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Some variational models have been recently introduced to the aim of modeling ramified structures, such
as trees, rivers and so on. We introduce a general scheme in which the notion of transport distance is
introduced starting from a general transport cost functional, through relaxation arguments. Then we
apply this general framework to the irrigation cost, which is a particular cost functional depending on a
parameter α ∈]0, 1[. We discuss the equivalence between this abstract approach and the above models.

Introduction

Recently, starting from [22], [18], a variant of the Monge-Kantorovich transport problem
which leads to some variational models for ramified structures has been investigated. In
[22] the functional is firstly defined on finite graphs and subsequently extended to real
flat 1-chains. The first step of this approach goes back to Gilbert [15] who generalized the
Steiner problem [16]. Therefore we shall refer to this formulation as to Gilbert-Steiner
approach or Xia approach. In [18], on the contrary, the functional is proposed for families
of curves parametrized on a set Ω equipped with a probability measure or, equivalently,
as remarked in [3], for measures defined on a space of curves. The theory developed in
these cases is based on the concavity properties of the model function |x|α, involved in
all these functionals, with 0 < α < 1. Actually the value of α plays an important role
with respect to some particular questions. More precisely, some problems are easy when
α > 1

N ′
= 1 − 1

N
, if N is the dimension of the euclidean space in which the problem

is studied, (large α) and much more subtle when 0 < α ≤ 1
N ′

(small α), in which new
questions, like the irrigability problem ([10]), arise. The assumption of α being large is
not always explicitly remarked, since it is sometimes taken as implicitly assumed in this
literature.

In this paper we moved from the idea of showing the equivalence of these various ap-
proaches, attaining to a more general point of view which sees these functionals as metrics
induced by a transport cost defined on probability measures. By applying this general
framework to a particular cost functional, depending on a parameter α, the irrigation
cost, we consider besides the functional in [18] (in one of its equivalent variants), the
functional obtained by a relaxation procedure which induces a weak lower semicontin-
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uous metric (transport distance). Then we get the Gilbert-Steiner functional as the
result of a two steps relaxation which firstly induces a metric and then its lower semi-
continuous envelope. By using the appropriate version of the Pruning Theorem stated
in [9], we show that for any α the three functionals are the same, getting in this way the
equivalence of the two mentioned approaches and the more abstract formulation of the
transport distances introduced here.

More recently, other variational models for branching structures have been proposed in
literature (see [8]), these approaches exhibit similar structures to those studied here but
keeping substantial differences. Our equivalence proof does not regard, for it could not,
the model presented in [8].

The results in this paper do not answer completely the question of the equivalence of
the approaches in [18], [3] and in [15], [22], since the functional used here is a variant of
those in [18] and in [3], which are also different among themselves. A final part, with
a few regularity properties which lead to establish the equivalence of all those variants
of the functional in [18], had been planned as a conclusive part of this paper. However,
since it requires several arguments and concepts in a different direction with respect to
the theory developed here, we have preferred to leave it to a subsequent note [19], which
will make the analysis complete.

In this paper we shall introduce several definitions and, in order to avoid a too heavy
notation, in some cases we will use the same symbol to denote different things. For
instance, some microscopic objects induce their macroscopic counterparts and we will
often keep the same notation for the two descriptions. The different use of the two
objects and the different context in which they are employed should avoid any possible
misunderstanding and let us simplify the exposition.

The paper begins with an introduction to the transport problems according to a kine-
matic interpretation, rather than the usual holes filling formulation. This allows us to
introduce in a natural way the variables employed in [18] and [3], as well as any other
concept which will be subsequently used. In the second section we shall introduce the
notion of transport distance induced by a transport cost and in Section 3 we shall prove
some general theorems obtained under abstract assumptions on a generic transport cost.
In Section 4 we specialize these results by considering the particular cost functional which
we shall call irrigation cost.

Throughout this paper X and Y will denote closed convex subsets of RN . However most
of the arguments can be trivially extended to a more general setting which includes
Polish spaces where no linear structure is needed or dual Banach spaces equipped with
the weak∗ topology otherwise. We shall need to use some results at this higher level of
generality and in such cases the assumption that X is a Polish space will be explicitly
mentioned in the hypotheses, while in absence of any specification the assumption that
X and Y are closed convex subsets of RN will be always implicitly assumed.

We shall denote by Γ any space of X valued curves defined on an interval I ⊂ R.
Moreover, we shall denote by P(X), P(Γ), P(RN) the spaces of the probability measures
defined respectively on X, Γ, RN . Though we shall refer to probability measures, we
essentially need to work with positive Radon measures with finite total mass. Indeed,
throughout the paper we will often use splitting operations or decompositions of the
measures and nevertheless we will continue to refer to them as probability measures, by
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assuming that an underlying normalization operation has been made. This choice avoids
a useless further notation and fits the standard setting adopted in the existing literature
on the subject of this work.

The results of this paper, in the specific case of the irrigation cost, were exposed by the
second author during the School in Nonlinear Analysis and Calculus of Variations held
in Pisa in October 2005.

1. Mass transportation problems and kinematic interpretation

1.1. The Monge-Kantorovich problem and basic kinematic tools

The classical setting of the optimal mass transportation deals with the problem, originally
posed by Monge ([20]), of the minimization of the cost needed to transport a given mass
of material from a starting placement to a final one (a pile of sand to some holes).
Then, if the two prescribed initial and final distributions of mass are represented by two
probability (by normalization) measures µ and ν, Monge problem relies in searching a
transport map T : RN → RN which minimizes the transport cost

JM(T ) =

∫

RN

c(x, T (x))dµ(x), (1)

among all the admissible maps T , i.e. such that T#µ = ν, where we denote by T#µ the
push-forward measure or image measure of µ through T , defined by

T#µ(B) = µ(T−1(B))

for every B in the image σ-algebra, i.e. such that T−1(B) is µ-measurable. As it is well
known, (see e.g. [1], [12], [13], [23], [24]), without suitable assumptions on the measures
µ, ν and on the map c : RN × RN → R, the problem may fail to admit any solution
or this can be not unique or even the set of admissible maps can be empty. Then a
natural generalization of the problem was introduced by Kantorovich ([17]), whose main
idea was to look for a measure on RN × RN instead of a map, and thus the transport
problem becomes a minimization problem for a cost functional defined on the space of
admissible probability measures in two variables, i.e. probability measures with given
marginals. Formally, let Π(µ, ν) ⊂ P(RN × RN) be the set of the probability measures
on RN × RN with marginals µ and ν, i.e. p0#π = µ, p1#π = ν, where p0 : (x1, x2) 7→ x1

and p1 : (x1, x2) 7→ x2 are the projections. A measure π ∈ Π(µ, ν) is called a transport
plan and Π(µ, ν) is the set of transport plans between µ and ν. Let us notice that every
transport map T induces a transport plan πT through the formula πT = (Id, T )#µ, Id
being the identity map of RN , and in this sense the transport plans can be seen as
a generalization of the functions. This leads to the following weak formulation of the
optimal mass transport, which is called Monge-Kantorovich problem, and asks for the
minimization of the functional

JMK(π) =

∫

RN×RN

c(x, y)dπ(x, y), (2)

among all the admissible measures π ∈ Π(µ, ν) (see [1], [23], [24]).

Here we shall pursue a line of thoughts which can be better explained by a different phys-
ical interpretation of the problems modeled in the framework of mass transportation, as
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above introduced. More precisely, we can think to any probability (by normalization)
measure as to an appropriate description of any material body in any of its configura-
tions in the physical space. Thus the measures µ and ν, previously introduced, can be
viewed as the initial and the final configurations of a material body undergoing to a
transplacement, generally intended as a change of the density distribution. Obviously
any µ ∈ P(X) can be thought as the placement of a material body inX (but the physical
interpretation is suited for X = RN and, in particular, for N = 3). This point of view
allows to deal with material points, represented by Dirac masses, as well as with contin-
uous distribution of matter in their more general evolutions, regardless any topological
restriction on the accessible spatial configurations. The sand piles considered by Monge
are, of course, a particular case of physical bodies and the holes represent potential future
positions (actually, in the Monge formulation, the mass density is replaced by a volume
density on a two dimensional projection). Summarizing, we can say that the placement
of a material body of normalized mass is represented by a probability measure, while a
(macroscopic) change of position (transplacement) is represented by a pair of probability
measures, which can be taken, in general, in two Polish spaces X and Y . In the Monge
problem a macroscopic change of position (µ, ν) is assigned. The term macroscopic has
been used in order to point out that we are just looking to the change of mass distri-
butions and not to the displacements of the single particles. For instance, we consider
null a macroscopic change of position if the mass density remains the same while the
particles change place, as it happens, for instance, in the case of a rotation around the
center of a spherical body of uniform density. On the other hand, if we want to assign
a microscopic change of position of a body we must specify the change of position of
every single particle, namely the density of mass which moves from any given point x to
any other given point y. So this description will need a measure on the product space
X × Y of the pairs (x, y) and this is precisely the concept of transport plan, which can
be therefore intended as a microscopic change of position. Note that, roughly speaking,
the passage from the macro description to the micro description requires something like
a change of the order in the use of the concepts of measures and pairs, indeed a measure
on pairs is used instead of a pair of measures. The same circumstance will be present
in the other passages macro-micro which will be considered in the sequel. Clearly, ev-
ery microscopic change of position induces a macroscopic change of position since the
knowledge of the displacement of every particle allows to know the change of the global
distribution of mass. This fact is reflected in the operation which to any transport plan
π associates the pair of its marginals (µ, ν), which represent the macroscopic synthesis of
the microscopic change of position π. From this point of view, the Monge-Kantorovich
problem consists in searching the cheapest microscopic displacement, according to the
cost (2), which induces the macro displacement (µ, ν).

We can coherently define a macroscopic motion as a continuous change of placements,
namely as a narrowly continuous (see Section 1.6 below) curve µ : t 7→ µ(t) ∈ X, for t
varying in a given interval I ⊂ R. In contrast, if we look at the micro description and
we are interested in describing the motion of the elementary particles, we need a tool
able to deal with the individual trajectories of the particles during the time interval I.
This tool is just given by a measure on the space of trajectories. Therefore, let Γ be the
space of continuous curves γ : I → X equipped with the topology of the local uniform
convergence. Let us notice that although this notion of convergence could appear as a
metric concept because of the uniformity requirement, it is a topological concept which
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only depends on the topology onX. Indeed, given any metric which induces the topology
of X, we have that γn locally uniformly converges to γ if and only if

for every tn → t ∈ I γn(tn) → γ(t). (3)

Let P(Γ) be the space of probability measures on Γ, we define a microscopic motion or,
equivalently, a particle motion as any σ ∈ P(Γ).

Let us observe that, as one can expect, every microscopic motion induces a macroscopic
motion. Indeed, for every t ∈ I, let pt : Γ → X be given by pt(γ) = γ(t) and let σ ∈ P(Γ)
be a given microscopic motion. Then for every t ∈ I, by setting, with an evident but
harmless abuse of notation,

σ(t) = (pt)#σ, (4)

we get the macroscopic motion σ : t 7→ σ(t) induced by the particle motion σ. It
is evident that, conversely, given a macroscopic motion σ we have, in general, many
possible microscopic motions which induce it.

For instance, in the simple case of a body made of a finite number n of material points,
each one of mass mi (i = 1, . . . , n), which describe orbits γi : t 7→ γi(t) ∈ RN , the particle
motion is represented by the sum of n Dirac masses on Γ, placed on the orbits γi and
of masses mi; the position of the body at the time t is given by the measure µ(t) equal
to the sum of n Dirac masses in RN , located at the points γi(t), with masses mi. The
macroscopic description of such a motion is just given by t 7→ µ(t) ∈ P(RN).

In this kinematic framework, in the case X = Y , we can also look at a transport plan
π ∈ Π(µ, ν) as to a special microscopic motion. Indeed, by interpolating the pairs of
points with the uniform rectilinear motions joining them, we can view transport plans
as the particle motions concentrated on uniform rectilinear orbits. More precisely, let us
take I = [0, 1] (or any other bounded interval) and, for every x, y ∈ X, let i : (x, y) 7→ rxy,
where rxy is the uniform rectilinear motion rxy : t 7→ ty + (1 − t)x. The map i is a
bijection between the space of pairs X×X and the space of orbits of uniform rectilinear
motions Γr defined on I = [0, 1], so if π is a transport plan, i#π ∈ P(Γr). Conversely,
given a particle motion concentrated on the uniform rectilinear motions σ ∈ P(Γr),
then i−1

# σ ∈ P(X ×X), namely it is a transport plan. Therefore, in such a case we can
identify the transport plans with the particle motions in which every particle moves with
a uniform rectilinear motion and their marginals with the endpoints of the corresponding
macroscopic motion. Thus, every result established for particle motions can be referred,
in particular, to transport plans. In general, if X and Y are general Polish spaces, any
transport plan π ∈ P(X × Y ) can be only viewed as a discrete version of a particle
motion.

If σ ∈ P(Γ) is a microscopic motion, we can consider the restriction σs of σ to the
constant orbits {γ ∈ Γ | γ(t) = const. ∀t ∈ I} and set σm = σ − σs as the restriction of
σ to the non constant orbits. With this notation we can split σ as

σ = σs + σm. (5)

By applying (4), the macroscopic motion induced by the microscopic motion σ can be
decomposed as

σ(t) = σs(t) + σm(t), ∀t ∈ I
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and, since σs is concentrated on the constant orbits, we have σs(t) = σs for every t, then
we can write

σ(t) = σs + σm(t), ∀t ∈ I. (6)

The splitting (5) obviously applies to any transport plan π ∈ P(X,X) since it can
be viewed as a particular microscopic motion. In this case we observe that πs is the
restriction of π to the diagonal set {(x, y) ∈ X ×X | x = y}.

Let π ∈ P(X × Y ) be any transport plan and let ϑ : X × Y → Y × X defined by
ϑ(x, y) = (y, x), we define the symmetryc transport plan πs ∈ P (X × Y ) as πs = ϑ#π.

1.2. Restrictions and composition of microscopic motions

Let I ⊂ R and let Γ be as above. If J ⊂ I is any given subinterval and ΓJ is the space
of the continuous curves defined on J , then the restriction map R : Γ → ΓJ is defined
by R(γ) = γ|J , where γ|J is the restriction of γ to J . Then, if σ ∈ P(Γ) is a particle
motion on I, we can define the restriction of σ to J defined as σJ = R#σ. We consider
a partition of I in two subintervals I = I1 ∪ I2 and we set t = max I1 = min I2. Let Γ1

and Γ2 be the spaces of the continuous curves respectively defined on I1 and I2. Given
two particle motions σ1 and σ2 on the time intervals I1 and I2 respectively, we say that a
particle motion σ defined on the time interval I is a composition of σ1 and σ2 if these ones
are the restrictions of σ to I1 and I2 respectively. We ask when two given σ1 and σ2 can
be composed. Let us notice that two curves γ1 and γ2 can be composed if γ1(t) = γ2(t)
and we shall say that two curves satisfying this condition are compatible. The set

C =
{

(γ1, γ2) ∈ Γ1 × Γ2 | γ1(t) = γ2(t)
}

is the set of the compatible pairs. We observe that a composition of microscopic mo-
tions induces the composition of the relative macroscopic motions, then the macroscopic
compatibility condition σ1(t) = σ2(t), like the previous one stated for curves in RN , is
necessary for such a composition exist.

We define the double restriction map R : Γ → Γ1 × Γ2, R = (R1, R2), as follows:

R(γ) =
(

γ|I1 , γ|I2
)

,

for every γ ∈ Γ. Through the map R we can see that the compatibility condition is also
sufficient. Notice that R induces a bijection between Γ and C. We have that for any
σ ∈ P(Γ) π = R#σ ∈ P(Γ1 × Γ2) is a transport plan between Γ1 and Γ2 concentrated
on C. Conversely, if π ∈ P(Γ1×Γ2) is concentrated on C, then σ = R−1

# π ∈ P(Γ). Then,
through the restriction map R, we have a canonical way to pass from a microscopic
motion on I to a transport plan which has its restrictions (microscopic motions defined
on the subintervals Ii) as marginals.

Therefore, if we want, given σ1 ∈ P(Γ1) and σ2 ∈ P(Γ2), to find a composition σ, we
must look for a transport plan π between Γ1 and Γ2 with marginals σ1 and σ2, i.e.
π ∈ Π(σ1, σ2), concentrated on C. Notice that the simplest way to take a transport plan
π having σ1 and σ2 as marginals is accomplished by taking π = σ1 ⊗ σ2 but, to the aim
of keeping the compatibility property, we must have such a π concentrated on C and so
we cannot simply take the tensor product. Then we proceed as follows: firstly, let us use
the compatibility condition σ1(t) = σ2(t) in order to set

σ = σ1(t) = σ2(t). (7)
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Now, let us take the disintegration (see [2, Theorem 6.4.1]) of σ1 and σ2 with respect to
σ, namely

σ1 =

∫

X

(σ1)xdσ, σ2 =

∫

X

(σ2)xdσ.

Then, for every x we have to find a transport plan in Π((σ1)x, (σ2)x) and this is given,
among the others, by (σ1)x ⊗ (σ2)x. Therefore, with this choice, a transport plan in
Π(σ1, σ2) concentrated on C is given by

π =

∫

X

(σ1)x ⊗ (σ2)xdσ.

So,
σ = R−1

# π ∈ P(Γ)

gives a microscopic motion on Γ starting from two compatible microscopic motions on
Γ1 and Γ2. This composition operation can be iterated to any finite or countable set
of compatible particle motions. Indeed, let I = ∪i[ti−1, ti], if for every index i the
compatibility condition

σi(ti) = σi+1(ti) (8)

is satisfied by the macroscopic motions t 7→ σi(t) induced by the microscopic motions
σi defined on Ii = [ti−1, ti], then we can define a microscopic motion on I by taking, at
each step k, the composition of the microscopic motions defined on ∪k

i=1[ti−1, ti].

1.3. Multiple plans

Whence a transport plan can be regarded as a microscopic motion, the above composition
operation can be carried out on transport plans, provided the compatibility condition
(8) is satisfied.

For every k ∈ N, let us call chain any finite ordered sequence (µ1, µ2, . . . , µk) ∈ P(X1)×
. . .×P(Xk). A chain of transport plans π = (π1, π2, . . . , πk) ∈ P(X1×Y1)×. . .P(Xk×Yk)
will be said a compatible chain if, for i = 2, . . . , k, Xi = Yi−1 and p1#(πi−1) = p0#(πi). A
compatible chain of transport plans represents a discrete microscopic motion. If Xi = Yi

for every i, we can regard the transport plans πi as microscopic motions on intervals
[ti−1, ti] and in such a case the chain turns out to be compatible if and only if the
compatibility condition (8) is satisfied.

Moreover, given a compatible chain of transport plans π = (π1, . . . , πk), we shall say that
the chain ξ = (ξ0, ξ1, . . . , ξk) is the chain of the marginals or of the vertices of π if for
every i = 1, . . . , k, the component πi has ξi−1 and ξi respectively as marginals. Given
ξ, we shall denote by Π(ξ0, . . . , ξk) the set of the admissible chains of transport plans
corresponding to the chain of vertices ξ, i.e. the compatible chains of transport plans
which have ξ as the chain of vertices.

Given a compatible chain of transport plans π = (π1, . . . , πk), through the above defined
composition, we can take the composition π̃ of πi, i = 1, . . . , k which turns out to be a
microscopic motion concentrated on piecewise linear trajectories defined on I. Moreover,
since any piecewise linear curve can be uniquely identified by its vertices, such a measure
π̃ can be viewed as a measure on the set of ordered (k + 1)-ples of points in X and so
π̃ ∈ P(X×· · ·×X). The k+1 marginals of such a measure pi#π̃, i = 1, . . . , k+1 are the
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vertices ξi of the chain π and represent the macroscopic synthesis of π or π̃. We shall
call (following the terminology of [2]) the measure π̃, so obtained, multiple plan. The
above construction can be carried out on any sequence of Polish spaces X0, X1, . . . , Xk,
even if, in such a case, we do not fall in the context of the previous section and we
cannot speak of piecewise linear motion but only of discrete motions, which can only be
interpolated in a piecewise linear way in presence of a vector structure. Indeed, in the
kinematic picture, a sequence of k measures represents a discrete macroscopic motion,
while a multiple plan, or equivalently, a measure on chains of points represents a discrete
microscopic motion.

1.4. Scaled transport plans

When X = Y we focus on another point of view on the transport plans, which will
be involved in the sequel of this paper. As we have observed, any transport plan π ∈
P(X×X) can be viewed as a particle motion in which each particle performs a rectilinear
trajectory from the starting point x ∈ X o the final one y ∈ X. In order to record the
direction of this motion we introduce the mapping d : X ×X → X × RN defined by

d : (x, y) 7→ (x,v), with v = (y − x),

which will be called displacement function. Let π ∈ P(X ×X) be any transport plan,
the measure d#π is in P(X ×RN) and gives a description of π in terms of the variables
(x,v). Whenever any transport plan is expressed in such a way we shall refer to it as
to a displacement plan to emphasize the displacement involved in it. Notice that the
displacement plan d#π uses the direction in which the mass located at x moves for
π. For every λ ≤ 1, we set sλ(x,v) = (x, λv) and we define the scaled displacement
plan πλ = (sλ)#π. Since every transport plan can be viewed as a displacement plan
and conversely, given a transport plan π, we can use the corresponding notion of scaled
transport plan by taking πλ = (s′λ)#π, where s′λ : (x, y) 7→ (x, x+ λ(y − x)), for λ ∈ R.

1.5. Lagrangian parameterizations

The description of the position of a material body can be made by using a rest con-
figuration of the body, so let (Ω, µΩ) be a given probability space which, in this kine-
matic interpretation, can be viewed as the reference configuration of a material body. If
µ ∈ P(X) is any placement of the material body, we can refer it to the rest configuration
by using the so called lagrangian description.

Definition 1.1. Let µ be a positive measure on X. We shall say that f : Ω → X is a
lagrangian parametrization of µ if f#µΩ = µ.

Thus the mapping f can be thought as a weak version of what in the classical setting
of continuum mechanics is called a deformation. Note that a measure µ on X is a Borel
measure if and only if f is a measurable map. If f is a lagrangian parametrization of µ
we shall also say that f induces µ. By choosing a different configuration of the body,
we can get a new lagrangian parametrization of the same placement µ. If two different
lagrangian parameterizations f and g induce the same placement, then f and g will be
called equivalent lagrangian parameterizations.
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Remark 1.2. If (Ω, µΩ) has no atom and µΩ = 1 we can find a lagrangian parametriza-
tion f : Ω → X of any given probability measure µ. The proof of this assertion, or even
more general versions, is an easy variant of [18, Lemma 9.1], anyway it can be recovered
by combining [18, Lemma 9.1] and [11, Theorem 11.7.5].

In particular, a lagrangian parametrization of a transport plan π ∈ P(X×Y ) is given by
a measurable function g : Ω → X×Y , which amounts to assign two measurable functions
g1 : Ω → X and g2 : Ω → Y . More in general, for a multiple plan π ∈ P(X1 × . . .×Xk)
a lagrangian parametrization is given by a measurable function g : Ω → X1 ×Xk, which
amounts to assign k measurable functions valued in Xi, for i = 1 . . . k.

Analogously, in dealing with the microscopic motion σ of a material body we can obtain
a lagrangian parametrization by using a map χ : Ω → Γ. Note that assigning χ is
equivalent to give a map χ : Ω×I → χ(p, t) ∈ X such that for a.e. material point p ∈ Ω,
χp : t 7→ χ(p, t) is continuous. Indeed χ is induced by χ by setting χ(p, t) = [χ(p)](t)
and, conversely, χ is induced by χ as the map from Ω to Γ defined by χ : p → χp.
Under this identification, we can consider the following definition as a particular case of
Definition 1.1.

Definition 1.3. Let σ be a positive measure on Γ. We shall say that χ : Ω× I → X is
a lagrangian parametrization of σ if χ#µΩ = σ.

As just previously observed, checking the Borel regularity of a measure is equivalent to
check the measurability of its lagrangian parameterizations χ. Furthermore, according
to the definition of image measure given in Section 1.1, we state the following assertion.

Proposition 1.4. Let X be a Polish space, let σ be a positive measure on Γ and let
χ : Ω × I → X be any lagrangian parametrization of σ. Then the following statements
are equivalent:

i) σ is a Borel measure (i.e. σ is a microscopic motion);

ii) χ is a measurable map;

iii) for every t ∈ I χ(·, t) is a measurable map.

Proof. i) ⇒ iii) Fix t ∈ I. The map pt : Γ → X, defined by pt : γ 7→ γ(t), is continuous
and then (pt)#σ is a Borel measure. Moreover,

(pt)#σ = (pt)#(χ#µΩ) = (pt ◦ χ)#µΩ = χ(·, t)#µΩ.

Therefore χ(·, t)#µΩ is a Borel measure and then χ(·, t) is a measurable map.

iii) ⇒ i) Let d : X ×X → R+ be a distance inducing the topology on X. Since C(I)
is separable, it is enough to show that, for K compact subset of I, r > 0 and g ∈ C(I)
fixed, the set

ΩK,r = {p ∈ Ω | d(g(t)− χ(p, t)) ≤ r, ∀t ∈ K}

is measurable. To this aim, let N ⊂ K be a countable set such that K ⊂ N and for every
t ∈ N let Ωt = {p ∈ Ω | d(χ(p, t) − g(t)) ≤ r}. By continuity we have ΩK,r =

⋂

t∈N Ωt

and, since for every t ∈ N Ωt is measurable, we get the claim.

ii) ⇒ iii) Since χ is measurable, by Fubini Theorem ([14, Theorem 6.46]) we have that
a.e. section of χ is measurable, namely for a.e. t ∈ I χ(·, t) is measurable. Since χ is
continuous with respect to the variable t, we obtain the claim.
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iii) ⇒ ii) Fix n ∈ N and take a partition of I made of contiguous and disjoint subin-
tervals Ii having endpoints ai and bi = ai+1, with |ai − bi| ≤

1
n
for every i. Let us define

χn(p, t) = χ(p, ai) for t ∈ Ii. Now, χn is a measurable map and, since the fibers are
continuous, we get χn → χ and so χ is measurable.

Let us notice that, if Ω is a probability space with no atom and σ is a positive measure
on Γ, by Remark 1.2 there exists a lagrangian parametrization of σ, namely χ : Ω → Γ
and so a lagrangian parametrization of σ given by the corresponding χ : Ω× I → X.

Remark 1.5. We remark that in the following we shall use microscopic motions or la-
grangian parameterizations of microscopic motions by considering them as two equivalent
descriptions. That is, we can argue in terms of particle motions or lagrangian parameter-
izations in interchangeable way. Therefore any statement regarding one of these objects
can be translated into a statement regarding the other one, as we shall often explicitly
do. However, we shall consider any result established for particle motions automatically
translated in terms of lagrangian parameterizations and conversely and we shall adopt
one of the two descriptions instead of the other one without any further justification,
even in the train of the same argument, according to the convenience of the exposition.

Definition 1.6. We shall say that a microscopic motion σ ∈ P(Γ) is regular if it is
concentrated on the set of the absolutely continuous curves.

Definition 1.7. We shall say that a lagrangian parametrization χ : Ω × I → X is
regular if for a.e. p ∈ Ω, χ(p, ·) is absolutely continuous with respect to t.

Obviously, if a microscopic motion σ is regular then it only admits regular parameteri-
zations.

Definition 1.8. Let µ, ν ∈ P(X) be two given measures. We shall say that a regular
σ ∈ P(Γ) is an admissible motion between µ and ν on the interval I = [a, b] if σ(a) =
µ, σ(b) = ν. Let ΣI(µ, ν) denote the set of the admissible σ and Σ(µ, ν) be the union of
ΣI(µ, ν) for all the closed bounded intervals I ⊂ R.

Proposition 1.9. Let σ ∈ P(Γ) be regular and let χ : Ω × I → X be a (regular)
lagrangian parametrization of σ. Then for a.e. t ∈ I χ is differentiable with respect to t

for a.e. p ∈ Ω.

Proof. Let us point out that the set A of the pairs (p, t) where χ is differentiable with
respect to t is a measurable set. Indeed, for every (p, t) ∈ Ω× I, let

χ′
+(p, t) = lim sup

h→0

χ(p, t+ h)− χ(p, t)

h
,

χ′
−(p, t) = lim inf

h→0

χ(p, t+ h)− χ(p, t)

h
,

with h ∈ Q. Since χ : Ω × I → X is measurable, it is easy to check that χ′
+ and χ′

−

are measurable and so also the set where they coincide is measurable. By the continuity
of χ in the t variable, this set is A. Then Ac = (Ω × I) \ A is measurable and thus
we can apply Fubini Theorem to compute (µΩ ×H1)(Ac) in terms of the sections Sp =
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{t ∈ I | (p, t) ∈ Ac} and St = {p ∈ Ω | (p, t) ∈ Ac}, that is

(µΩ ×H1)(Ac) =

∫

Ω

H1(Sp)dµΩ(p) =

∫

I

µΩ(S
t)dH1(t).

Since, for a.e. p, χp is a.e. differentiable with respect to t, we have H1(Sp) = 0 for a.e.
p and so, by the previous equation, we get µΩ(S

t) = 0 for H1 a.e. t, which is just a
restatement of the thesis.

If σ ∈ P(Γ) is a microscopic motion and χ : Ω×I → X is any lagrangian parametrization
of σ, we set

Ωs = {p ∈ Ω | χp(t) = const. ∀t ∈ I} , Ωm = Ω \ Ωs. (9)

We denote by µs and µm the restrictions of µΩ to Ωs and Ωm respectively and finally we
set

χs = χ|Ωs×I , χm = χ|Ωm×I .

Thus, with the notation in (5), we have σs = χs#µs and σm = χm#µm.

1.6. Convergence of measures

For the reader’s convenience we recall some results, which are well known in Probability
Theory literature, about convergence of measures. We state them, without proof, by
using the terminology introduced here and we refer to [2], [6], [11] for the proofs and
more details.

Let X be a Polish space and let Cb(X) be the space of bounded and continuous real-
valued functions defined on X.

Definition 1.10. A sequence (νn)n∈N in P(X) is narrowly convergent to ν ∈ P(X), in
symbols νn ⇀ ν, if

lim
n→∞

∫

X

fdνn =

∫

X

fdν ∀f ∈ Cb(X).

Definition 1.11. A sequence (νn)n∈N in P(X) satisfies the tightness condition if

∀ε > 0 ∃ Kε compact in X such that νn(X \Kε) < ε, ∀n ∈ N.

Theorem 1.12 (Prokhorov). Let (νn)n∈N be a sequence in P(X) satisfying the tight-
ness condition. Then it has a narrowly convergent subsequence.

Theorem 1.13 (Skorohod). Let (µn)n∈N be any given sequence of probability measures
on a Polish space X an let (Ω, µΩ) be a given probability space without atoms. Then µn ⇀

µ narrowly if and only if there exists a sequence (fn)n∈N of lagrangian parameterizations
of µn on Ω and there exists f lagrangian parametrization of µ on Ω such that fn converges
to f a.e.

The previous result is essentially proved in [11, Theorem 11.7.2]. If X = Γ, Skorohod
Theorem can be rephrased for microscopic motions, as stated in the next corollary.
Then we say that χn converges to χ, in symbols χn → χ, if χn converges to χ a.e. in the
topology of Γ or, more explicitly, in terms of the map χ, as in the next definition.
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Definition 1.14. Let (χn)n∈N be a sequence of lagrangian parameterizations defined
on Ω × I of microscopic motions. We say that χn converges to χ fiberwise, in symbol
χn → χ, if for a-e. p ∈ Ω (χn)p → χp uniformly on compact subsets of I.

Corollary 1.15. Let (σn)n∈N ⊂ P(Γ) be any given sequence of microscopic motions.
Then σn ⇀ σ narrowly if and only if, for every n, there exists a lagrangian parametriza-
tion χn of σn such that χn → χ, where χ is a lagrangian parametrization of σ.

2. Transport costs and transport distances

2.1. Macroscopic and microscopic transport costs

Let us introduce the notion of transport cost as a positive functional defined on change of
placements. More specifically, we shall define a macroscopic transport cost as a positive
functional defined on macroscopic change of placements, namely on pairs of probability
measures,

C : P(X)× P(X) → R+ ∪ {+∞}

which satisfies the symmetry property C(µ, ν) = C(ν, µ) for every µ, ν in P(X) and
a microscopic transport cost as a positive functional defined on microscopic change of
placements, namely on transport plans,

c : P(X ×X) → R+ ∪ {+∞}

which satisfies the symmetry property c(π) = c(πs) for every π ∈ P(X × X). Then,
the micro-macro relation, previously observed dually, reflects here the fact that every
macroscopic cost induces a microscopic cost. On the other hand, we can consider the
optimal macroscopic cost C induced by a given microscopic cost c, defined by

C(µ, ν) = inf
π∈Π(µ,ν)

c(π). (10)

Whenever the transport cost c will be defined on a restricted class of transport plans we
shall take c = +∞ out of this class.

Let C be a given macroscopic transport cost and let

AC = {(µ, ν) ∈ P(X)× P(X) | C(µ, ν) < +∞} ,

we shall denote by DC the domain of the relation AC .

2.2. Transport distances

Definition 2.1. A macroscopic transport cost d : P(X) × P(X) → R+ ∪ {+∞} is a
transport distance if the following conditions hold true:

D1. d is weakly lower semicontinuous (w.l.s.c.), that is l.s.c. with respect to the narrow
convergence;

D2. d satisfies the triangle inequality, i.e. d(µ, ν) ≤ d(µ, ζ) + d(ζ, ν), for every µ, ν, ζ
in P(X).
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Some remarkable examples of transport costs and transport distances are listed below.

Let p ≥ 1, for every π ∈ P(X ×X), we define the microscopic cost

‖π‖p =

(
∫

X×X

d(x1, x2)
pdπ

)
1

p

.

Example 2.2. The p-Wasserstein distance Wp between the measures µ and ν is defined
as the optimal macroscopic cost induced by ‖π‖p, namely

Wp(µ, ν) = min
π∈Π(µ,ν)

‖π‖p . (11)

It is worth to notice that the p-Wasserstein distance induces the Lp distance on the space
of the parameterizations defined on a given Ω. Indeed, if π = (f × g)#µΩ, then

∫

X×X

|x− y|pdπ =

∫

Ω

|f(x)− g(x)|pdx.

Following [11, Section 11.3], let us consider another example of transport distance. Let
A ⊂ X and ε > 0, we set

Nε(A) = {x ∈ X | d(x,A) < ε}.

Example 2.3. Let µ, ν ∈ P(X), the Prohorov distance ρ between the measures µ and
ν is defined as

ρ(µ, ν) = inf{ε > 0 | µ(A) ≤ ν(Nε(A)) + ε for any Borel setA ⊂ X}.

Notice that if µ and ν have the same total mass then the symmetry property ρ(µ, ν) =
ρ(ν, µ) can be proved.

Let us remark that the Wasserstein distance metrizes the narrow topology on P(X) forX
bounded, while the Prohorov distance does the same without any useless boundedness
assumptions. In alternative we can employ the following distance which will be used
several times in the sequel.

Example 2.4. Let µ, ν ∈ P(X), we define the weak distance dW as

dW (µ, ν) = inf
α∈R

{µ = µ1 + µ2, ν = ν1 + ν2|W∞(µ1, ν1) ≤ α, µ2(X) ≤ α, ν2(X) ≤ α}.

We leave to the reader to check that dW satisfies the triangle inequality, this can be
proved, for instance, by using a disintegration argument as [2, Theorem 6.4.1].

2.3. Transport distance induced by a macroscopic cost and chain distance

Definition 2.5. Let C be a given macroscopic transport cost and let DC be the set of
the transport distances d such that d ≤ C. We define the transport distance induced by
C, dC , as

dC(µ, ν) = sup
d∈DC

d(µ, ν). (12)
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Then dC is defined as the relaxation of C in DC and so it is the greatest weakly l.s.c.
transport cost satisfying the triangle inequality and less or equal to C.

Let us point out that the relaxation in DC is achieved by taking simultaneously two
envelopes, indeed we take the greatest functional less or equal to C which, at the same
time, satisfies the triangle inequality and is weakly l.s.c. If we relax the function in
two different steps by taking the envelope with respect to one of the two properties and
then the envelope of this new function with respect to the other property, we may not
get the same result. Indeed, in general the two properties are not preserved under a
relaxation made with respect to the other one, as we are going to show in the following
counterexamples.

Example 2.6. Let us take the function d : R× R → R+ defined by

d(x, y) =

{

|x− y| if xy > 0 or x = y = 0

|x− y|+ 1 otherwise.

Let us note that d satisfies the triangle inequality but it is is not l.s.c., indeed let us fix
x < 0 and consider d(x, yn) with yn → 0−. We get d(x, yn) → |x| < d(x, 0) = |x|+1. By
relaxing, we get the function d∗ defined as

d∗(x, y) =

{

|x− y| if xy ≥ 0

|x− y|+ 1 otherwise.

Since d∗(−1, 1) = 3 > 2 = d(−1, 0) + d(0, 1), d∗ does not keep the triangle inequality,
which is therefore not preserved under the relaxation operation.

Example 2.7. Let us consider Q2 = [0, 1]2 endowed with the natural topology and let
us take the function d : Q2 ×Q2 → R+ given by

d(x, y) =

{

1 if x2 6= y2,

|x1 − y1|
1+x2 if x2 = y2.

The function d is l.s.c. but it does not satisfy the triangle inequality, if we take d =
supg∈D g(x, y), where D denotes the set of the functions less or equal than d and satisfying
the triangle inequality, we have

d(x, y) =











1 if x2 6= y2,

0 if x2 = y2 6= 0,

|x1 − y1| if x2 = y2 = 0.

It is easy to see that d is not l.s.c.

Let us remark that R and R2 can be embedded in P(RN) with each point identified with
a Dirac mass and the natural topology sent in the narrow topology. Therefore, through
this identification, the above counterexamples apply to our situation and so the two steps
envelope which we are just going to introduce gives, in general, a different function.

Given a transport cost C, we denote by d∗C the metric envelope of C, that is the greatest
functional less or equal than C, satisfying the triangle inequality.
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Definition 2.8. Let C be a transport cost and let d∗C be its metric envelope. We define
the chain distance induced by C, dC , as the l.s.c. envelope of d∗C .

Remark 2.9. In spite of its misleading name, the chain distance is not necessarily a
distance. Indeed, it does not need to satisfy the triangle inequality, as shown by the
above examples (Example 2.6, in particular). On the contrary, by definition, for every
µ, ν ∈ P(X), we have

dC(µ, ν) ≤ dC(µ, ν) (13)

and the equality holds if and only if dC satisfies the triangle inequality. So dC is really
a distance only when it is just equal to dC .

Given any chain ξ = (ξ0, ξ1, . . . , ξk), we introduce the projections p+, p− such that
p+(ξ) = ξ0 and p−(ξ) = ξk, moreover, given a macroscopic transport cost C, we define
the cost of ξ as

C∗(ξ) =
k
∑

i=1

C(ξi−1, ξi). (14)

Let us recall that, given a microscopic cost c, for any i we get by (10) the induced
optimal macroscopic cost C(ξi−1, ξi) = infπi∈Π(ξi−1,ξi) c(πi), from which a cost C∗ is in
turn induced by (14) on the chains. Alternatively, we define the microscopic cost of an
admissible chain of transport plans π̃ ∈ Π(ξ0, . . . ξk) as

c∗(π̃) =
k
∑

i=1

c(πi)

and we can characterize the cost of a chain of measures ξ as

C∗(ξ) = inf
π̃∈Π(ξ0,...ξk)

c∗(π̃). (15)

Let C(X) be the space of the chains on X.

Proposition 2.10. Let C be a given macroscopic transport cost. Then for every µ, ν ∈
P(X) the following property holds true.

dC(µ, ν) = lim inf
ξ∈C(X)
p+(ξ)⇀µ,

p−(ξ)⇀ν

C∗(ξ). (16)

Proof. Firstly we note that

d∗C(µ, ν) = inf
ξ∈C(X)
p+(ξ)=µ,

p−(ξ)=ν

C∗(ξ).

Then by relaxing d∗C we get (16).

Remark 2.11. From (16) we can see clearly why dC is not in general a distance. Indeed,
we cannot join a chain used to evaluate dC(µ, ζ) and a chain used to evaluate dC(ζ, ν)
in order to get a good chain for estimating dC(µ, ν) because all what we know about the
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final point of the first chain and the initial point of the second chain is that they are
both close to ζ in the narrow topology, so they are close among themselves. This does
not allow, in general, to fill the gap between the two chains with a third chain with a
small C∗ cost. If this is the case, dC turns out to be a distance. Nevertheless, we shall
see that dC can be a distance even if such a condition is not satisfied.

2.4. Integral of the infinitesimal costs

Let c be any given microscopic cost on X, in the sequel we define the notion of infinites-
imal cost of a given π ∈ P(RN × RN), which can be viewed as the derivative of c along
the direction in which the transport plan π moves the mass. To this aim, we employ the
notion of scaled transport plan πλ introduced in Section 1.4.

Definition 2.12. We define the infinitesimal cost c0 as the l.s.c. relaxed of the cost c

defined on P(RN × RN) as

c(π) = lim sup
λ→0

c(πλ)

λ
.

Remark 2.13. Note that we are defining c0 on all of P(RN × RN) by assuming also c

defined for all the transport plans on RN by extending it by +∞ out of P(X ×X), as
assumed in general. Note that c0 turns out to be valued +∞ out of the set T of the
transport plans π concentrated on the set

T = {(x, y) ∈ RN × RN | y belongs to the tangent cone at X in x}. (17)

So c0 can be thought as defined on T .

Given any regular microscopic motion σ ∈ P(Γ), for every t by taking the lagrangian
parametrization pt : Γ → X × RN defined σ-a.e. on Γ by

pt : γ 7→ (γ(t), γ′(t)),

we can define the infinitesimal displacement plan at t as

πt = (pt)#σ ∈ T .

Analogously, if we take χ : Ω × I → X as a lagrangian parametrization of σ, for a.e. t
we set for a.e. p

ϕt : p 7→ (χ(p, t),
∂χ

∂t
(p, t))

and then the infinitesimal displacement plan at t is also given by

πt = (ϕt)#µΩ. (18)

Note that πt can be regarded as a transport plan on RN . Then, given any regular
microscopic motion σ ∈ P(Γ), for a.e. t we define the infinitesimal cost as c(t) = c0(πt).

Lemma 2.14. The infinitesimal cost t 7→ c(t) is a measurable function.
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Proof. We can assume, without any restriction, I = R by extending every fiber by
constant values on the two sides of I. Let

fh : t 7→ πh
t =

(

χ(·, t),
χ(·, t+ h)− χ(·, t)

h

)

#

µΩ.

Observe that the continuity of χ implies that fh : I → P(X × RN), with P(X × RN)
endowed with the narrow topology, is continuous and so it is measurable. Since for a.e.
t ∈ I χ is differentiable with respect to t for a.e. p ∈ Ω, we get that fh a.e. converges
in the narrow topology to πt as h → 0. Therefore the map t 7→ πt is measurable, as
a pointwise limit of a sequence of measurable mappings valued in a metrizable space.
Moreover, the map π 7→ c0(π) is l.s.c. by definition and so it is Borel measurable. So
t 7→ c(t) turns out to be the composition of a measurable map with a Borel measurable
map and thus it is measurable.

For any regular σ ∈ P(Γ) we put

J(σ) =

∫

I

c(t)dt =

∫

I

c0(πt)dt. (19)

We shall refer to J(σ) as to the integral of the infinitesimal costs and, by recalling
Remark 1.5, we shall use the notation J(χ) or J(π) when we argue in terms of lagrangian
parameterizations χ of microscopic motions or when, in particular, we are considering
microscopic motions π concentrated in the space of uniform rectilinear orbits, which can
be identified as transport plans.

Definition 2.15. Let C be a given transport cost and let J be the corresponding integral
of the infinitesimal costs. We define kinematic distance induced by C

dJ(µ, ν) = inf
σ∈Σ(µ,ν)

J(σ). (20)

It is easy to check that the kinematic distance dJ satisfies the triangle inequality. More-
over, let us remark that, by the homogeneity of c0 with respect to the scaling operation
of transport plans, we can replace Σ(µ, ν) with ΣI(µ, ν) in the definition of dJ and the
value of dJ(µ, ν) does not depend on the choice of the interval I, since we are free to
reparametrize t, obtaining the same total cost.

3. A Priori bounds and compactness criteria

3.1. Cost assumptions

Now we are going to introduce a set of general conditions, (CA0)–(CA4), involving a
given microscopic transport cost functional c : P(X ×X) → R+ and the corresponding
functions C, C∗ and J constructed from c in Section 2.

Weak continuity

(CA0) ∀ ε > 0 ∃δ > 0 s.t. ∀µ, ν ∈ DC s.t. dW (µ, ν) < δ : d∗C(µ, ν) ≤ ε.

Coercivity

(CA1) ∃ p > 1 s.t. ∀π ∈ P(X ×X) : c(π) ≥ ‖π‖p .
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Interpolation

(CA2) ∀ π ∈ P(X ×X) : J(π) ≤ c(π).

Lower semicontinuity

(CA3) ∀ σn ⇀ σ on I : J(σ) ≤ lim inf
n

J(σn).

Discretization

(CA4)
∀ σ ∈ Σ(µ, ν), ∀ε > 0 ∃ ξ = (ξ0, . . . , ξk) s.t.

dW (p+(ξ), µ) < ε, dW (p−(ξ), ν) < ε, C∗(ξ) < J(σ) + ε.

By virtue of Corollary 1.15 the lower semicontinuity condition (CA3) can be rephrased
in terms of lagrangian parameterizations of microscopic motions as follows.

(CA3′) ∀ χn → χ on Ω× I : J(χ) ≤ lim inf
n

J(χn).

Let us remark that if C is a macroscopic cost satisfying (CA0), by Proposition 2.10
we infer that dC is a metric. Indeed (CA0) is just the sufficient condition discussed in
Remark 2.11. So we can state the following assertion.

Lemma 3.1. If C is a macroscopic cost satisfying (CA0) then dC = dC.

We observe that (CA0) is in general not satisfied by the macroscopic costs in appli-
cations. Indeed, in Section 4 we will see that the irrigation cost, which depends on a
parameter α ∈]0, 1[, satisfies (CA0) only if α > 1 − 1

N
. Nevertheless, we will show the

equality of the chain distance and the transport distance for the irrigation cost for every
α ∈]0, 1[.

Let us point out that, if C is a transport cost satisfying (CA1), then c0(π) ≥ ‖π‖p for
every transport plan π, since ‖π‖p is 1-homogeneous with respect to scalings and w.l.s.c.

The coercivity condition (CA1) allows to get a control on the time derivatives of a given
microscopic motion σ in terms of the integral of the infinitesimal costs, as stated in the
following proposition.

Proposition 3.2. Let C be a transport cost satisfying (CA1). Then for any lagrangian
parametrization of a microscopic motion χ and with p as in (CA1), the following esti-
mate holds true.

∫

I

∫

Ω

∣

∣

∣

∣

∂χ

∂t
(q, t))

∣

∣

∣

∣

p

dµΩ dt ≤

∫

I

c(t)pdt. (21)

Proof. Let us consider a lagrangian parametrization χ defined on Ω× I. At any t ∈ I

let πt be the infinitesimal transport plan, then we have by (CA1) that c0(πt) ≥ ‖πt‖p.
Moreover, by writing (in the displacement plan version) πt as in (18), we have

c(t) ≥ ‖πt‖p =

(
∫

Ω

∣

∣

∣

∣

∂χ

∂t
(q, t))

∣

∣

∣

∣

p

dµΩ

)
1

p

.

Therefore, raising to the power of p, after integrating with respect to t, the previous
relation trivially leads to (21).
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As an immediate consequence of the previous result we have that, if c is in Lp(I), then
by (21) the Sobolev norm of the trajectories χq is finite, for a.e. q, that is χq ∈ Hp(I)
and so we can immediately deduce the following statement.

Corollary 3.3. Let C be a transport cost satisfying (CA1) and let χ : Ω × I → X be
any lagrangian parametrization of a given microscopic motion σ. If the infinitesimal cost

function c ∈ Lp(I) and p is as in (CA1), then χq ∈ C
1− 1

p (I), for a.e. q ∈ Ω.

3.2. Compactness Theorems

Theorem 3.4 (Tightness). Let (σn)n∈N be a given sequence of particle motions. Let
C be a transport cost satisfying (CA1) and for every n ∈ N let cn(t) be the infinitesimal
cost at t ∈ I of σn. If, for p as in (CA1), (cn)n∈N is bounded in Lp(I), then, for any
given t ∈ I, (σn)n∈N is tight if and only if (σn(t))n∈N is tight.

Proof. If (σn)n∈N is tight, then, since σn(t) = (pt)#σn for every n ∈ N and for every
t ∈ I, we have the tightness of (σn(t))n∈N. To prove the other implication, we fix ε > 0
and fix for every n a lagrangian parametrization χn of σn on Ω × I. Since (σn(t))n∈N
is tight, for any given ε > 0 we have a compact subset Kε ⊂ X such that, for every n,
[σn(t)](X \ Kε) < ε

2
, that is for every n we have An ⊂ Ω such that µΩ(An) < ε

2
and

χn(q, t) ∈ Kε for every q ∈ Ω \An. Furthermore, by Proposition 3.2, if ‖cn‖Lp(I) ≤ c, we
can find another set Bn ⊂ Ω such that µΩ(Bn) ≤

ε
2
and the following estimate holds

∀q ∈ Ω \Bn :

∫

I

∣

∣

∣

∣

∂χn

∂t
(q, t))

∣

∣

∣

∣

p

dt ≤
2cp

ε
. (22)

Let Ωn = Ω \ (An ∪Bn). Let Qn be the set of fibers corresponding to points in Ωn Then
σn(Γ \ Qn) = µΩ(An ∪ Bn) < ε. By (22) and Sobolev Embedding Theorem, we know
that the fibers in Qn are uniformly Hölder continuous and their value in t is contained
in the compact set Kε. So we can apply Ascoli-Arzelà Theorem and we get that Qn is
contained in a compact subset of Γ which does not depend on n.

Theorem 3.4 has two remarkable corollaries which we are going to state and which
respectively follow by Prokhorov Theorem (Theorem 1.12) and by Skorohod Theorem
(Corollary 1.15).

Corollary 3.5 (Narrow compactness). Let (σn)n∈N be a given sequence of micro-
scopic motions on RN . Let C be a transport cost satisfying (CA1) and for every n ∈ N

let cn(t) be the infinitesimal cost function of σn. If, for p as in (CA1), (cn)n∈N is bounded
in Lp(I) and there exists t ∈ I such that σn(t) ⇀ σ ∈ P(X), then (σn)n∈N has a narrowly
converging subsequence.

Corollary 3.6 (Fiberwise compactness modulo equivalence). Let (χn)n∈N be a
given sequence of lagrangian parameterizations on Ω× I of microscopic motions on RN .
Let C be a transport cost satisfying (CA1) and for every n ∈ N let cn(t) be the in-
finitesimal cost function of χn. If, for p as in (CA1), (cn)n∈N is bounded in Lp(I) and
there exists t ∈ I such that χn(·, t) converges a.e. to a measurable function χ, then for
every n ∈ N there exists χ′

n equivalent to χn such that (χ′
n)n∈N has a fiberwise converging

subsequence.
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3.3. Main abstract results

Now, in this abstract scheme of assumptions on a general transport cost, we are in
a position to prove the following result stating the well posedness of the problem of
minimizing the integral of the infinitesimal costs in a given class Σ(µ, ν). This is achieved,
thanks to the previous compactness properties, by applying the direct methods of the
calculus of variations.

Theorem 3.7 (Existence of minimizers). Let C be a transport cost satisfying (CA1),
(CA3) and let µ, ν ∈ P(X) be given. Then there exists σ ∈ Σ(µ, ν) such that

dJ(µ, ν) = J(σ).

Proof. Fix I and let (σn)n∈N be any minimizing sequence for J in ΣI(µ, ν). If dJ(µ, ν) <
+∞, otherwise we have nothing to prove, we know that the sequence of the infinitesimal
costs (cn)n∈N turns out to be bounded in L1(I). Under a change of variable t 7→ ϕ(t),
we can get it bounded in Lp for p as in (CA1). Then we can apply Corollary 3.5 and so
we have a converging subsequence. By virtue of (CA3) J is lower semicontinuous and
so we get the thesis.

Besides the previous existence result, we are going to prove the next theorem concerning
the equivalence of the distances between measures, introduced here, in the abstract
framework based on the cost assumptions before. This result will follow after some
lemmas and it constitutes the main goal of this work.

Lemma 3.8. Let c be a transport cost satisfying (CA1)–(CA3). Then

dJ ≤ dC .

Proof. By (16) there exists a sequence of chains (ξn)n∈N such that p+(ξn) ⇀ µ, p−(ξn) ⇀
ν and C∗(ξn) → dC(µ, ν). By (15) we know that for every n there exists a chain of
compatible transport plans π̃n whose vertices are the components of ξn and such that

c∗(π̃n) ≤ C∗(ξn) +
1

n
.

We view every π̃n as a piecewise rectilinear microscopic motion σn on I = [0, 1] and by
(CA2) we have

J(σn) ≤ c∗(π̃n),

so if dC(µ, ν) < +∞, otherwise we have nothing to prove, then J(σn) is bounded. We
can make a change of variable t 7→ ϕ(t) in such a way the sequence of the infinitesimal
costs (cn)n∈N turns out to be bounded in Lp for p as in (CA1). Then we can apply
Corollary 3.5 and so we obtain a narrowly converging subsequence to a microscopic
motion σ ∈ Σ(µ, ν). Finally by (CA3)

dJ(µ, ν) ≤ J(σ) ≤ lim
n

J(σn) ≤ lim
n

c∗(π̃n) ≤ lim
n

(

C∗(ξn) +
1

n

)

= dC(µ, ν).

The following statement trivially follows by Definition 2.8 and Definition 2.15.
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Lemma 3.9. Let c be a transport cost satisfying (CA4). Then

dC ≤ dJ .

Finally, we can prove the equivalence between the transport distance, the chain distance
and the kinematic distance for a general transport cost satisfying the previous cost
assumptions.

Theorem 3.10. Let C be a transport cost satisfying (CA1)–(CA4). Then

dC = dC = dJ .

Proof. By the two previous lemmas we have dJ = dC . Thus dC is a distance and so, as
observed in Remark 2.9, we get dC = dC .

4. Irrigation cost and irrigation distance

4.1. Irrigation cost and integral of the infinitesimal irrigation costs

Let i be an index varying in a finite set, for every i let xi, yi ∈ RN , with (xi, yi) 6= (xj, yj)
for i 6= j. Let π =

∑

imiδxi
⊗ δyi and α ∈]0, 1[, we define the irrigation cost of π as

cα(π) =
∑

i

mα
i |xi − yi|. (23)

Then we define the microscopic transport cost functional cα : P(X×X) → R+ defined as
in (23) if the transport plan π is given by a finite sum of Dirac masses and, in accordance
to Section 2, cα(π) = +∞ for all the other transport plans π ∈ P(X ×X).

Let us compute the irrigation cost in terms of a lagrangian parametrization. Let π =
∑

imiδxi
⊗ δyi , let (Ω, µΩ) be a measurable set and let g = (g1, g2) be a lagrangian

parametrization of π on Ω. For all i let Ωi = g−1(xi, yi), then µΩ(Ωi) = mi. For p ∈ Ω,
we set

[p] = {q ∈ Ω | g(q) = g(p)}

representing the equivalence class of material particles which have the same initial and
final positions, so p ∈ Ωi means [p] = Ωi. Moreover, we define the solidarity function

sα(p) = µΩ([p])
α−1,

so we have

(µΩ(Ωi))
α =

∫

Ωi

sα(p)dp

and therefore

mα
i |xi − yi| =

∫

Ωi

sα(p)|g
1(p)− g2(p)|dp,

from which

cα(π) =

∫

Ω

sα(p)|g
1(p)− g2(p)| dp (24)

follows. To the aim of computing the infinitesimal irrigation cost let us observe that
cα being 1-homogeneous with respect to scalings, the infinitesimal cost coincides with
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the l.s.c. relaxed c0α of cα on T and so we argue as follows. It is easy to see by using
(5) that if π ∈ T the l.s.c. relaxed is given by c0α(π) =

∑

im
α
i |xi − yi| when, with the

notation introduced in (6) and in the subsequent comments, πm =
∑

imiδxi
⊗ δyi is

countably discrete and c0α(π) = +∞ otherwise. The finiteness of the integral in (24)
implies that sα is finite µΩ almost everywhere on Ωm, where Ωm is as defined in (9), and
therefore µΩ a.e. p ∈ Ωm satisfies µΩ([p]) > 0. Therefore Ωm is decomposed in (countably
many) equivalence classes [p] of positive measure, excepted for a µΩ-negligible set. So
∫

Ω
sα(p)|g

1(p)− g2(p)| dp gives the value of c0α(π) when it is finite and, obviously, when
it is equal to +∞. So the equality

c0α(π) =

∫

Ω

sα(p)|g
1(p)− g2(p)| dp. (25)

holds for π = g#µΩ ∈ T in every case.

Let a particle motion σ be given and fix a lagrangian parametrization χ on Ω × I. To
compute the integral of the infinitesimal irrigation costs of σ, we just need to apply (25)
to πt for any t ∈ I, taking into account that πt ∈ T and that

g = (χ(·, t), χ(·, t) +
∂χ

∂t
(·, t))

gives a lagrangian parametrization of πt. So fix t ∈ I and let

[p]∗t =

{

q ∈ Ω | χ(q, t) = χ(p, t),
∂χ

∂t
(p, t) =

∂χ

∂t
(q, t)

}

(26)

and
s∗α(p, t) = µΩ([p]

∗
t )

α−1. (27)

By (25), we can write the infinitesimal irrigation cost at the time t as

c0α(πt) =

∫

Ω

s∗α(p, t)

∣

∣

∣

∣

∂χ(p, t)

∂t

∣

∣

∣

∣

dp (28)

and then, provided we check the measurability of s∗α, the integral of the infinitesimal
irrigation costs is

Jα(χ) =

∫

Ω×I

s∗α(p, t)

∣

∣

∣

∣

∂χ(p, t)

∂t

∣

∣

∣

∣

dp dt. (29)

Let us show that (29) holds and also admits a simpler variant, to this aim we define

[p]t = {q ∈ Ω | χ(q, t) = χ(p, t)} (30)

and
sα(p, t) = µΩ([p]t)

α−1. (31)

We shall prove that the integral of the infinitesimal irrigation costs takes the same value
for the solidarity functions given by (27) and (31).

Proposition 4.1. Let χ be any regular lagrangian parametrization of a microscopic mo-
tion. Then the functions sα and s∗α are measurable and, for a.e. (p, t) ∈ Ω× I, we have
sα(p, t) = s∗α(p, t).
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Proof. Let us consider the sets

E = {(p, q, t) ∈ Ω2 × I | χ(p, t) = χ(q, t)},

E∗ = {(p, q, t) ∈ Ω2 × I | χ(p, t) = χ(q, t),
∂χ(p, t)

∂t
=

∂χ(q, t)

∂t
}

and their (p, t)-sections
Ep,t = {q ∈ Ω | (p, q, t) ∈ E},

E∗
p,t = {q ∈ Ω | (p, q, t) ∈ E∗}.

Since E and E∗ are measurable sets for the measure µΩ × µΩ ×H1, by Fubini Theorem
[14, Theorem 6.46] we have that the section maps (p, t) 7→ µΩ(Ep,t) and (p, t) 7→ µΩ(E

∗
p,t)

are both measurable and so also the maps s and s∗ are measurable. Then we shall
prove that (µΩ × µΩ ×H1)(E \ E∗) = 0. To this aim we observe that, for a.e. p, q ∈ Ω,
since the maps χp and χq are a.e. differentiable, then for a.e. t where χp(t) = χq(t),
we have ∂

∂t
χp(t) =

∂
∂t
χq(t). Then for almost every (p, q)-section Sp,q of E \ E∗ we have

H1(Sp,q) = 0 and so, by Fubini Theorem again, we can conclude

(µΩ × µΩ ×H1)(Ep \ E
∗
p) =

∫

H1(Sp,q)dp dq = 0.

So the section maps, and therefore the maps s and s∗ agree for a.e. (p, t).

4.2. Properties of the irrigation cost

We shall check now the abstract conditions (CA0-4) for the irrigation cost cα.

Lemma 4.2. The irrigation cost cα satisfies the cost assumption (CA0) if and only if
α is large, (i.e. α > 1− 1

N
) and X is bounded.

Proof. The fact that, if α is large and X is bounded, cα satisfies (CA0) is essen-
tially proved in [22, Theorem 4.1], so we shall prove the reverse implication. If X is
not bounded, given any ε, δ > 0, we can find x, y ∈ X such that if µ and ν are two
Dirac masses of mass δ, respectively placed in x and y, then one has dW (µ, ν) ≤ δ and
dcα(µ, ν) ≥ W1(µ, ν) = δ|x− y| > ε, so (CA0) does not hold in such a case.

Let µ ∈ P(X) be a given atomic measure, we fix S ∈ X and denote by e(µ) the infimum
of the energy E(χ) defined on the irrigation patterns χ ∈ PS(Ω) with µχ = µ (see [18]),
that is µ is the irrigated measure. Let ν ∈ P(RN) be another atomic measure, and let
π ∈ Π(µ, ν). Then, by the definition of E in [18] and the Pruning Theorem [9, Theorem
7.1] we can easily check that e(ν) ≤ e(µ) + cα(π). By iterating, we can pass to a chain
of transport plans and so, for every µ, ν, we get

e(ν) ≤ e(µ) + d∗C(µ, ν). (32)

Let µ ∈ P(X) be any given measure, we take a sequence (µn)n∈N, made of atomic
measures, approximating µ, i.e. µn ⇀ µ. If (CA0) holds, since (µn)n∈N is a Cauchy
sequence for dW , then for every n ∈ N there exists mn ∈ N such that for every h, k ≥ mn

d∗C(µk, µh) ≤
1

2n
. (33)
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Set µ′
n = µmn

, for every n ∈ N, we have

d∗C(µ
′
n, µ

′
n+1) ≤

1

2n
.

By virtue of the l.s.c. of the functional E and by (32), (33), we get

e(µ) ≤ lim
n

e(µ′
n) ≤ e(µ′

1) + 1 < +∞,

then µ is an irrigable measure (see [10]). By [10, Corollary 1.2] and the arbitrariness of
µ this implies α > 1

N ′
.

The following result is a simple variant of [9, Lemma 8.3] and establishes an inequality
between the irrigation cost and the Wasserstein distance. Similar inequalities but in a
less sharp form have also been considered in other papers (see [21]).

Lemma 4.3. For every α ∈]0, 1[, the irrigation cost cα satisfies the cost assumption
(CA1) for p = 1

α
.

Proof. Let π =
∑

imiδxi
⊗ δyi (otherwise cα(π) = +∞ and we have nothing to prove).

For every i we put di = |xi − yi|, then cα(π) =
∑

im
α
i di. For every i

mα
i di ≤ cα(π),

from which we deduce

mα−1
i ≥

cα(π)
α−1

α

d
α−1

α

i

.

Therefore
cα(π) =

∑

i

mα−1
i midi ≥ cα(π)

α−1

α

∑

i

mid
1−α−1

α

i

and so
cα(π)

1

α ≥
∑

i

mid
1

α

i ,

which gives

cα(π) ≥

(

∑

i

mid
1

α

i

)α

= ‖π‖ 1

α
.

Lemma 4.4. The irrigation cost cα satisfies the cost assumption (CA2).

Proof. Let π =
∑

imiδxi
⊗ δyi (otherwise cα(π) = +∞ and we have nothing to prove),

I = [0, 1] ⊂ R and χ be any lagrangian parametrization of π. We can compute by (28)
the infinitesimal cost at any t as

c(t) = c0α(πt) =
∑

i

mα
i |yi − xi|.

Therefore,

Jα(χ) =

∫

I

c(t)dt =
∑

i

mα
i |yi − xi| = cα(π).
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To the aim of proving that the irrigation cost cα satisfies the cost assumption [CA3],
we need the next result, for which we introduce the following notation. If (χn)n∈N is any
sequence of lagrangian parameterizations of microscopic motions defined on Ω× I, for
every n ∈ N we set

[p]nt = {q ∈ Ω | χn(q, t) = χn(p, t)} ,

snα(p, t) = µΩ([p]
n
t )

α−1.

Lemma 4.5. If χn → χ, then for a.e. p in Ω

sα(p, ·) ≤ Γ−lim inf
n

snα(p, ·).

Proof. Firstly we recall that by definition, for every p,

Γ−lim inf
n

snα(p, t) = inf
tn→t

(lim inf
n

snα(p, tn)).

We fix p ∈ Ω, t ∈ I and a sequence tn → t. We set m = lim supn µΩ([p]
n
tn
) and introduce

the following sets:

An =
⋃

k≥n

[p]ktk , A =
⋂

n

An.

Notice that (An)n∈N is decreasing and, for every n ∈ N, µΩ(An) ≥ m and so µΩ(A) ≥ m.
We claim that, for almost every choice of p, A ⊂ [p]t modulo a null set. To prove this
inclusion we proceed as follows. By hypotheses we have that for a.e. q ∈ Ω, (χq)n locally
uniformly converges to χq. We can assume that this property is enjoyed by p and by a
given point q ∈ A. Then q ∈ An for every n and so q ∈ [p]ntn for infinitely many n and for
such values of n we have χn(p, tn) = χn(q, tn). Since the convergence is locally uniform
and tn → t, we can conclude by (3) that χp(t) = χq(t), i.e. q ∈ [p]t and so we get the
claim A ⊂ [p]t. Therefore, we have

sα(p, t) = µΩ([p]t)
α−1 ≤ µΩ(A)

α−1 ≤ mα−1 = lim inf
n

µΩ([p]
n
tn
)α−1 = lim inf

n
snα(p, tn)

and so, by taking the infimum in the last bound among the sequences (tn)n∈N converging
to t, we get the thesis.

Lemma 4.6. The irrigation cost cα satisfies the cost assumption [CA3].

Proof. We shall prove [CA3′], so let (χn)n∈N be any fiberwise converging sequence to
χ, we have to prove

Jα(χ) ≤ lim inf
n→∞

Jα(χn). (34)

For every n ∈ N and any given p, let µn be the measure on I whose density is given
by
∣

∣

∂χn

∂t
(p, t)

∣

∣ and let µ be the measure on I whose density is given by
∣

∣

∂χ

∂t
(p, t)

∣

∣. Since

χn → χ, then for a.e. p, ∂χn

∂t
(p, t) ⇀ ∂χ

∂t
(p, t) in the sense of distributions and thus we

have
µ(A) ≤ lim inf

n→+∞
µn(A)

for every open subset A ⊂ I. Now, the above estimate and Lemma 4.5 allow to apply
[7, Proposition 5.5] which states that, under these hypotheses, for a.e. p, the following
relation holds true

∫

I

sα(p, t)dµ ≤ lim inf
n→+∞

∫

I

snα(p, t)dµn.
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Finally, by integrating with respect to µΩ and by applying Fatou Lemma, we get (34).

4.3. Pruning Theorem and Discretization Property

The proof that cα satisfies the discretization property [CA4] is more complex and re-
quires a result like the Pruning Theorem, stated in [9] in the case of the irrigation
patterns. Then we proceed to state some preliminary lemmas which will allow us to
prove the Pruning Theorem below, which is suited for the context studied in this paper.
The first result we are going to prove says that a minimum of Jα in Σ(µ, ν) enjoys a
property called here no-cycle property, which is the variant of the analogous property
established for the irrigation patterns in [9, Theorem 6.17] needed in this section. The
reader could regard the result in this section simply as a variant of those of [9] by adapt-
ing the proof therein however, for a sake of completness, we give a sketch of the proof
and other related concepts and refer the reader to [19] for a more detailed study of this
kind of properties.

Definition 4.7. Let χ be a lagrangian parametrization defined on Ω×I of a microscopic
motion. We shall say that χ satisfies the no-cycle property if, fixed any t1, t2 ∈ I,
t1 < t2, if A is the intersection of two equivalence classes of material points at t1 and t2
respectively, for a.e. p, q ∈ A the equality χp(t) = χq(t) holds for every t ∈ [t1, t2].

Let us call flow curve any measurable γ : J → RN , where J ⊂ I is an interval, such that
there is a set of material points p with strictly positive measure such that χ(p, t) = γ(t)
at every t ∈ J . Let D be the set of (p, t1, t2) such that χp coincides with a flow curve γ in
t1 and t2 but it does not coincide with γ in [t1, t2]. Since the flow curves are continuous
and on a fixed interval there are countably many flow curves, it is easy to check that
D is a measurable set. The no-cycle property implies that every (t1, t2)-section of D
is a µΩ-negligible set. Then, by applying Fubini Theorem as in Proposition 1.9 and
Proposition 4.1, we deduce that for a.e. p ∈ Ω the p-section of D is a negligible set and
so we can state the following property

for a.e. t1, t2 ∈ I, t1 < t2 and ∀t ∈ [t1, t2] : [p]t1 ∩ [p]t2 ⊂ [p]t (35)

modulo a negligible set.

Lemma 4.8. Let µ, ν ∈ P(RN) be two given measures and let χ, defined on Ω× I, be a
minimum of Jα in Σ(µ, ν). Then χ has the no-cycle property.

Proof. Let χ be a minimum of Jα as in the hypotheses. Fix t1 < t2 in I and let A

denote the intersection of two equivalence classes of material points at t1 and t2 and
assume that µΩ(A) = a > 0. Let us consider the modification of χ on [t1, t2] given for
every r ∈ A by

χr(q, t) =

{

χ(r, t) if q ∈ A, t ∈ [t1, t2]

χ(q, t) otherwise.

Let c, cr be the infinitesimal cost functions of χ and χr respectively, let c be the average
cost of χr, defined for t ∈ I as

c(t) =
1

a

∫

A

cr(t) dµΩ(r).
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We claim that for almost every t ∈ [t1, t2] c(t) ≤ c(t). Indeed, fix t ∈ [t1, t2] such that
c(t) is finite and ∂χ

∂t
is constant a.e. in all the equivalence classes [r]t. Proposition 4.1

ensures that this happens for a.e. t ∈ I. For such values of t we shall denote by Ai the
(countably many) equivalence classes at t on which the constant value vi of |

∂χ

∂t
(r, t)| is

different from zero. Now we set ai = µΩ(Ai ∩A), a = µΩ(A) and bi = µΩ(Ai \A). With
this notation, it is easy to check that

c(t) =
∑

i

(bi + ai)
αvi,

c(t) =
∑

i

(

ai

a
(bi + a)α +

a− ai

a
bαi

)

vi.

Note that ai
a
(bi+a)+ a−ai

a
bi = bi+ai and so the concavity of the mapping x 7→ xα yields

the claim c(t) ≤ c(t), holding the equality only if for every i either ai = 0 or ai = a.
Since χ minimizes Jα, then this must be the case for a.e. t ∈ [t1, t2]. Then, for a.e. t A is
contained in one of the equivalence classes Ai and by virtue of the continuity of χ with
respect to the time variable t, we get the thesis.

Lemma 4.9. Let µ, ν ∈ P(RN) be two atomic measures and let σ be a minimum of J in
Σ(µ, ν). Then σ has the structure of a finite graph and there exists a chain ξ ∈ P(RN),
whose components are atomic measures, such that p+(ξ) = µ, p−(ξ) = ν and C∗

α(ξ) =
Jα(σ).

Proof. Let µ =
∑

imiδxi
, ν =

∑

j njδyj , by denoting by χ a lagrangian parametrization
of σ on Ω× [a, b], we introduce the sets

Ωij = {p ∈ Ω | χ(p, a) = xi, χ(p, b) = yj}

which constitute a finite partition of Ω. Now, by Lemma 4.8, almost all the points
p ∈ Ωij have the same orbit χ(p, ·) = γij and the boundary of the set of the points t in
which two different curves γij and γhk coincide contains at most two points. We denote
by ti such values of t, which are therefore in a finite number. Then we have

Jα(σ) =
∑

i

Jα(σ|[ti,ti+1]).

Let σi = σ|[ti,ti+1], we introduce the map pi : Γ → RN×RN given by pi(γ) = (γ(ti), γ(ti+1))
and let

πi = (pi)#σi. (36)

We claim that, for every i,
Jα(σi) = cα(πi).

Indeed, though σi is not necessarily a uniform rectilinear motion, we know by the defini-
tion of the points ti that the motions of material particles either have the same trajectory
or have always different positions and so we can reparametrize all the orbits with uniform
velocity without changing the value of Jα. Now, let ξ be the chain of the vertices of the
chain of transport plans π̃ whose components πi are given by (36). We finally obtain

c∗α(ξ) =
∑

i

cα(πi) =
∑

i

Jα(σi) = Jα(σ).
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Let us introduce some notation and definitions which are essentially the two-sided version
of those stated in [9]. Let σ be a particle motion and let χ be a lagrangian parametrization
of σ on Ω× I, for every p ∈ Ω we set

τ−(p) = sup {t ∈ I : | χ(p, s) = const. ∀s ≤ t} ,

τ+(p) = inf {t ∈ I : | χ(p, s) = const. ∀s ≥ t} .

Lemma 4.10. τ− and τ+ are measurable functions.

Proof. Let us consider the function τ−. We show that for every a ∈ R the level set
La = {p ∈ Ω | τ−(p) ≥ a} is measurable. To this aim we observe that, for any real a,
τ−(p) ≥ a if and only if for every t1, t2 ≤ a, χ(p, t1) = χ(p, t2). Then, by introducing
Zt1,t2 = {p ∈ Ω | χ(p, t1) = χ(p, t2)}, we have that the set Zt1,t2 turns out to be
measurable since the functions χ(·, t1) and χ(·, t2) are both measurable. By virtue of the
continuity of χ with respect to t we get

La =
⋂

t1,t2≤a

Zt1,t2 =
⋂

t1,t2≤a
t1,t2∈Q

Zt1,t2

and so La is measurable since it is a countable intersection of measurable sets. Analogous
proof can be carried out for τ+.

Let us notice that τ−(p) < τ+(p) if and only if p ∈ Ωm. By (6), for every t, σ(t) can
be decomposed as σs + σm(t). If σ ∈ Σ[0,1](µ, ν),we put µ1 = ν1 = σs µ2 = σm(0),
ν2 = σm(1).

Lemma 4.11. Let σ ∈ P(Γ) be a microscopic motion of minimal cost and let χ be a
lagrangian parametrization of σ on (Ω, µΩ). Then, for a.e. p ∈ Ωm and for every ε > 0
there exists s ∈ Q ∩ [τ−(p), τ−(p) + ε] such that µΩ([p]s) > 0.

Proof. Fix ε > 0 and take p ∈ Ωm such that
∫

I
sα(p, t)|

∂χp

∂t
| dt < ∞ and (35) holds.

There exists I∗ ⊂ [τ−(p), τ−(p)+ε] withH1(I∗) > 0, such that for every t ∈ I∗
∂χp

∂t
(t) 6= 0.

For a.e. t ∈ I∗ we have s(p, t) < +∞, namely µΩ([p]t) > 0. Therefore, since I∗ is
an uncountable set and µΩ(Ω) < +∞, there exist t1, t2 ∈ I∗ with t1 < t2 such that
µΩ([p]t1 ∩ [p]t2) > 0. It is also easy to see that we can avoid the negligible set of the
pairs (t1, t2) considered in (35). Thus, let us fix s ∈ Q such that t1 < s < t2, since σ is a
minimizer then we can apply Lemma 4.8, so we know by (35) that [p]t1 ∩ [p]t2 ⊂ [p]s and
therefore µΩ([p]s) > 0.

We observe that for every t ∈ Q ∩ I, the set Vt of all the equivalence classes [p]t of
positive measure is a countable set. Let us consider all the pairs (A, t) where t is a
rational number and A is an equivalence class of positive measure at the time t. Such
pairs are also countably many, so they can be represented as the terms of a sequence
(An, tn)n∈N. Then the previous lemma can be restated as follows.

Lemma 4.12. For a.e. p ∈ Ωm and for every ε > 0 there exists n ∈ N such that
[p]tn = An, tn ∈ [τ−(p), τ−(p) + ε].

By the continuity of χ in the t-variable, by keeping the same notation, we can deduce
the following corollary.
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Corollary 4.13. For a.e. p ∈ Ωm and for every ε > 0 there exists n such that p ∈ An

and |χ(p, 0)− χ(p, tn)| < ε.

Proof. Fix p and fix ε > 0, since χ is continuous with respect to t there exists δ(p) such
that

|χ(p, 0)− χ(p, t)| = |χ(p, τ−(p))− χ(p, t)| < ε, ∀t ≤ τ−(p) + δ(p). (37)

Then by applying Lemma 4.12 with ε replaced by δ(p), we get the thesis.

Definition 4.14. Let χ be a lagrangian parametrization of a microscopic motion and
let τ−, τ+ : Ω → I, with τ− ≤ τ+, be two measurable functions. Let us consider the
mapping χ defined by setting for a.e. p and for every t ∈ I

χ(p, t) =











χ(p, τ−(p)) if t < τ−(p)

χ(p, t) if t ∈ [τ−(p), τ+(p)]

χ(p, τ+(p)) if t > τ+(p).

We shall say that χ is the (τ−, τ+)-forced absorption of χ.

Theorem 4.15 (Pruning). Let χ be a lagrangian parametrization of minimal cost on
Ω× [0, 1]. For every ε > 0 there exists Ωε ⊂ Ωm and there exist two measurable functions
τ−, τ+ : Ωε → I, with τ−(p) < τ+(p) for a.e. p, such that the (τ−, τ+)-forced absorption
χ of χ|Ωε×I , inducing σ, enjoys the following properties:

(1) σ(0) and σ(1) are measures of finite support.

(2) dW (σ(0), µ2) ≤ ε, dW (σ(1), ν2) ≤ ε.

Proof. Fix ε > 0. With the notation in Corollary 4.13 we set

Ωn = {p ∈ An | |χ(p, tn)− χ(p, 0)| < ε} .

For every n, Ωn is a measurable set. Then, for a.e. p ∈ Ωm, we set by using the previous
corollary

τ−(p) = tn with n = min{k ∈ N | p ∈ Ωk}.

By arguing in a symmetric way, we get the mapping τ+ and so we obtain, for a fixed
ε > 0, the (τ−, τ+)-forced absorption χ of χ|Ωm . Then σ(0) = χ(·, τ−(·))#µΩ and
σ(1) = χ(·, τ+(·))#µΩ, by construction, are concentrated on two countable sets and
so, by eliminating from Ωm a set of arbitrarily small measure, we can reduce ourselves
to the case that the supports are finite sets working on a subset Ωε ⊂ Ωm such that
µΩ(Ω

m \ Ωε) < ε. Therefore we have just proved the statement (1) while (2) follows by
the definition of Ωn and the bound µΩ(Ω

m \ Ωε) < ε.

Corollary 4.16. Let σ ∈ Σ(µ, ν) be any admissible microscopic motion. For every ε > 0
there exists a chain ξ such that dW (p+(ξ), µ) < ε, dW (p−(ξ), ν) < ε and C∗(ξ) ≤ Jα(σ).

Proof. Fix ε > 0. By virtue of Lemmas 4.3, 4.6 respectively, we know that the irrigation
cost cα satisfies the cost assumptions (CA1), (CA3) and so we are allowed to apply
Theorem 3.7 and take a minimum σ∗ of Jα in Σ(µ, ν) and a corresponding lagrangian
parametrization χ. Then we apply Theorem 4.15 to σ∗ and so we get two atomic measures
σ∗(0) and σ∗(1) such that dW (σ∗(0), µ2) ≤

ε
2
and dW (σ∗(1), ν2) ≤

ε
2
.
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Then we apply again Theorem 3.7 and find σ′ minimizing J in Σ(σ∗(0), σ∗(1)). Now,
since σ∗(0) and σ(1) are atomic measures, by Lemma 4.9 we know that σ′ has the
structure of a finite graph and there is a chain ξ ∈ C(RN) whose components are atomic
measures and such that p−(ξ) = σ∗(0), p+(ξ) = σ∗(1) and

C∗(ξ) = Jα(σ
′) ≤ Jα(σ

∗) ≤ Jα(σ
∗) ≤ Jα(σ).

Now let us focus the attention on Ωs which is made of points p such that χp(t) = const.
The measure µ1 (= ν1) can be approximated in the weak distance by a finite supported
measure µ such that dW (µ, µ1) <

ε
2
. After adding µ to each term of ξ we get a new chain

ξ′ having the same cost of ξ, i.e. C∗(ξ′) = C∗(ξ) and connecting σ∗(0) + µ to σ∗(1) + µ.
Since

dW (σ∗(0) + µ, µ) ≤ dW (σ∗(0), µ2) + dW (µ, µ1) < ε

and, analogously, dW (σ∗(1) + µ, ν) < ε, the thesis follows.

The following statement is an immediate consequence of the previous result.

Lemma 4.17. For every α ∈]0, 1[ the irrigation cost cα satisfies the cost assumption
[CA4].

4.4. Equivalence of the irrigation models and existence of minimizers

The following result establishes the existence of minimizers of the integral of the in-
finitesimal costs Jα in the class Σ(µ, ν). Indeed, by Lemma 4.3 and Lemma 4.6, we are
allowed to state the following particular case of Theorem 3.7.

Theorem 4.18 (Existence of minimizers). Let cα be the irrigation cost an let Jα be
the corresponding integral of the infinitesimal costs. Then, for every α ∈]0, 1[ there exists
σ ∈ Σ(µ, ν) such that

dJα(µ, ν) = Jα(σ).

Finally, we are in a position to state the following result which establishes the equivalence
of the main irrigation models proposed in literature. More precisely, for the irrigation
cost cα the variational model proposed by Xia in [22], which is formalized in terms of
flat chains on graphs, leads to a functional equal to the chain distance dcα . Indeed
a finite chain of discrete measures induces a graph in an obvious way. The approach
proposed in [3] is a variant of that in [18], the first one relies on a functional expressed
in terms of microscopic motions, which are called traffic plans in [3], while the other
one is formalized in terms of lagrangian parameterizations and regards the irrigation
patterns which are characterized by having a single Dirac mass (the source) as initial
measure. Both these approaches lead to a variational model which is equivalent to the
irrigation model based on the kinematic distance dJα . Finally all of these approaches
are equivalent to the formulation of the irrigation problem based on the more abstract
notion of transport distance dcα presented here. We also remark that a close analysis of
the full equivalence of the functionals involved in all these approaches will be pursued
in [19] through direct arguments and, anyway, it can be shown by comparing the results
in this work with those in [5] since both the functionals are shown to be equivalent to
that in [22]. In other terms, by Lemma 4.4, Lemma 4.17 and Theorem 4.18, we have the
following statement.
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Theorem 4.19 (Characterization of the irrigation distance). Let cα be the irri-
gation cost an let Jα be the corresponding integral of the infinitesimal costs. Then, for
every α ∈]0, 1[

dcα = dcα = dJα .

We conclude this note by pointing out that other mass transportation problems appeared
in the literature can be cast in this framework. This is the case of the functional proposed
by A. Brancolini, G. Buttazzo, F. Santambrogio in [8] which can be regarded in several
different ways as induced by an infinitesimal cost. Indeed it contains a term depending
on the macroscopic position µt which can be regarded as each one of the two marginals
of the infinitesimal transport plan. The details are left to the reader.

Table of the main notation

• X a Polish space

• Γ = space of X valued curves defined on an interval I ⊂ R

• P(X) = space of the probability measures defined on X

• P(Γ) = space of the probability measures defined on Γ

• σ ∈ P(Γ) particle motion

• Π(µ, ν) = set of transport plans between µ and ν

• dC = transport distance induced by the transport cost C, see Definition 2.5

• d∗C = metric envelope of a transport cost C

• dC = chain distance induced by a transport cost C, see Definition 2.8

• J(σ) = integral of the infinitesimal costs, see (28)

• dJ = kinematic distance, see Definition 2.15
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