The following examples show that in Theorem 1.6 the boundary of K can be different
from a convex quadric surface.

Example 1.7. Let K be a convex solid bounded by a truncated sheet of a convex
circular cone in R

n, given by

K =
{

(x1, . . . , xn) | xn ≥ max
{

1, (x2

1 + · · ·+ x2

n−1)
1/2

}}

.

If p = (0, . . . , 0, 2), then p ∈ intK and all bounded sections of bdK by 2-dimensional
planes through p are ellipses. Clearly, bdK \ [(p+recK)∪(p−recK)] is the part of bdK
disjoint from the hyperplane xn = 1. We note that a 2-dimensional plane L through p
intersects K along a bounded set if and only if L misses the (n − 1)-dimensional open
ball

{(x1, . . . , xn) | x
2

1 + · · ·+ x2

n−1 < 1, xn = 1}.

Example 1.8. Another example gives a convex solid K ⊂ R
n bounded by a truncated

sheet of a convex elliptic hyperboloid in R
n:

K =
{

(x1, . . . , xn) | xn ≥ max
{

2, (x2

1 + · · ·+ x2

n−1 + 1)1/2
}}

.

If p = (0, . . . , 0, 1), then p ∈ R
n \ K and all proper bounded sections of bdK by 2-

dimensional planes through p are ellipses. The set bdK \ [(p+recK)∪(p−recK)] is the
part of bdK disjoint from the hyperplane xn = 2. We note that a 2-dimensional plane L
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through p intersectsK along a bounded set if and only if Lmisses the (n−1)-dimensional
open ball

{(x1, . . . , xn) | x
2

1 + · · ·+ x2

n−1 < 1, xn = 2}.

Affirmatively solving Rogers’s [16] conjecture, Aitchison, Petty, and Rogers [1] proved
that a convex body K ⊂ R

n, n ≥ 3, is symmetric about a point p ∈ intK or bdK is
an ellipsoid provided all sections of K by 2-dimensional planes through p are centrally
symmetric. Larman [12] refined this statement by showing that the point p can be chosen
anywhere in R

n. Theorem 1.6 allows us to extend these results to the case of convex
solids in R

n, n ≥ 4.

Theorem 1.9. For a line-free convex solid K ⊂ R
n and a point p ∈ R

n, n ≥ 4, the
following conditions are equivalent:

1) all proper bounded sections of bdK by 2-dimensional planes through p are centrally

symmetric,

2) K is symmetric about p (and thus is bounded) or the set bdK \ [(p+ recK)∪ (p−
recK)] lies in a convex quadric surface.

The question whether Theorem 1.9 holds for n = 3 remains open. As above, Exam-
ples 1.7 and 1.8 show that in Theorem 1.9 the set bdK can be different from a convex
quadric surface. Similarly to Theorem 1.6, condition 1) of Theorem 1.9 implicitly covers
the trivial case when no proper section of bdK by a 2-dimensional plane through p is
bounded; this happens if and only if bdK \ [(p+ recK) ∪ (p− recK)] = ?.

For the convenience of the reader we provide a relevant list of standard properties of
convex sets in R

n (their proofs can be found in [6, 8, 15]).

(P1) Any line-free closed convex set K ⊂ R
n is the convex hull of its extreme points and

extreme rays (Klee [10]).

(P2) A closed convex set K ⊂ R
n is unbounded if and only if recK 6= {0 }.

(P3) Let K ⊂ R
n be a closed convex set and M ⊂ R

n be a plane of any dimension such
that K ∩M 6= ?. The intersection M ∩K is bounded if and only if the subspace
L = M −M satisfies the condition L ∩ recK = {0 }.

(P4) If C ⊂ R
n is a line-free closed convex cone with apex 0 and L ⊂ R

n is a subspace
such that C ∩ L = {0 }, then there is a hyperplane H ⊂ R

n such that L ⊂ H and
C ∩H = {0 }.

(P5) A closed convex set K ⊂ R
n is a cone with apex p ∈ K if and only if K − p =

α(K − p) for any given positive scalar α 6= 1.

2. Proof of Theorem 1.6

2) ⇒ 1) Let L ⊂ R
n be a 2-dimensional plane through p that properly intersects K

along a bounded set. Since L − p is a subspace and the cones recK and −recK are
symmetric about 0 , (P3) implies that

(L− p) ∩ [recK ∪ (−recK)] = {0 }.

Hence
L ∩ [(p+ recK) ∪ (p− recK)] = {p}.
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From here we obtain

(L ∩ bdK) \ {p} = (L ∩ bdK) \
(

L ∩ [(p+ recK) ∪ (p− recK)]
)

= L ∩
(

bdK \ [(p+ recK) ∪ (p− recK)]
)

.

By the hypothesis, the set bdK \ [(p + recK) ∪ (p − recK)] lies in a convex quadric
surface, S. Hence the set (L∩bdK)\{p} lies in the convex quadric curve L∩S. Because
L ∩ bdK is the relative boundary of the 2-dimensional compact convex set L ∩K, we
have L∩bdK = L∩S, that is, L∩bdK is a convex quadric curve itself. Being bounded,
L ∩ bdK should be an ellipse.

To show that 1) ⇒ 2), we first exclude the trivial case when K ⊂ p + recK. In this
case,

bdK \ [(p+ recK) ∪ (p− recK)] = ?.

On the other hand, the inclusion K ⊂ p + recK obviously implies that all proper
sections of K by 2-dimensional planes through p are unbounded, thus ensuring the
trivial equivalence of conditions 1) and 2) of the theorem.

Hence we assume, in what follows, thatK 6⊂ p+recK. Without loss of generality, we may
put p = 0 . The condition K 6⊂ recK implies the existence of a point x ∈ intK \ recK
such that the line (x, 0 ) does not meet recK \ {0 } (equivalently, (x, 0 ) ∩ recK =
{0 }). Because K is line-free, the cone recK is also line-free. By (P4), we can choose
a hyperplane H1 through the line (x, 0 ) such that H1 ∩ recK = {0 }. According to
(P3), H1 properly intersects K along a bounded set. By the hypothesis, all sections of
the set E1 = H1 ∩ bdK by 2-dimensional subspaces of H1 are ellipses. Then E1 is an
(n− 1)-dimensional ellipsoid (see [3]).

Let G be an (n − 2)-dimensional subspace of H1 that contains x. By the continuity
argument, we can choose a new hyperplaneH2 throughG so close toH1 thatH2∩recK =
{0 }. Then (P3) implies again that H2 properly intersects K along a bounded set. As
above, H2 ∩ bdK is an (n − 1)-dimensional ellipsoid, E2. Applying a suitable linear
transformation, we may assume that both E1 and E2 are (n − 1)-dimensional spheres
(possibly, of distinct radii).

We state that K 6= conv (E1 ∪E2). Indeed, if K = conv (E1 ∪E2), one could choose a 2-
dimensional plane through 0 properly intersecting bdK along a bounded curve distinct
from an ellipse. Hence there is a 2-dimensional subspace N of Rn that properly intersects
K such that the section N ∩bdK is an ellipse distinct from N ∩conv (E1∪E2). Because
N intersects intK, we can slightly vary N to satisfy the condition N ∩G = {0 }.

Choose a point z ∈ N ∩ (bdK \ conv (E1 ∪ E2)). Clearly, there is a convex quadric
surface Q ⊂ R

n that contains {z} ∪ E1 ∪ E2. To finalize the proof of 1) ⇒ 2) we are
going to show that

bdK \ [ recK ∪ (−recK)] = Q \ [ recK ∪ (−recK)]. (1)

First, we state that N ∩ bdK = N ∩ Q. For this, we consider the cases 0 /∈ bdK and
0 ∈ bdK separately.

Case 1. 0 /∈ bdK. Then N ∩ (E1∪E2) consists of four distinct points (all different from
0 ) and X = {z} ∪ (N ∩ (E1 ∪E2)) is a planar set of five points with no three on a line.
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Then there is a unique quadric curve containing X (see, e.g., [14, pp. 369–371]). Since
both F and N ∩Q are quadric curves containing X, we conclude that N ∩bdK = N ∩Q.

Case 2. 0 ∈ bdK. Then N ∩ (E1 ∪E2) consists of three distinct points (one of them is
0 ) and X = {z} ∪ (N ∩ (E1 ∪E2)) is a planar set of four points with no three on a line.
Let H be a hyperplane that supports K at 0 . Since H also supports conv (E1 ∪ E2),
and since Q is a convex quadric surface containing E1 ∪ E2, we obtain that H supports
Q at 0 . There is a unique quadric curve in N containing X and supported by the line
N ∩H through 0 (see, e.g., [14, pp. 377]). Because both N ∩bdK and N ∩Q are quadric
curves containing X and supported by N ∩H at 0 , we obtain that N ∩ bdK = N ∩Q.

Slightly rotatingN about the line (0 , z), we obtain a family of ellipses that lie inQ∩bdK
and whose union covers an open piece P of bdK consisting of two open loops with
common endpoints 0 and z. It is easy to see that for any point x ∈ bdK \ [ recK ∪
(−recK)] which is not the apex of K (if K is a cone) there is a 2-dimensional subspace
M through x such that M ∩ recK = {0 } and M intersects P along an arc distinct from
a line segment. By (P3), the set M ∩K is bounded, whence the section M ∩ bdK is an
ellipse. Since M ∩ P is a nontrivial arc of both quadric curves M ∩ bdK and M ∩ Q,
we conclude that M ∩ bdK = M ∩Q.

Property (P3) implies that the union of 2-dimensional subspaces each intersecting K
along a bounded set equals

T = {0 } ∪ (Rn \ [recK ∪ (−recK)]).

Our consideration shows that the union of subspaces M above is dense in T . Due to
M ∩ bdK = M ∩Q for any such subspace M , the convex surfaces bdK and Q have in
T a common part which is dense in each of them. By the continuity argument, equality
(1) holds.

3. Proof of Theorem 1.4

We precede the proof of the theorem with an auxiliary lemma.

Lemma 3.1. Let M1 and M2 be line-free convex solids in R
n, n ≥ 3, such that (a)

recM1 = recM2, (b) 0 ∈ intM1 ∩ intM2, (c) M1 \ (−recM1) = M2 \ (−recM2), and
(d) for any 2-dimensional subspace L ⊂ R

n the curves L ∩ bdM1 and L ∩ bdM2 are

homothetic. Then M1 = M2.

Proof. In view of (a) and (c), it is sufficient to prove that

M1 ∩ (−int recM1) = M2 ∩ (−int recM1). (2)

This is obvious if dim recM1 < n (because of int recM1 = ?). Assume that dim recM1 =
n and choose in −int recM1 an open halfline h with apex 0 . Since M1 is line-free, we
have recM1 ∩ (−recM1) = {0 }. Hence h 6⊂ recM1, which implies that h intersects both
bdM1 and bdM2 at some points v1 and v2, respectively. Clearly, the coincidence of
points v1 and v2 for any choice of the halfline h ⊂ −int recM1 implies equality (2). We
intend to show that v1 = v2 by considering various cases separately.

(i) Assume first that M1 has an extreme point v ∈ bdM1 \ (−int recM1). Choose a
2-dimensional subspace L through h and v (L is uniquely defined provided v1 6= v) and
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consider the homothetic curves L ∩ bdM1 and L ∩ bdM2. These curves are identical
because they have v as a common extreme point and coincide along both unbounded
branches that lie in bdM1 \ (−int recM1). In particular, v1 = v2.

(ii) Now assume that M1 has no extreme points in bdM1 \ (−int recM1). This implies
that all extreme points of M1 are in the bounded set bdM1 ∩ (−recM1). Because
the unbounded set M1 is the convex hull of its extreme points and extreme rays (see
(P1)), there is an extreme ray m of M1. Clearly, an unbounded part of m lies in
bdM1 \ (−int recM1).

If h∪m does not lie in a 2-dimensional subspace, then we choose a 2-dimensional subspace
L through h that intersects m at a point w /∈ −int recM1 and consider the homothetic
curves L ∩ bdM1 and L ∩ bdM2. As above, these curves have w as a common extreme
point and coincide along both unbounded branches that lie in bdM1 \ (−int recM1).
Hence L ∩ bdM1 = L ∩ bdM2, which implies the equality v1 = v2.

If h ∪ m lies in a 2-dimensional subspace, then we choose in −int recM1 another open
halfline h′ with apex 0 such that such that h′∪m does not lie in a 2-dimensional subspace
(this is possible because n ≥ 3). By the argument above, the points of intersection of h′

with bdM1 and bdM2, respectively, coincide. Since h
′ can be chosen arbitrarily close to

h, we conclude that v1 = v2. Summing up, equality (2) holds.

We start the proof of Theorem 1.6 by considering line-free convex solids K1 and K2 in
R

n, n ≥ 4, that satisfy the hypothesis of Theorem 1.4. Since Theorem 1.4 is proved in
[4] for the case when both K1 and K2 are bounded, we may assume that at least one
of them, say K1, is unbounded. By (P2), recK1 6= {0 }. Without loss of generality, we
may put p1 = p2 = 0 .

We claim that recK1 = recK2. Indeed, if h is a halfline with apex 0 that lies in recK1,
and if L is a 2-dimensional subspace through h, then K1 ∩ L contains a translate of h.
Since K2 ∩L is homothetic to K1 ∩L, the set K2 contains a translate of h. Hence h lies
in recK2, and recK1 ⊂ recK2. By the symmetry argument, recK2 ⊂ recK1.

Our further consideration is divided into Cases 1 and 2 below. In what follows, F stands
for the family of hyperplanes H ⊂ R

n such that H ∩ recK1 = {0 }.

Case 1. Assume the existence of a hyperplane H0 ∈ F such that H0 ∩ bdK1 is different
from an (n − 1)-dimensional ellipsoid. By the hypothesis, K1 ∩ L and K2 ∩ L are
homothetic for every 2-dimensional subspace L of H0. Since dimH0 = n − 1 ≥ 3, the
compact sets H0 ∩K1 and H0 ∩K2 are homothetic (see [16]). In other words, there is a
homothety g0 : H0 → H0 of the form g0(x) = z + γx, with z ∈ H0 and γ > 0, such that

H0 ∩K2 = z + γ(H0 ∩K1).

The assumption that H0 ∩ bdK1 is different from an (n− 1)-dimensional ellipsoid in H0

implies the equality z = g0(0 ) = 0 (see [4]). Hence

H0 ∩K2 = γ(H0 ∩K1) = H0 ∩ γK1. (3)

We claim that K2 = γK1. Indeed, put K ′

1 = γK1. We divide the proof of Case 1 into
subcases 1a–1c.
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1a. First we are going to prove that H ∩K2 = H ∩K ′

1 for any hyperplane H ∈ F . We
will do this in two steps: initially assuming that H is sufficiently close to H0, and then
letting H be any member of F .

Let e0 be a unit normal vector to H0. Since H0 ∩ recK1 = {0 }, there is an ε > 0
such that for any unit vector e ∈ R

n with ‖e − e0‖ < ε, the hyperplane H through 0

orthogonal to e satisfies H ∩ recK1 = {0 } and thus belongs to F . Furthermore, because
the section H∩K1 depends continuously on the choice of H ∈ F and because H0∩bdK1

is not an (n− 1)-dimensional ellipsoid, the scalar ε can be chosen so small that H ∩K1

is also different from an (n− 1)-dimensional ellipsoid provided ‖e− e0‖ < ε. Denote by
Fε the family of hyperplanes H ∈ F with ‖e− e0‖ < ε.

(i) We state that H ∩K2 = H ∩K ′

1 for any H ∈ Fε. Indeed, since H ∩ bdK1 is not an
(n− 1)-dimensional ellipsoid, similar to (3) we obtain that H ∩K2 = H ∩ γHK1, where
the ratio γH > 0 depends on H. Since H ∩ bdK2 and H ∩ bdK ′

1 coincide in H ∩H0, we
conclude that γH = γ. Hence

H ∩K2 = H ∩ γK1 = H ∩K ′

1 for all H ∈ Fε. (4)

From (4) it follows the existence of a scalar δ > 0 such that bdK2 and bdK ′

1 coincide
in the δ-neighborhood Uδ(H0) of H0, which is an open slab of Rn bounded by a pair of
hyperplanes parallel to H0 each at distance δ from H0.

(ii) Now choose any hyperplane H ∈ F . If H ∩ bdK1 is not an (n − 1)-dimensional
ellipsoid, then, as above, H ∩K2 = H ∩K ′

1. Let H ∩ bdK1 be an (n − 1)-dimensional
ellipsoid. We state that H ∩ bdK2 is an (n − 1)-dimensional ellipsoid homothetic to
H ∩ bdK1. Indeed, each section of bdK1 by a 2-dimensional subspace L ⊂ H is an
ellipse. By the hypothesis, the sections L ∩ K1 and L ∩ K2 are homothetic. Hence
L∩bdK2 is also an ellipse, and [5, p. 92] implies that H∩bdK2 is an (n−1)-dimensional
ellipsoid homothetic to H ∩ bdK1.

Because the ellipsoids H ∩bdK2 and H ∩bdK ′

1 coincide in the slab Uδ(H0), they should
be identical: H ∩ bdK2 = H ∩ bdK ′

1. Hence H ∩K2 = H ∩K ′

1.

1b. Due to
∪{H | H ∈ F} = {0 } ∪

(

R
n \ [recK1 ∪ (−recK1)]

)

and to the inclusion recK1 ⊂ intK1 ∩ intK2, the argument of 1a shows that

K2 \ (−recK1) = K ′

1 \ (−recK1).

By the continuity,
K2 \ (−int recK1) = K ′

1 \ (−int recK1). (5)

Now Lemma 3.1 implies that K2 = K ′

1 (= γK1).

1c. To finalize Case 1, it remains to explore the situation when there is another homo-
thety f(x) = q + λx, λ > 0, distinct from g(x) = γx, such that f(K1) = K2. We state
that λ 6= γ, since otherwise γK1 = q+γK1 implies q = 0 , which results in f = g. Hence
α = γ/λ 6= 1.

If q = 0 , then λK1 = γK1 or K1 = αK1, and (P5) gives that K1 is a convex cone with
apex 0 . Then K2 = λK1 = K1.
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If q 6= 0 , then with r = q/(α− 1), we rewrite γK1 = q + λK1 as

α(λK1 − r) = λK1 − r.

By (P5), λK1−r is a convex cone with apex 0 . Hence K1 and K2 are homothetic convex
cones with apices r and γr (= q + λr), respectively.

Case 2. Now assume thatH∩bdK1 is an (n−1)-dimensional ellipsoid for any hyperplane
H ∈ F . As in case (ii) of 1a, H ∩bdK2 is an (n−1)-dimensional ellipsoid homothetic to
H ∩ bdK1 for any choice of H ∈ F . By Theorem 1.6, there are convex quadric surfaces
S1 and S2 such that

bdK1 \ [recK1 ∪ (−recK1)] ⊂ S1, bdK2 \ [recK1 ∪ (−recK1)] ⊂ S2.

Since recK1 ⊂ intK1 ∩ intK2 (due to 0 ∈ intK1 ∩ intK2), we rewrite these inclusions
as

bdK1 \ (−recK1) ⊂ S1, bdK2 \ (−recK1) ⊂ S2.

By the continuity argument, we can write

bdK1 \ (−int recK1) = S1 \ (−int recK1), (6)

bdK2 \ (−int recK1) = S2 \ (−int recK1). (7)

2a. Our next goal is to show that S1 and S2 are homothetic. To do this, we consider the
cases dim recK1 < n and dim recK1 = n separately.

(i) Assume first that dim recK1 < n. Then int recK1 = ?, which immediately implies
the equalities bdK1 = S1 and bdK2 = S2. According to the classification of convex
quadric surfaces, solid elliptic paraboloids are the only unbounded line-free convex solids
K ⊂ R

n with quadric boundary and dim recK < n. Thus both K1 and K2 are solid
elliptic paraboloids and recK1 = recK2 is a halfline, h. Let G be the hypersubspace
orthogonal to h, and let Ei = G∩Si, i = 1, 2. Since Ei = G∩bdKi, i = 1, 2, the sections
E1 and E2 are homothetic. This obviously implies that S1 and S2 are homothetic, whence
K1 and K2 are also homothetic.

(ii) Next we suppose that dim recK1 = n. Then each of the surfaces S1 and S2 is either
a convex elliptic cone or a convex elliptic hyperboloid. We claim that both S1 and S2

are of the same type: they are both either convex cones or convex hyperboloids. Indeed,
if S1 is a convex elliptic cone with apex q1, then we can choose a 2-dimensional subspace
L through q1 that intersects S1 along two halflines with common endpoint q1, whence
L ∩ (bdK1 ∩ S1) contains two line segments along these halflines. Since the curves
L∩ bdK1 and L∩ bdK2 are homothetic, the section L∩ (bdK2 ∩ S2) also contains two
line segments. This immediately implies that S2 should be a convex elliptic cone.

Denote by B1 and B2 the convex solids bounded by S1 and S2, respectively. Clearly,
B1 and B2 are uniquely defined because both S1 and S2 are line-free. Furthermore,
recB1 = recB2 = recK1 due to (6) and (7).

If both surfaces S1 and S2 are convex elliptic cones, then they are homothetic. Indeed,
if q1 and q2 are the apices of S1 and S2, respectively, then

B1 = q1 + recB1 = (q1 − q2) + (q2 + recB2) = (q1 − q2) +B2,
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which implies the equality S1 = (q1 − q2) + S2.

Now assume that both S1 and S2 are convex elliptic hyperboloids. We can express S1 in
suitable coordinates by an equation

α1(x1 − x′

1)
2 − α2(x2 − x′

2)
2 − · · · − αn(xn − x′

n)
2 = 1, x1 ≥ x′

1,

where all scalars α1, . . . , αn are positive and (x′

1, . . . , x
′

n) ∈ R
n is a given point. As easy

to see, recB1 is given by the inequality

α1x
2

1 − α2x
2

2 − · · · − αnx
2

n ≥ 0, x1 ≥ 0.

Since recB1 = recB2, the surface S2 has to be described by an equation

β1(x1 − x′′

1)
2 − β2(x2 − x′′

2)
2 − · · · − βn(xn − x′′

n)
2 = 1, x1 ≥ x′′

1,

where β1, . . . , βn > 0, α1/β1 = · · · = αn/βn, and (x′′

1, . . . , x
′′

n) is a given point in R
n. This

obviously implies that S1 and S2 are homothetic.

2b. Finally, we state that K1 and K2 are homothetic. Since this is already done in 2a

when dim recK1 < n, it remains to consider the case dim recK1 = n.

Let f(x) = v + µx, µ > 0, be a homothety such that f(S1) = S2. Put K ′

1 = v + µK1.
Applying f to both parts of (6), we obtain

bdK ′

1 \ (v − int recK1) = S2 \ (v − int recK1). (8)

(i) If v = 0 , then S2 = µS1 and K ′

1 = µK1. Then (7) and (8) imply that

bdK2 \ (−int recK1) = bdK ′

1 \ (−int recK1).

Now by Lemma 3.1, K2 = K ′

1 = µK1.

(ii) Let v 6= 0 . We are going to prove that bdK1 = S1 and bdK2 = S2. Assume, for
contradiction, that bdK1 6= S1. Denote by Qi the part of bdKi that does not lie in Si,
and let Ci be the smallest convex cone with apex 0 that contains Qi, i = 1, 2.

We claim that C1 = C2. Clearly, intC1 6= ? (since otherwise bdK1 = S1). Choose any
2-dimensional subspace L that intersects intC1. Then L∩bdK1 is not a convex quadric
curve, and the homotheticity of L ∩ bdK1 and L ∩ bdK2 implies that L ∩ bdK2 is also
distinct from a convex quadric curve. This shows that L intersects intC2, implying the
inclusion C1 ⊂ C2. Similarly, C2 ⊂ C1.

Since recK1 is line-free, not both v and −v can lie in recK1. Let, for example, v /∈
−recK1. As easily seen, there is a 2-dimensional subspace M such that M ∩ intC1 6= ?

and (v+M)∩Q2 = ?. ThenM∩bdK1 is not a convex quadric curve while (v+M)∩bdK2

is a convex quadric curve due to (v+M)∩bdK2 = (v+M)∩S2. This is in contradiction
with the hypothesis that (v+M)∩bdK2 is homothetic to M ∩bdK1. Thus bdK1 = S1

and bdK2 = S2, implying the homotheticity of K1 and K2.

4. Proof of Theorem 1.9

2) ⇒ 1) Let L ⊂ R
n be a 2-dimensional plane through p that properly intersects K

along a bounded set. If K is symmetric about p, then so is the section L∩bdK. Assume
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that K is not symmetric about p. Since L − p is a subspace and the cones recK and
−recK are symmetric about 0 , (P3) implies that

(L− p) ∩ [recK ∪ (−recK)] = {0 }.

Hence

L ∩ [(p+ recK) ∪ (p− recK)] = {p}.

From here we obtain

(L ∩ bdK) \ {p} = (L ∩ bdK) \
(

L ∩ [(p+ recK) ∪ (p− recK)]
)

= L ∩
(

bdK \ [(p+ recK) ∪ (p− recK)]
)

.

By the hypothesis, the set bdK \ [(p + recK) ∪ (p − recK)] lies in a convex quadric
surface, S. Because L ∩ bdK is the relative boundary of the 2-dimensional compact
convex set L∩K, we have L∩bdK = L∩S, that is, L∩bdK is a convex quadric curve
itself. Being bounded, L ∩ bdK should be an ellipse, again implying that L ∩ bdK is
centrally symmetric (not necessarily about p).

1) ⇒ 2) Without loss of generality, we put p = 0 . The statement 1) ⇒ 2) is established
in [1, 12] for the case of convex bodies, when 2) is equivalent to the condition “K is
symmetric about p or bdK is an ellipsoid.� Hence we may suppose thatK is unbounded.
Then recK 6= {0 } and there is a halfline h with apex 0 that lies in recK.

As in the proof of Theorem 1.6, we first exclude the trivial case when K ⊂ p+recK. In
this case,

bdK \ [(p+ recK) ∪ (p− recK)] = ?.

On the other hand, the inclusion K ⊂ p + recK obviously implies that all proper
sections of K by 2-dimensional planes through p are unbounded, thus ensuring the
trivial equivalence of conditions 1) and 2) of the theorem.

Our strategy is to show that all proper bounded sections of bdK by 2-dimensional
subspaces are ellipses and then to apply Theorem 1.6. Assume, for contradiction, the
existence of a 2-dimensional subspace L ⊂ R

n such that the section L∩bdK is a bounded
planar curve distinct from an ellipse. Then L∩ recK = {0 } and there is a hyperplane H
containing L such that H ∩ recK = {0 } (see (P4)), implying that H ∩bdK is bounded.
Since dim (H ∩K) = n − 1 ≥ 3, and since every section of H ∩K by a 2-dimensional
subspace of H is centrally symmetric, H ∩K is symmetric about 0 or H ∩ bdK is an
(n− 1)-dimensional ellipsoid (see [1, 12]). Because L∩ bdK is not an ellipse, H ∩ bdK
cannot be an ellipsoid. Hence H ∩ K is symmetric about 0 . Denote by l the line
containing h.

1. First we claim that K lies in the both-way infinite cylinder (H ∩ K) + l. Indeed,
choose any 2-dimensional subspace N through l and consider the line segment H∩K∩N
(we observe that N 6⊂ H because of l 6⊂ H). Since H ∩ K is symmetric about 0 , we
can write H ∩K ∩N = [b,−b]. We are going to show that K ∩N is supported by the
lines l+ b and l− b (see the figure above). For any scalar ε ∈ [0, π/2[, denote by Hε the
hypersubspace of Rn whose unit normal nε lies in N and forms with h a positive angle
of size ε according to the counterclockwise rotation about 0 . Since H ∩ K is not an
(n − 1)-dimensional ellipsoid, the continuity argument implies the existence of a scalar
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δ > 0 such that the sections Hε ∩K are bounded and distinct from (n− 1)-dimensional
ellipsoids for all ε ∈ ]0, δ[. As above, the sections Hε ∩K are symmetric about 0 . Hence
the line segments Hε ∩K ∩N are centered at 0 : Hε ∩K ∩N = [bε,−bε] for all ε ∈ ]0, δ[.

We state that for any ε ∈ ]0, δ[, the points bε and −bε belong to the lines l+ b and l− b,
respectively. Indeed, if bε were outside the closed slab of N between l+ b and l− b, then
the inclusion bε +h ⊂ K ∩N would imply that b ∈ intK. Similarly, if bε were inside the
open slab of N between l+ b and l− b, then, due to h− b ⊂ K, the point −bε would be
in intK. Hence bε ∈ l + b, and, by symmetry, −bε ∈ l − b.

The argument above implies that both halflines h + b and h − b are in the relative
boundary of K ∩ N . Indeed, if for example, h + b contained a point x ∈ rint (K ∩ N),
then b ∈ ]bε, x[⊂ rint (K ∩N), contradicting the choice of b. As a result, both lines l+ b
and l − b support K ∩N .

Since the subspace N through l was chosen arbitrarily, we conclude thatK ⊂ (H∩K)+l.

2. The inclusion K ⊂ (H ∩ K) + l implies that recK = h. Hence any hypersubspace
transverse to h intersectsK along a bounded set. Now, fixing a 2-dimensional subspaceN
through l, we continuously rotate the hypersubspace Hε about 0 from the initial position
ε = 0 until its unit normal vector nε ∈ N reaches the limit position nλ, 0 < λ < π/2,
where the section Hλ∩K is still symmetric about 0 but any further small rotation of Hε

results in a section Hε ∩K, ε > λ, that is not symmetric about 0 (such a value λ exists
because the line l + b is not entirely in K). As above, all sections Hε ∩K, ε ∈ ]λ, π/2[,
are (n− 1)-dimensional ellipsoids. By the choice of λ,

Hλ ∩K = Hλ ∩
(

(H ∩K) + l
)

. (9)

Since H∩bdK is not an (n−1)-dimensional ellipsoid, the cylindric surface (H∩bdK)+l
is not ellipsoidal itself, and (9) implies that Hλ ∩ bdK is also distinct from an (n− 1)-
dimensional ellipsoid. On the other hand, Hλ ∩ bdK should be an (n− 1)-dimensional
ellipsoid as the limit position of (n− 1)-dimensional ellipsoids Hε ∩ bdK when ε → λ+.

The obtained contradiction shows that all proper bounded sections of bdK by 2-dimen-
sional planes through p are ellipses. By Theorem 1.6, bdK \ [(p+ recK) ∪ (p− recK)]
lies in a convex quadric surface.

Acknowledgements. The author thanks the referees for many helpful comments on earlier

drafts of the paper.

References

[1] P. W. Aitchison, C. M. Petty, C. A. Rogers: A convex body with a false centre is an
ellipsoid, Mathematika, Lond. 18 (1971) 50–59.



486 V. Soltan / Convex Solids with Planar Homothetic Sections Through Given Points

[2] T. Bonnesen, W. Fenchel: Theorie der konvexen Körper, Springer, Berlin (1934); Engl.
transl.: Theory of Convex Bodies, BCS, Moscow, USA (1987).

[3] G. R. Burton: Sections of convex bodies, J. Lond. Math. Soc., II. Ser. 12 (1976) 331–336.

[4] G. R. Burton, P. Mani: A characterization of the ellipsoid in terms of concurrent sections,
Comment. Math. Helv. 53 (1978) 485–507.

[5] H. Busemann: The Geometry of Geodesics, Academic Press, New York (1955).

[6] M. Florenzano, C. Le Van: Finite Dimensional Convexity and Optimization, Springer,
Berlin (2001).

[7] R. J. Gardner: Geometric Tomography, Cambridge University Press, Cambridge (1995).
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