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We investigate lattice structures on locally convex cones, that is ordered cones that carry a locally
convex topology. Examples include the extended reals R, cones of R-valued functions and cones of
convex subsets of a locally convex vector space. The case of order completeness, where bounded below
sets have suprema and infima, is of particular interest. It leads to the notion of order convergence
and the introduction of the order topology and its comparison to the given topology of a completely
ordered locally convex cone. The use of zero components of a given element allows a more subtle
conceptualization of the cancellation law.
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1. Introduction

Some important mathematical settings, while close to the structure of vector spaces do
not allow subtraction of their elements or multiplication by negative scalars. Examples
are certain classes of functions that may take infinite values or are characterized through
inequalities rather than equalities. They arise naturally in integration and in potential
theory. Likewise, families of convex subsets of vector spaces which are of interest in
various contexts, do not form vector spaces. If the cancellation law fails, domains of
this type can not be embedded into larger vector spaces in order to apply results and
techniques from classical functional analysis. The theory of locally convex cones, as
developed in [3], uses order theoretical concepts to introduce a topological structure on
ordered cones. In Sections 2, 3 and 4 of this paper we shall review some of the main
concepts of this approach. We refer to [3] for details and proofs. In the subsequent
sections we introduce lattice cones, complete lattice cones, zero components and the
cancelation law, order convergence and the order topology. We demonstrate how every
locally convex cone can be canonically embedded into a locally convex complete lattice
cone.

2. Locally Convex Cones

A cone is a set P endowed with an addition (a, b) 7→ a + b and a scalar multiplication
(α, a) 7→ αa for real numbers α ≥ 0. The addition is supposed to be associative and
commutative, and there is a neutral element 0 ∈ P. For the scalar multiplication the usual
associative and distributive properties hold, that is α(βa) = (αβ)a, (α+ β)a = αa+ βa,
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α(a + b) = αa + αb, 1a = a and 0a = 0 for all a, b ∈ P and α, β ≥ 0. The cancellation
law, stating that a+ c = b+ c implies a = b, however, is not required in general. It holds
if and only if the cone P can be embedded into a real vector space.

An ordered cone P carries a reflexive transitive relation ≤ such that a ≤ b implies
a+ c ≤ b+ c and αa ≤ αb for all a, b, c ∈ P and α ≥ 0. Equality on P is obviously such
an order. Note that anti-symmetry is not required for the relation ≤ .

The theory of locally convex cones as developed in [3] uses order theoretical concepts to
introduce a quasiuniform topological structure on an ordered cone. In a first approach,
the resulting topological neighborhoods themselves will be considered to be elements
of the cone. In this vein, a full locally convex cone (P,V) is an ordered cone P that
contains an abstract neighborhood system V , that is a subset of positive elements which
is directed downward, closed for addition and multiplication by strictly positive scalars.
The elements v of V define upper resp. lower neighborhoods for the elements of P by

v(a) = { b ∈ P | b ≤ a+ v } resp. (a)v = { b ∈ P | a ≤ b+ v },
creating the upper resp. lower topologies on P. Their common refinement is called the
symmetric topology. All elements of P are supposed to be bounded below, that is for
every a ∈ P and v ∈ V we have 0 ≤ a + λv for some λ ≥ 0. They need however not be
bounded above (see Section 3 below). The presence of unbounded elements represents
the main difference between locally convex cones and locally convex vector spaces and
accounts for much of the richness and subtlety of this setting.

Finally, a locally convex cone(P,V) is a subcone of a full locally convex cone not nec-
essarily containing the abstract neighborhood system V . Every locally convex ordered
topological vector space is a locally convex cone in this sense, as it may be canonically
embedded into a full locally convex cone (see Examples 2.1(c) below and I.2.7 in [3]). It
is shown in Chapter I.5.2 of [3] how a convex quasiuniform structure on a cone can be
used to construct a full locally convex cone which contains the given one as a subcone
and induces the given uniform structure. This yields a second, equivalent approach to
locally convex cones.

Examples 2.1. (a) In the extended real number system R = R ∪ {+∞} we consider
the usual order and algebraic operations, in particular a + ∞ = +∞ for all a ∈ R,
α · (+∞) = +∞ for all α > 0 and 0 · (+∞) = 0. Endowed with the neighborhood
system V = {ε ∈ R | ε > 0}, R is a full locally convex cone. For a ∈ R the intervals
(−∞, a + ε] are the upper and the intervals [a − ε,+∞] are the lower neighborhoods,
while for a = +∞ the entire cone R is the only upper neighborhood, and {+∞} is open
in the lower topology. The symmetric topology is the usual topology on R with +∞ as
an isolated point. It is finer than the usual topology of R where the intervals [a,+∞]
for a ∈ R are the neighborhoods of +∞.

(b) For the subcone R+ = {a ∈ R | a ≥ 0} of R we may also consider the singleton
neighborhood system V = {0}. The elements of R+ are obviously bounded below even
with respect to the neighborhood v = 0, hence R+ is a full locally convex cone. For
a ∈ R the intervals (−∞, a] and [a,+∞] are the only upper and lower neighborhoods,
respectively. The symmetric topology is the discrete topology on R+.

(c) Let (E,≤) be a locally convex ordered topological vector space. Recall that equality
is an order relation, hence this example will cover locally convex spaces in general. In
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order to interpret E as a locally convex cone we shall embed it into a larger full cone.
This is done in a canonical way: Let P be the cone of all non-empty convex subsets of
E, endowed with the usual addition and multiplication of sets by non-negative scalars,
that is αA = {αa | a ∈ A} and A + B = {a + b | a ∈ A and b ∈ B} for A,B ∈ P and
α ≥ 0. We define the order on P by

A ≤ B if A ⊂ B + E−,

where E− = {x ∈ E | x ≤ 0} is the negative cone in E. The requirements for an ordered
cone are easily checked. The neighborhood system in P is given by a basis V ⊂ P of
closed, convex, balanced and order convex neighborhoods of the origin in E. We observe
that for every A ∈ P and V ∈ V there is ρ > 0 such that ρV ∩ A 6= ∅. This yields
0 ∈ A+ρV. Therefore {0} ≤ A+ρV, and every element A ∈ P is indeed bounded below.
Thus (P,V) is a full locally convex cone. Via the embedding x 7→ {x} : E → P the
space E itself is a subcone of P. This embedding preserves the order structure of E, and
on its image the symmetric topology of P coincides with the given vector space topology
of E. Thus E is indeed a locally convex cone, but not a full cone. Other subcones of P
that merit further investigation are those of all closed, closed and bounded, or compact
convex sets in P, respectively. Details on these and further related examples may be
found in [3], I.1.7, I.2.7 and I.2.8.

(d) Let (P,V) be a locally convex cone, X a set and let F(X,P) be the cone of all

P-valued functions on X, endowed with the pointwise operations and order. If P̃ is
a full cone containing both P and V , then we may identify the elements v ∈ V with
the constant functions x 7→ v for all x ∈ X, hence V is a subset and a neighborhood
system for F(X, P̃). A function f ∈ F(X, P̃) is uniformly bounded below, if for every
v ∈ V there is ρ ≥ 0 such that 0 ≤ f + ρv. These functions form a full locally con-

vex cone
(
Fb(X, P̃),V

)
, carrying the topology of uniform convergence. As a subcone,

(Fb(X,P),V) is a locally convex cone. Alternatively, a more general neighborhood sys-
tem VY for F(X,P) may be created using a suitable family Y of subsets Y of X and
the neighborhoods vY for v ∈ V and Y ∈ Y, defined for functions f, g ∈ F(X,P) as
f ≤ g+vY if f(x) ≤ g(x)+v for all x ∈ Y. In this case we consider the subcone FbY (X,P)
of all functions in F(X,P) that are uniformly bounded below on the sets in Y . Together
with the neighborhood system VY , it forms a locally convex cone.

(
FbY (X,P),VY

)
carries

the topology of uniform convergence on the sets in Y .

(e) For x ∈ R denote x+ = max{x, 0} and x− = −min{x, 0}. For 1 ≤ p ≤ +∞
and a sequence (xi)i∈N in R let ‖(xi)‖p denote the usual lp norm, that is ‖(xi)‖p =

(
∑∞

i=1 |xi|p)
(1/p) ∈ R for p < +∞ and ‖(xi)‖∞ = sup{|xi| | i ∈ N} ∈ R. Now let Cp be

the cone of all sequences (xi)i∈N in R such that ‖(x−i )‖p ≤ +∞. We use the pointwise
order in Cp and the neighborhood system Vp = {ρvp | ρ > 0}, where

(xi)i∈N ≤ (yi)i∈N + ρvp

means that ‖(xi − yi)
+‖p ≤ ρ. (In this expression the lp norm is evaluated only over the

indexes i ∈ N for which yi < +∞.) It can be easily verified that (Cp,Vp) is a locally convex
cone. In fact (Cp,Vp) can be embedded into a full cone following a procedure analogous
to that in 2.1(c). The case for p = +∞ is of course already covered by Example 2.1(d).
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Linear operators 2.2. For cones P and Q a mapping T : P → Q is called a linear
operator if T (a+ b) = T (a) + T (b) and T (αa) = αT (a) holds for all a, b ∈ P and α ≥ 0.
If both P and Q are ordered, then T is called monotone, if a ≤ b implies T (a) ≤ T (b).
If both (P,V) and (Q,W) are locally convex cones, the operator T is called (uniformly)
continuous if for every w ∈ W one can find v ∈ V such that T (a) ≤ T (b) + w whenever
a ≤ b+v for a, b ∈ P. It is immediate from the definition that uniform continuity implies
and combines continuity for the operator T : P → Q with respect to the upper, lower
and symmetric topologies on P and Q, respectively.
A linear functional on P is a linear operator µ : P → R. The dual cone P∗ of a locally
convex cone (P,V) consists of all continuous linear functionals on P and is the union of
all polars v◦ of neighborhoods v ∈ V, where µ ∈ v◦ means that µ(a) ≤ µ(b)+1, whenever
a ≤ b + v for a, b ∈ P. Continuity implies that a linear functional µ is monotone, and
for a full cone P it requires just that µ(v) ≤ 1 holds for some v ∈ V in addition. We
endow P∗ with the topology w(P∗,P) of pointwise convergence on the elements of P,
considered as functions on P∗ with values in R with its usual topology. As in locally
convex topological vector spaces, the polar v◦ of a neighborhood v ∈ V is seen to be
w(P∗,P)-compact and convex ([3], Theorem II.2.4).

Examples 2.3. Revisiting the preceding Examples 2.1, we observe that the dual cone
R

∗
of R (see 2.1(a)) consists of all positive reals (via the usual multiplication), and the

singular functional 0̄ such that 0̄(a) = 0 for all a ∈ R and 0̄(+∞) = +∞. Likewise,
in 2.1(b), the continuous linear functionals on R+, endowed with the neighborhood sys-
tem V = {0}, are the positive reals together with 0̄, but further include the element +∞,
acting as +∞(0) = 0 and +∞(a) = +∞ for all 0 6= a ∈ R+. This functional is obvi-
ously contained in the polar of the neighborhood 0 ∈ V. In 2.1(c) and (d) on the other
hand, due to the generality of the settings, a complete description for the respective dual
cones is not immediately available. We may, however, identify some of their elements:
In 2.1(c), let µ be a continuous monotone linear function on the locally convex ordered
topological vector space (E,≤). Then the mapping

A 7→ sup{µ(a) | a ∈ A} : Conv(E) → R

is seen to be an element of Conv(E)∗. In 2.1(d), if µ ∈ P∗ and if x ∈ Y for some Y ∈ Y,
then the mapping µx : FbY (X,P) → R such that

µx(f) = µ (f(x)) for all f ∈ FbY (X,P)

is a continuous linear functional on FbY (X,P); more precisely: If µ ∈ v◦ for v ∈ V and
x ∈ Y for Y ∈ Y , then µx ∈ v◦Y . In 2.1(e) for p < +∞ the dual cone of Cp consists of
all sequences (yi)i∈N such that yi ≥ 0 for all i ∈ N and ‖(yi)‖q < +∞, where q is the
conjugate index of p.

Hahn-Banach type extension and separation theorems for linear functionals are most
important for the development of a powerful duality theory for locally convex cones. We
shall mention a few results from [3] and [6]. A sublinear functional on a cone P is a
mapping p : P → R such that p(αa) = αp(a) and p(a + b) ≤ p(a) + p(b) hold for all
a, b ∈ P and α ≥ 0. Likewise, an extended superlinear functional on P is a mapping
q : P → R = R ∪ {+∞,−∞} such that q(αa) = αq(a) and q(a + b) ≥ q(a) + q(b) hold
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for all a, b ∈ P and α ≥ 0. (We set α + (−∞) = −∞ for all α ∈ R, α · (−∞) = −∞ for
all α > 0 and 0 · (−∞) = 0 in this context.) We cite Theorem 3.1 from [6]:

Theorem 2.4 (Sandwich Theorem). Let (P,V) be a locally convex cone, and let v ∈
V . For a sublinear functional p : P → R and an extended superlinear functional q : P →
R there exists a linear functional µ ∈ v◦ such that q ≤ µ ≤ p if and only if q(a) ≤ p(b)+1
holds whenever a ≤ b+ v for a, b ∈ P.

This leads to a variety of extension and separation results, the most general ones being
Theorems 4.1 and 4.4 in [6]. We shall only mention the following simplified version of 4.1
in [6] (Theorem II.2.9 in [3]).

Corollary 2.5. Let (N ,V) be a subcone of the locally convex cone (P,V). Every con-
tinuous linear functional on N can be extended to a continuous linear functional on P;
more precisely: For every µ ∈ v◦N there is µ̃ ∈ v◦P such that µ̃ coincides with µ on N .

3. Weak Preorder and the Relative Topology

In addition to the given order ≤ on a locally convex cone, one also considers the weak
preorder 4 (see [7]) which is slightly weaker then the given order and defined for a, b ∈ P
by

a 4 b if a ≤ γb+ εv

for all v ∈ V and ε > 0 with some 1 ≤ γ ≤ 1 + ε. This order represents a closure of
the given order with respect to the linear and topological structures of P. It is obviously
coarser than the given order, that is a ≤ b implies a 4 b for a, b ∈ P. In the preceding
Examples 2.1(a) and (b), however, both orders coincide. In 2.1(c), on the other hand,
we have A 4 B if A ⊂ B + E−, the topological closure in E of the set B+E−. In Exam-
ple 2.1(d), since its order was defined pointwise, the locally convex cone

(
FbY (X,P),VY

)

carries the weak preorder whenever P does.

The weak preorder on P is again compatible with the algebraic operations, as Lemma 3.3
below will imply. It may also be used in a full cone containing P and V . Consequently,
the respective relation involving the neighborhoods in V is defined for elements a, b ∈ P
and v ∈ V as

a 4 b+ v if a ≤ γ(b+ v) + εu

for all u ∈ V and ε > 0 with some 1 ≤ γ ≤ 1 + ε. Endowed with the weak preorder
(P,V) forms again a locally convex cone. For details we refer to [7]. We omit the easy
proof of the following:

Lemma 3.1. Let a, b ∈ P. Then a 4 b if and only if a 4 γb + εv for all v ∈ V and
ε > 0 with some 1 ≤ γ ≤ 1 + ε.

Thus, if the locally convex cone (P,V) is endowed with the weak preorder, the subse-
quently derived (second) weak preorder coincides with the given (first) one.

Theorems 3.1 and 3.2 in [7] state that the weak preorder and neighborhoods in a locally
convex cone P are entirely determined by its dual cone P∗, that is a 4 b holds for
a, b ∈ P if and only if µ(a) ≤ µ(b) for all µ ∈ P∗, and a 4 b+ v holds for a, b ∈ P and a
neighborhood v ∈ V, if and only if µ(a) ≤ µ(b) + 1 for all µ ∈ v◦.
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It is evident that for a linear operator T between locally convex cones (P,V) and
(Q,W), continuity with respect to the given orders implies continuity and monotonicity
with respect to the respective weak preorders on P and Q, that is a 4 b + v implies
T (a) 4 T (b) + w and a 4 b implies T (a) 4 T (b).

The weak preorder may be used to establish a representation for a locally convex cone
(P,V) as a cone of continuous R-valued functions on some topological space and as a
cone of convex subsets of some locally convex topological vector space, respectively. We
cite Theorem 4.1 from [7]:

Theorem 3.2. Every locally convex cone (P,V) can be embedded into

(i) a locally convex cone of continuous R-valued functions on some topological space
X, endowed with the pointwise order and operations and the topology of uniform
convergence on a family of compact subsets of X.

(ii) a locally convex cone of convex subsets of a locally convex topological vector space,
endowed with the usual addition and multiplication by scalars, the set inclusion as
order and the neighborhoods inherited from the vector space.

These embeddings are linear and preserve the weak preorder and the neighborhoods of
(P,V).

While all elements of a locally convex cone are bounded below by definition, they need
not to be bounded above. An element a of a locally convex cone (P,V) is called bounded
(above) if for every neighborhood v ∈ V, there is λ ≥ 0 such that a ≤ λv. The subset
B ⊂ P of all bounded elements is a subcone and even a face in P (see Proposition 4.1
below). All invertible elements of P are obviously bounded above, since their negatives
are bounded below. Continuous linear functionals take only finite values on bounded
elements. Similarly, a subset A of P is said to be bounded above (or bounded below) if
for every v ∈ V there is λ ≥ 0 such that a ≤ λv (or 0 ≤ a+ λv) holds for all a ∈ A.

The presence of unbounded elements constitutes a significant difference between locally
convex cones and locally convex topological vector spaces. It tends to make matters
more interesting, but also considerably more complicated. If, for example, the element
a ∈ P is not bounded, then the mapping α 7→ αa : [0,+∞) → P, is discontinuous if
we consider the usual topology of R+ and any of the given (upper, lower or symmetric)
topologies on P, which therefore appear to be rather restrictive. We shall therefore
introduce slightly coarser neighborhoods on P which take unbounded elements suitably
into account. Given a neighborhood v ∈ V and ε > 0, we define the corresponding upper
and lower relative neighborhoods vε(a) and (a)vε for an element a ∈ P by

vε(a) = { b ∈ P | b ≤ γa+ εv for some 1 ≤ γ ≤ 1 + ε }
(a)vε = { b ∈ P | a ≤ γb+ εv for some 1 ≤ γ ≤ 1 + ε }.

Their intersection vsε(a) = vε(a) ∩ (a)vε is the corresponding symmetric relative neigh-
borhood. These are of course convex subsets of P. Without proof, we cite Lemma 4.1
from [8]:

Lemma 3.3. Let a, b, c, ai, bi ∈ P, v ∈ V, λ ≥ 0 and ε, δ > 0.

(a) If a ∈ vε(b) and b ∈ vδ(c), then a ∈ v(ε+δ+εδ)(c).

(b) If a ∈ vε(b) and 0 ≤ b+ λv, then a ≤ (1 + ε)b+ ε(1 + λ)v.
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(c) If a ∈ vε(b) and 0 ≤ a+λv, then a ≤ (1+ ε)b+ ε(1+λ+ ε)v and 0 ≤ b+(λ+ ε)v.

(d) If ai ∈ vε(bi) and if 0 ≤ bi+λv for i = 1, . . . , n, then (a1+ . . .+an) ∈ vεn(1+λ)(b1+
. . .+ bn).

Similar statements hold for the lower and for the symmetric relative neighborhoods.
Part (d) shows compatibility of these neighborhoods with the addition. Compatibility
with the multiplication by positive scalars is obvious. For elements a, b ∈ P the weak
preorder on P as defined earlier in this section may be recovered as

a 4 b if a ∈ vε(b)

for all v ∈ V and ε > 0. Lemma 3.3(d) implies that this order is compatible with the
algebraic operations in P.
For varying v ∈ V and ε > 0 the neighborhoods vε(·), (·)vε and vsε(·) create the up-
per, lower and symmetric relative topologies on P, respectively. These topologies are
obviously coarser than the corresponding given topologies, but coincide locally with the
latter on bounded elements of P, as for a ≤ λv we have

(εv)(a) ⊂ vε(a) ⊂ (ρv)(a) and (a)(εv) ⊂ (a)vε(a) ⊂ (a)(ρv).

with ρ = (1+ λ)ε. However, while the relative neighborhoods form convex subsets of P,
they do not create a locally convex cone topology. Indeed, the sets

{
(a, b) | a ∈ vε(b)

}
are

not necessarily convex in P2, hence do not establish a convex semiuniform structure on P.
The symmetric relative topology is induced by the family of pseudometrics {dv | v ∈ V},
defined by

dv(a, b) = inf
{
1,
√
ε | a ∈ vsε(b)

}
.

The required properties of pseudometrics (see Section 2.1 in [11]) are readily checked.

Remarks and Examples 3.4. (a) Let P = R, endowed with the neighborhood system
V = {ε ∈ R | ε > 0} (see Example 2.1(a)). For the neighborhood v = 1 and ε > 0 the
relative neighborhoods of an element a ∈ R are

vε(a) = (−∞, (1 + ε)a+ ε] or vε(a) = (−∞, a+ ε]

if a ≥ 0 or if a < 0, respectively. The weak preorder therefore coincides with the given
order of R. The lower relative neighborhoods are given by

(a)vε =
[
a−ε
1+ε

, +∞
]

or (a)vε = [a− ε, +∞]

if a ≥ ε or if a < ε, respectively. This yields

vsε(a) =
[
a−ε
1+ε

, (1 + ε)a+ ε
]
, vsε(a) = [a− ε, (1 + ε)a+ ε] ,

or
vsε(a) = [a− ε, a+ ε]

if a ≥ ε, if 0 ≤ a < ε or if a < 0, respectively. The upper, lower and symmetric relative
topologies of R therefore coincide with the corresponding given topologies. (see 1.1(a)).
The symmetric relative topology, in particular, is the usual topology on R with +∞ as
an isolated point.
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(b) Let P = R+ = {a ∈ R | a ≥ 0}, endowed with the neighborhood system V = {0}
(see Example 1.1(b)). For the only neighborhood v = 0 ∈ V and ε > 0 the relative
neighborhoods of an element a ∈ R+ are

vε(a) = [0, (1 + ε)a] , (a)vε =
[

a
1+ε

, +∞
]

and vsε(a) =
[

a
1+ε

, (1 + ε)a
]
.

The weak preorder therefore coincides with the given order of R+, and the symmetric
relative topology is the Euclidean topology on (0,+∞), but renders 0 ∈ P and +∞ ∈ P
as isolated points. Recall from Example 2.1(b) that the symmetric given topology on R+,
in contrast, is the discrete topology.

(c) In Example 2.1(d), that is the locally convex cone (Fb(X,P),V) of P-valued functions
on a set X, the (upper, lower and symmetric) relative topologies are generally coarser
than the given (upper, lower and symmetric) topologies of Fb(X,P). Indeed, let X =
P = R. For the function f(x) = x2 in Fb(X,R) and the neighborhood v = 1 ∈ R the
upper neighborhood v(f) consists of all functions g ∈ Fb(X,R) such that g ≤ f + 1.
Every relative upper neighborhood vε(f) of f, on the other hand, contains the function
g(x) = (1+ε)x2 which is not contained in v(f). Thus vε(f) 6⊂ v(f). A similar observation
can be made for Examples 2.1(c).

(d) It is worthwhile to notice that a continuous linear operator T between two locally
convex cones (P,V) and (Q,W) is also continuous if we endow both P and Q with
either their respective upper, lower or symmetric relative topologies. This can be easily
verified. A continuous linear functional µ on P, in particular, is therefore also continuous
mapping between P and R, if we endow P with either the upper, lower or symmetric
relative v-topology and, correspondingly, R with its given upper, lower or symmetric
topology (see Part (a)).

(e) For a locally convex cone (P,V) the mapping

(α, a) 7→ αa : [0,+∞)× P → P,

is generally not continuous with respect to the given topologies of R and P. However, it
is easily verified that this mapping is continuous if we consider the respective symmetric
relative topologies of R+ (see 3.4(b)) and P instead.

(f) Let (P,V) be a locally convex cone. For a subset A of P we denote by A
(l)

its closure
with respect to the lower relative topology of P. We list the following observations:

(i) The set A
(l)

consists of all elements b ∈ P such that for every v ∈ V and ε > 0 there

is some a ∈ A such that b ∈ vε(a). Indeed, we have b ∈ A
(l)

if and only if (b)vε ∩ A 6= ∅
for all v ∈ V and ε > 0, that is if there is a ∈ A such that b ∈ vε(a). For a singleton set

{a} in particular we have b ∈ {a}(l) if and only if b ∈ vε(a) for allv ∈ V and ε > 0, that

is b 4 a. Thus {a}(l) = {b ∈ P | b 4 a}.

(ii) The setA
(l)

is convex wheneverA is convex. Indeed let a, b ∈ A
(l)

and c = αa+(1−α)b
for some 0 ≤ α ≤ 1. Given v ∈ V and ε > 0 there is λ ≥ 0 such that both 0 ≤ a + λv
and 0 ≤ b + λv. Choose δ > 0 such that δ(1 + λ + δ) ≤ ε. Then a ≤ (1 + δ)a′ + εv
and b ≤ (1 + δ)b′ + εv for some a′, b′ ∈ A by (i) together with 4.1(c). This shows
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c ≤ (1 + δ) (αa′ + (1− α)b′) + εv, hence c ∈ vε(c
′), where c′ = αa′ + (1 − α)b′ ∈ A.

Using (i) we infer that c ∈ A
(l)
.

(iii) Every subset A of P which is closed with respect to the lower topology is decreasing
with respect to the weak preorder. Indeed, let b 4 a for some b ∈ P and a ∈ A. Then

b ∈ vε(a) for all v ∈ V and ε > 0. Thus b ∈ A
(l)

= A by (i) as claimed.

Let Q be the family of all non-empty convex subsets of P which are closed with respect
to the lower topology. If we use the standard multiplication for sets by non-negative
scalars and a slightly modified addition, that is

A⊕B = (A+B)
(l)

for A,B ∈ Q,

then Q becomes a cone. Its neutral element is {0}(l). We use the set inclusion as the
order on Q and define neighborhoods corresponding to those in P : We set

A ≤ B ⊕ v for A,B ∈ Q and v ∈ V,
if for every a ∈ A and ε > 0 there is b ∈ B such that a ≤ γb + (1 + ε)v for some
1 ≤ γ ≤ 1 + ε. First we observe that for every A ∈ Q and a fixed element a ∈ A

v ∈ V there is λ ≥ 0 such that 0 ≤ a + λv. Since {0}(l) = {b ∈ P | b 4 0}, this yields

{0}(l) ≤ A⊕(λ+1)v. Indeed, for every b 4 0, we have b ≤ v, hence b ≤ a+(λ+1)v. Thus
every element A ∈ Q is seen to be bounded below and (Q,V) satisfies the requirements
for a locally convex cone. Next we observe that the weak preorder on (Q,V) coincides
with the given order. Indeed, suppose that A 4 B, and let a ∈ A. Given v ∈ V and
ε > 0 we set δ = min{ε/3, 1} and have A ≤ γB ⊕ δv for some 1 ≤ γ ≤ 1 + δ. According
to Lemma 3.1 there is 1 ≤ γ′ ≤ 1 + δ such that a ≤ (γ′γ)b + (1 + δ)δv for some b ∈ B.
Since (1 + δ)δ ≤ ε, this yields a ≤ (γ′γ)b + εv, and since 1 ≤ γγ′ ≤ (1 + δ)2 ≤ 1 + ε

we have a ∈ vε(b) and infer from (i) that a ∈ B
(l)

= B, hence A ≤ B. Therefore A 4 B
holds if and only if A ≤ B. A similar argument shows that A 4 B⊕v holds for A,B ∈ Q
and v ∈ V if and only if A ≤ B ⊕ v. An element A ∈ Q is bounded above in Q if for
every v ∈ V there is λ ≥ 0 such that A ≤ λv, that is a ≤ (λ+ 1)v holds for all a ∈ A.

(g) Similarly, for a subset A of a locally convex cone (P,V) let us denote by A
(u)

its
closure with respect to the upper relative topology of P. In an analogous way as in (d)

on can verify: (i) The set A
(u)

consists of all elements b ∈ P such that for every v ∈ V
and ε > 0 there is some a ∈ A such that b ∈ (a)vε. For a singleton set {a} in particular

we have {a}(u) = {b ∈ P | a 4 b}. (ii) The set A
(u)

is convex whenever A is convex.
(iii) A set A ⊂ P is said to be bounded below if for every v ∈ V there is λ ≥ 0 such

that 0 ≤ a+ λv for all a ∈ A. It is straightforward to verify that A
(u)

is bounded below
whenever A is bounded below. (iv) Every subset of P which is closed with respect to
the upper relative topology is increasing with respect to the weak preorder.

Let Q be the family of all convex subsets of P which are closed with respect to the upper
topology and bounded below in the sense of (iii). If we use the standard multiplication
for sets by non-negative scalars and the addition

A⊕B = (A+B)
(u)

for A,B ∈ Q,
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then Q becomes a cone with the neutral element {0}(u) = {b ∈ P | 0 4 b}. We use the
inverse set inclusion as the order on Q, that is

A ≤ B if B ⊂ A

and define neighborhoods corresponding to those in P by

A ≤ B ⊕ v for A,B ∈ Q and v ∈ V,
if for every b ∈ B, and ε > 0 there is a ∈ A such that a ≤ γb + (1 + ε)v for some
1 ≤ γ ≤ 1 + ε. Because for every A ∈ Q and v ∈ V there is λ > 0 such that 0 ≤ a+ λv

for all a ∈ A, we have {0}(u) ≤ A ⊕ λv, and every element A ∈ Q is bounded below.
Hence (Q,V) is a locally convex cone. A similar argument than in (d) yields that (Q,V)
carries its weak preorder. Note that other than in (d) the empty set is a member of Q,
indeed its maximal element. We set A⊕∅ = ∅, α · ∅ = ∅ and 0 · ∅ = {0}(u) for all A ∈ Q
and α > 0. An element A ∈ Q is bounded above in Q if for every v ∈ V there is λ ≥ 0
such that A ≤ λv, that is there is a ∈ A such that a ≤ λv.

In both Examples (f) and (g) the given locally convex cone P may be considered as a
subcone of Q via the embedding a 7→ {a}. This embedding preserves the order structure
and the neighborhoods of P, provided that P is endowed with the weak preorder, that
is {a} ≤ {b}+ v holds if and only if a 4 b+ v for a, b ∈ P and v ∈ V.

It is worthwhile to notice that a continuous linear operator T between two locally convex
cones (P,V) and (Q,W) remains continuous if we endow both P and Q with either their
respective upper, lower or symmetric relative topologies. A continuous linear functional µ
on P, in particular, is therefore also continuous mapping between P and R, if we endow
P with either the upper, lower or symmetric relative v-topology. The corresponding
relative topologies of R coincide with the given ones ((see 1.1(a) and 3.4(a)).

Proposition 3.5. The symmetric relative topology on a locally convex cone (P,V) is
Hausdorff if and only if the weak preorder is antisymmetric.

Proof. If a 4 b and b 4 a for a, b ∈ P, then a ∈ vsε(b) for all v ∈ V and ε > 0. If the
symmetric relative topology on P is Hausdorff, then this implies a = b. If on the other
hand the weak preorder is antisymmetric, then for distinct elements a, b ∈ P we have
either a 64 b or b 64 a. Thus there are v ∈ V and ε > 0 such that either a 6∈ vε(b) or
b 6∈ vε(a). Set δ = min{1, ε/3} and assume that there is some c ∈ vsδ(a) ∩ vsδ(b). This
means a ≤ γc+ δv and c ≤ ρb+ δv for some 1 ≤ γ, ρ ≤ 1+ δ. Thus a ≤ γρb+ δ(1 + γ)v.
Since 1 ≤ γρ ≤ 1 + ε and δ(1 + γ) ≤ ε, this shows a ∈ vε(b). Similarly, one verifies
b ∈ vε(a), contradicting the above.

4. Boundedness Components

For an element a ∈ P we define the upper and lower boundedness components of a as

B(a) =
⋂

v∈V

⋃

ε>0

vε(a) and (a)B =
⋂

v∈V

⋃

ε>0

(a)vε,

respectively. We shall list a few of their basic properties. The detailed proofs for the
following statements can be found in [8, Propositions 5.1 and 5.2].
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Proposition 4.1. Let a, b, c ∈ P. Then
(a) b ∈ B(a) if and only if for every v ∈ V there are α, β ≥ 0

such that b ≤ αa+ βv.

(b) B(a) is a subcone of P, and B ⊂ B(a).
(c) B(a) is a face in P, that is b+ c ∈ B(a) implies both b, c ∈ B(a).
(d) B(αa) = B(a) for α > 0, and B(a) + B(b) ⊂ B(a+ b).

(e) b ∈ B(a) if and only if B(b) ⊂ B(a).
(f) b ∈ B(a) if and only if for all µ ∈ P∗, µ(a) < +∞ implies µ(b) < +∞.

(g) B(a) is closed in P with respect to the lower relative topology of P.

The elements of B(a) are called bounded (above) relative to a. By the definition of a
locally convex cone we have 0 ∈ B(a) for all a ∈ P, and B(0) = B consists of all bounded
elements of P. There are corresponding properties of the lower boundedness components.
The symmetric boundedness components of P are the sets

Bs(a) = B(a) ∩ (a)B for a ∈ P.

According to Propositions 5.3 and 5.4 in [8], the symmetric boundedness components
are closed for addition and multiplication by strictly positive scalars. They satisfy a
version of the cancellation law, that is a+ c 4 b+ c for elements a, b and c of the same
boundedness component implies that a 4 b. Furthermore, the symmetric boundedness
components furnish a partition of P into disjoint convex subsets that are both closed
and connected in the symmetric relative topology.

5. Locally Convex Lattice Cones

A topological vector lattice is a vector lattice and a locally convex topological vector space
over R that possesses a neighborhood base of solid sets. (See for example Chapter V.7
in [10], also [4] or [9].) Some of the following definitions and results are adaptations of
classical concepts. The presence of unbounded elements and the general unavailability
of negatives in locally convex cones, however, requires a more delicate approach. We
shall say that (P,V) is a locally convex upward lattice cone if its order is antisymmetric
and if for any two elements a, b ∈ P their supremum a ∨ b exists in P and if

(UL1) (a+ c) ∨ (b+ c) = a ∨ b+ c holds for all a, b, c ∈ P.
(UL2) a ≤ c+v and b ≤ c+w for a, b, c ∈ P and v, w ∈ V implies that a∨b ≤ c+(v+w).

Likewise, (P,V) is a locally convex downward lattice cone if its order is antisymmetric
and if for any two elements a, b ∈ P their infimum a ∧ b exists in P and if

(DL1) (a+ c) ∧ (b+ c) = a ∧ b+ c holds for all a, b, c ∈ P.
(DL2) c ≤ a+v and c ≤ b+w for a, b, c ∈ P and v, w ∈ V implies that c ≤ a∧b+(v+w).

If both sets of the above conditions hold, then (P,V) is called a locally convex lattice
cone. In case that (P,V) is indeed a locally convex topological vector space, the existence
of suprema implies the existence of infima and vice versa, as a ∧ b = − ((−a) ∨ (−b)) .
Conditions (UL1) and (UL2) then are equivalent to (DL1) and (DL2) and consistent
with the above mentioned definition of a topological vector lattice. Indeed, a ≤ c + v
and b ≤ c + w means that a ≤ c + s b ≤ c + t in this case, for some elements s and t
of the neighborhoods v and w, respectively. Because these neighborhoods are supposed
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to be solid, we have s ∨ 0 ≤ v and t ∨ 0 ≤ w as well. Now a ≤ c + s ∨ 0 + t ∨ 0 and
b ≤ c+ s ∨ 0 + t ∨ 0 implies

a ∨ b ≤ c+ s ∨ 0 + t ∨ 0 ≤ c+ (v + w)

as required in (UL2).

Proposition 5.1. Let (P,V) be a locally convex upward (or downward) lattice cone.
The lattice operation (a, b) 7→ a ∨ b (or (a, b) 7→ a ∧ b) is a continuous mapping from
P × P to P if P is endowed with the symmetric relative topology.

Proof. Suppose that (P,V) is a locally convex upward lattice cone, and let a ∈ vε(b)
and c ∈ vε(d) for a, b, c, d ∈ P, v ∈ V and ε > 0. There is λ ≥ 0 such that both 0 ≤ b+λv
and 0 ≤ d+λv. Then a ≤ (1+ε)b+ε(1+λ)v and c ≤ (1+ε)d+ε(1+λ)v by Lemma 3.3(b).
Thus

a ≤ (1 + ε)(b ∨ d) + ε(1 + λ)v and c ≤ (1 + ε)(b ∨ d) + ε(1 + λ)v.

hence

a ∨ c ≤ (1 + ε)(b ∨ d) + 2ε(1 + λ)v

by (UL2). This shows a ∨ c ∈ v(2ε(1+λ))(b ∨ d). Similarly, using 3.3(c) one verifies that
a ∈ (b)vε and c ∈ (d)vε implies a ∨ c ∈ (b ∨ d)v(2ε(1+λ+ε))(b ∨ d). Combining these
observations for both the upper and lower relative neighborhoods then demonstrates
that a ∈ vsε(b) and c ∈ vsε(d) implies a∨ c ∈ vs(2ε(1+λ+ε))(b∨d), hence our claim. A similar
argument yields our claim for locally convex downward lattice cones.

Proposition 5.2. Let (P,V) be a locally convex lattice cone. Then a+ b = a∨ b+ a∧ b
for all a, b ∈ P.

Proof. We observe that

a+ b ≤ inf
{
a+ a ∨ b , b+ a ∨ b

}
= a ∧ b+ a ∨ b

by (DL1), and by (UL1)

a ∨ b+ a ∧ b = sup
{
a+ a ∧ b , b+ a ∧ b

}
≤ a+ b.

As the order of P is supposed to by antisymmetric, this yields our claim.

Proposition 5.2 implies in particular that a = a∨ 0+ a∧ 0 for all elements a of a locally
convex lattice cone.

Examples of locally convex lattice cones include topological vector lattices and the cones
R and R+ from Examples 2.1(a) and (b). If (P,V) is a locally convex (upward, down-
ward) lattice cone, and if Y is a family of subsets of a set X, then the locally convex cone(
FbY (X,P),VY

)
of P-valued functions from Example 2.1(d) is also a lattice cone of the

same type. Suprema and infima are formed pointwise in this case. The cones (Cp,Vp)
from 2.1(e) are locally convex lattice cones.
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6. Locally Convex Complete Lattice Cones

At instances, for example in integration theory, we require considerably stronger prop-
erties concerning the existence of suprema and infima in a locally convex cone. A locally
convex cone (P,V) is said to be a locally convex upward complete lattice cone if P carries
the weak preorder, this order is antisymmetric and if

(UC1) Every non-empty subset A ⊂ P has a supremum supA ∈ P and sup(A + b) =
supA+ b holds for all b ∈ P.

(UC2) Let ∅ 6= A ⊂ P, b ∈ P and v ∈ V. If a ≤ b+ v for all a ∈ A, then supA ≤ b+ v.

In particular, every upward complete lattice cone P contains a largest element, that is
+∞ = supP, which may be adjoined as a maximal element to any locally convex cone
with the convention that a+∞ = +∞, α · (+∞) = +∞, 0 · (+∞) = 0 and that a ≤ +∞
for all a ∈ P and α > 0. Likewise, (P,V) is said to be a locally convex downward complete
lattice cone if P carries the weak preorder, this order is antisymmetric and if

(DC1) Every subset A ⊂ P that is bounded below has an infimum infA ∈ P and
inf(A+ b) = infA+ b holds for all b ∈ P.

(DC2) Let A ⊂ P be bounded below, b ∈ P and v ∈ V. If b ≤ a + v for all a ∈ A, then
b ≤ infA+ v.

These requirements are obviously stronger then the corresponding ones in Section 5,
so every locally convex upward (or downward) complete lattice cone is an upward (or
downward) lattice. Requirements (UC2) and (DC2) mean that the upper or lower neigh-
borhoods in P are closed for suprema or infima of their subsets, respectively. This corre-
sponds to the properties of M-topologies in locally convex vector lattices. If (P,V) is a
full cone, then (UC2) is evident, and (DC2) follows from (DC1). Recall from 3.4(g) that
a subset A of P is bounded below if for every v ∈ V there is λ ≥ 0 such that 0 ≤ a+ λv
for all v ∈ V. This condition does in general not imply the existence of a lower bound in
P. However, if A has a lower bound b ∈ P, that is b ≤ a for all a ∈ A, then A is bounded
below in the above sense. Indeed, for every v ∈ V there is λ ≥ 0 such that 0 ≤ b + λv,
hence 0 ≤ a+ λv holds for all a ∈ A. Note that the empty set ∅ ⊂ P is bounded below,
and we have inf ∅ = +∞ (see the remark above).

A locally convex cone (P,V) is called a locally convex complete lattice cone if it is both
upward and downward complete.

For subsets A,B of a locally convex vector upward (or downward) complete lattice P let
us denote

A ∨B = {a ∨ b | a ∈ A, b ∈ B} (or A ∧B = {a ∧ b | a ∈ A, b ∈ B}.)
Lemma 6.1. Let (P,V) be a locally convex upward complete lattice cone and let A,B ⊂
P be non-empty subsets of P. Then
(a) sup(A+B) = supA+ supB.

(b) sup(A ∪B) = sup(A ∨B) = supA ∨ supB.

Proof. For part (a), we observe that a + b ≤ supA + supB holds for all a ∈ A and
b ∈ B, hence sup(A + B) ≤ supA + supB. On the other hand, for any fixed b ∈ B
we have sup(A + B) ≥ sup(A + b) = supA + b by (UC1). This shows sup(A + B) ≥
sup(supA+B) = supA+ supB, again by (UC1).
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For part (b) we observe that a ≤ a ∨ b ≤ sup(A ∨ B) and b ≤ a ∨ b ≤ sup(A ∨ B) holds
for all a ∈ A and b ∈ B. Thus sup(A∪B) ≤ sup(A∨B). Moreover, a∨b ≤ supA∨ supB
for all a ∈ A and b ∈ B demonstrates that sup(A ∨ B) ≤ supA ∨ supB. Because both
supA ≤ sup(A ∪ B) and supB ≤ sup(A ∪ B), we have supA ∨ supB ≤ sup(A ∪ B) as
well.

A similar argument in the downward case yields:

Lemma 6.2. Let (P,V) be a locally convex downward complete lattice cone and let
A,B ⊂ P be non-empty bounded below subsets of P. Then
(a) inf(A+B) = infA+ infB.

(b) inf(A ∪B) = inf(A ∧B) = infA ∧ infB.

Remarks and Examples 6.3. (a) Every locally convex downward complete lattice
cone has also suprema for all of its subsets, as supA is the infimum of the set of all
upper bounds for A. However, requirement (UC1) does not necessarily follow (see (e)
below). Likewise, every locally convex upward complete lattice cone has infima for sub-
sets with lower bounds in P, but again, requirement (DC1) does not follow (see (d)
below).

(b) The locally convex cones R and R+ (Examples 2.1(a) and (b)) are of course complete
lattices.

(c) If (P,V) is a locally convex upward (or downward) complete lattice cone, and if Y is
a family of subsets of a set X, then the locally convex cone

(
FbY (X,P),VY

)
of P-valued

functions from Example 2.1(d) is also upward (or downward) complete. Suprema and
infima are formed pointwise.

(d) Example 3.4(f) yields an locally convex upward complete lattice cone. The cone
(Q,V) of all non-empty closed (with respect to the lower relative topology) convex subsets
of a locally convex cone (P,V) is ordered by set inclusion and carries the weak preorder
which is antisymmetric (see 3.4(f)). For a family A ⊂ Q its supremum is given by

supA = conv
(⋃

A∈AA
)(u)

, where conv(C) denotes the convex hull of a set C ⊂ P.
Condition (DC1) may be checked easily: Let B ∈ P. Clearly A ⊕ B ⊂ supA ⊕ B for
all A ∈ A, hence sup{A ⊕ B | A ∈ A} ≤ supA ⊕ B. For the converse inequality let

c ∈ supA ⊕ B =
(
conv

(⋃
A∈AA

)
+B

)(l)
. Then for every lower relative neighborhood

(c)vε there is d ∈ (c)vε ∩
(
conv

(⋃
A∈AA

)
+B

)
. This means d =

∑n
i=1 αiai + b for some

ai ∈ Ai ∈ A, b ∈ B and 0 ≤ αi such that
∑n

i=1 αi = 1. Thus d =
∑n

i=1 αi(ai + b) ∈
sup{A ⊕ B | A ∈ A}. This implies c ∈ sup{A ⊕ B | A ∈ A} as well, since this set is
closed in the lower topology. Our claim follows.

(e) A similar argument shows that Example 3.4(g) yields a locally convex downward
complete lattice cone.

(f) Let X be a topological space, and let P be the cone of all R-valued lower semi-
continuous functions on X, where R is endowed with the usual, that is the one-point
compactification topology. P is endowed with the pointwise operations and order and
neighborhoods v ∈ V for P are given by the strictly positive constant functions. Then
(P,V) forms a locally convex upward complete lattice cone. Similarly, the cone of all R
-valued upper semicontinuous functions on X forms a locally convex downward complete
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lattice cone.

7. Zero Components

Throughout this section we shall assume that (P,V) is a locally convex downward com-
plete lattice cone. We define the zero component of an element a of a locally convex
downward complete lattice cone P by

O(a) = inf
{
b ≥ 0 | a ∈ B(b)

}
.

This expression is well defined, and O(a) ≥ 0 for all a ∈ P. Recall from Proposition 4.1(a)
that a ∈ B(b) if and only if for every v ∈ V there are α, β ≥ 0 such that a ≤ αb+ βv.

The introduction of zero components is especially useful for the investigation of variations
of the cancellation law in downward complete lattice cones.

Proposition 7.1. Let (P,V) be a locally convex downward complete lattice cone, and
let a, b, c ∈ P.
(a) If a+ c ≤ b+ c, then a ≤ b+ O(c).

(b) If a ∈ B(b), then O(a) ≤ O(b)

(c) If a is bounded, then O(a) = 0.

Proof. Let a, b, c ∈ P. For part (a), suppose that a+ c ≤ b+ c. Following Lemma I.4.1
in [3], the above implies a + ρc ≤ b + ρc for all ρ > 0. Given v ∈ V and ε > 0 there
is λ ≥ 0 such that both 0 ≤ b + λv and 0 ≤ c + λv. Thus 0 ≤ (b + ρc) + 2λv for all
0 < ρ ≤ 1. This yields

a ≤ a+ ρ(c+ λv) ≤ (b+ ρc) + ρλv.

Let d ≥ 0 such that c ∈ B(d). Then c ≤ αd+ βv holds for some α, β ≥ 0. Consequently,
for all ρ > 0 such that ρ ≤ max{ ε

2λ+1
, 1
α+1

, ε
2β+1

} we have ρc ≤ (ρα)d+(ρβ)v ≤ d+(ε/2)v,
hence

a ≤ (b+ ρc) +
ε

2
v ≤ (b+ d) + εv.

Now we may use rules (DC1) and (DC2) and take the infimum over the right-hand side
of this inequality with respect to all d ≥ 0 such that c ∈ B(d). This yields

a ≤ b+ O(c) + εv.

This last inequality holds true for all v ∈ V and ε > 0. Since P carries the weak preorder,
this yields a ≤ b+O(c), as claimed. For part (b) suppose that a ∈ B(b). Then for every
c ≥ 0 such that b ∈ B(c) we have B(b) ⊂ B(b) by 4.1(e), hence a ∈ B(c) as well. This
yields O(a) ≤ O(b). Part (c) follows from part (b) with b = 0.

Proposition 7.2. Let (P,V) be a locally convex downward complete lattice cone, and
let a, b,∈ P. Then
(a) O(a+ b) = O(a) + O(b).

(b) O(αa) = αO(a) = O(a) for all α > 0.

(c) If αa = a for all α > 0, then O(a) = a.
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Proof. Let a, b,∈ P. Part (b) is obvious since for every α > 0 and every c ∈ P we have
αa ∈ B(c) if and only if a ∈ B(c) by 4.1(b). For part (a) let a ∈ B(c) and b ∈ B(d) for
c, d ≥ 0. Then a+ b ∈ B(c+ d) by 4.1(d). This shows O(a+ b) ≤ O(a) + O(b). For the
converse, given v ∈ V there is λ ≥ 0 such that 0 ≤ b+λv. Hence a ≤ (a+b)+λv, and we
infer that a ∈ B(a+ b). Thus O(a) ≤ O(a+ b) by 7.1(b), and likewise O(b) ≤ O(a+ b).
This yields O(a) + O(b) ≤ 2O(a + b) = O(a + b). For part (c) let a ∈ P such that
αa = a for all α ≥ 0. For every v ∈ V there is λ > 0 such that 0 ≤ a + λv, hence
0 ≤ (1/λ)a + v = a + v. This shows 0 ≤ a, since P carries the weak preorder. Thus
O(a) ≤ a. If on the other hand a ∈ B(c) for some c ≥ 0, then there are α, β ≥ 0 such
that a ≤ αc+ βv. Since εαc ≤ c for all 0 < ε ≤ 1/(α+ 1), this implies

a = εa ≤ εαc+ εβv ≤ c+ εβv

for all such ε. This yields a ≤ c since P carries the weak preorder, and we also have a ≤
O(a).

Proposition 7.2(b) implies in particular that a linear functional µ ∈ P∗ can attain only
the values 0 or +∞ at a zero component.

Some additional properties can be derived if (P,V) is also an upward or indeed an upward
complete lattice.

Lemma 7.3. Suppose (P,V) is a locally convex lattice cone and downward complete.
Then the zero component of an element a ∈ P may be alternatively expressed as

O(a) = inf
ε>0

{
ε (a ∨ 0)

}
.

Proof. Let a ∈ P. Then 0 ≤ a ∨ 0 and a ≤ a ∨ b. Thus a ∈ B(a ∨ b). This implies
a ∈ B (ε (a ∨ 0)) for all ε > 0 by 4.1(d). Hence inf

{
b ≥ 0 | a ∈ B(b)

}
≤ infε>0

{
ε (a∨0)

}
.

For the converse inequality let b ≥ 0 such that a ∈ B(b). Given v ∈ V and ε > 0 there
are α, β ≥ 0 such that a ≤ αb + βv (see 4.1(a)). (UL2) then yields a ∨ 0 ≤ αb + 2βv.
Thus for 0 < δ ≤ min{ ε

2β+1
, 1
α+1

} we have

δ(a ∨ 0) ≤ δαb+ 2δβv ≤ b+ εv,

since b ≥ 0 and δα ≤ 1 implies (δα)b ≤ b. This shows infε>0

{
ε (a ∨ 0)

}
≤ b+ εv, hence

inf
ε>0

{
ε (a ∨ 0)

}
≤ inf

{
b ≥ 0 | a ∈ B(b)

}
+ εv

by (DC2). Because this holds for all v ∈ V and for all ε > 0, and because P carries the
weak preorder, we conclude that infε>0

{
ε (a ∨ 0)

}
≤ inf

{
b ≥ 0 | a ∈ B(b)

}
.

Proposition 7.4. Suppose (P,V) is a locally convex lattice cone and downward com-
plete. Then b+ O(a) = b holds for all a, b ∈ P whenever a ∈ B(b).

Proof. Let a, b ∈ P such that a ∈ B(b). Then O(a) ≤ O(b) by Proposition 7.1(b). Thus
we only have to verify that b+O(b) = b. Clearly b ≤ b+O(b). For the reverse inequality
let v ∈ V. There is λ ≥ 0 such that 0 ≤ b + λv, hence also 0 ≤ b ∧ 0 + λv by (DC2).
Then using Proposition 5.2 we observe that

b+ O(b) ≤ b+ ε (b ∨ 0) ≤ b+ ε (b ∨ 0) + ε ((b ∧ 0) + λv) = (1 + ε)b+ ελv

holds for all ε > 0. This shows b+ O(b) ≤ b.
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Proposition 7.5. Let (P,V) be a locally convex complete lattice cone, and let A,B be
non-empty subsets of P. Then
(a) inf(A ∨B) = infA ∨ infB if both A and B are bounded below.

(b) sup(A ∧B) ≤ supA ∧ supB ≤ sup(A ∧B) + O (sup(A ∨B)) .

Proof. We first observe that

infA ∨ infB ≤ a ∨ b and a ∧ b ≤ supA ∧ supB

holds for all a ∈ A and b ∈ B. Thus

infA ∨ infB ≤ inf(A ∨B) and sup(A ∧B) ≤ supB ∧ supA.

For part (a) we assume that both setsA andB are bounded below and use Proposition 5.2
for

inf(A ∨B) + inf(A ∧B) ≤ inf{a ∨ b+ a ∧ b | a ∈ a, b ∈ B}
= inf(A+B)

= infA+ infB

= infA ∨ infB + infA ∧ infB.

As inf(A ∧B) = infA ∧ infB, the cancellation law in Proposition 7.1(a) yields

inf(A ∨B) ≤ infA ∨ infB + O (inf(A ∧B)) .

Similarly, one obtains

supA ∧ supB ≤ sup(A ∧B) + O (sup(A ∨B)) ,

that is part (b). Finally, as inf(A ∧ B) = infA ∧ infB ≤ infA ∨ infB, Proposition 7.5
shows

infA ∨ infB + O (infA ∧ infB) = infA ∨ infB.

This completes our proof of part (a).

Examples 7.6. (a) If P = R or P = R+ (see 2.1(a) and 2.1(b)), then O(a) = 0 for all
a < +∞, and O(+∞) = +∞.

(b) If (P,V) is downward complete and f ∈ FbY (X,P) (see Example 2.1(d)), then O(f)
is the mapping x 7→ O (f(x)) . For P = R, in particular, the zero component of an
R-valued function f ∈ FbY (X,R) is the mapping O (f) (x) = 0 if f(x) < +∞, and
O (f) (x) = +∞ else. The same observation applies to Example 6.3(f), that is the cone
of R-valued upper semicontinuous functions on a topological space with the positive
constants as neighborhoods.

(c) Let us consider Example 3.4(g)(e) (see also 6.3(e)), that is the downward complete
lattice cone (Q,V) of all convex subsets locally convex cone (P,V), which are bounded
below and closed with respect to the upper relative topology. The order inQ is the inverse
set inclusion and the neighborhoods are given by A ≤ B⊕v for A,B ∈ Q and v ∈ V, if for
every b ∈ B, and ε > 0 there is a ∈ A such that a ≤ γb+(1+ε)v for some 1 ≤ γ ≤ 1+ε.
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The closed convex subsets (including the empty set) of {0}(u) = {b ∈ P | 0 4 b} are the
positive elements in Q. We claim that for an element A ∈ Q we have

O(A) = {b < 0 | Bv(b) ∩ A 6= ∅ for all v ∈ V}.

We shall argue for this using the following steps: Let B denote the set on the right-hand
side of the above equation.

(i) The set B ⊂ P is convex. Indeed, let b1, b2 ∈ B, 0 ≤ λ1, λ2 ≤ 1 such that λ1 +λ2 = 1
and b = λ1b1 + λ2b2. Given v ∈ V there are a1 ∈ Bv(b1) ∩ A and a2 ∈ Bv(b2) ∩ A. Set
a = λ1a1 + λ2a2 ∈ A and choose α1, α2, β, ρ ≥ 0 such that

a1 ≤ α1b1 + βv, a2 ≤ α2b2 + βv, 0 ≤ b1 + ρv and 0 ≤ b2 + ρv.

Setting α = max{α1, α2} we have

a1 ≤ (α1b1 + βv) + (α− α1)(b1 + ρv) + α1ρv = αb1 + (β + αρ)v

and, likewise

a2 ≤ (α2b1 + βv) + (α− α2)(b2 + ρv) + α2ρv = αb2 + (β + αρ)v.

Thus
a ≤ λ1 (αb1 + (β + αρ)v) + λ2 (αb1 + (β + αρ)v) = αb+ (β + αρ)v.

We infer that a ∈ Bv(b)∩A, hence Bv(b)∩A 6= ∅. Since this holds for all v ∈ V and since
b < 0 is evident from b1, b2 < 0, we conclude that b ∈ B.

(ii) The set B ⊂ P is closed with respect to the upper topology. Indeed, let c ∈ B
(u)

and let v ∈ V. There is b ∈ v1(c) ∩ B, that is b ≤ γc + v for some 1 ≤ γ ≤ 2.
There is a ∈ Bv(b) ∩ A, that is a ≤ αb + βv for some α, β ≥ 0. Combining these
yields a ≤ αγc + (α + β)v. This shows Bv(c) ∩ A 6= ∅ for all v ∈ V. Furthermore, since

B ⊂ {0}(u) = {b ∈ P | 0 4 b} which is closed with respect to the upper relative topology,

we have c ∈ {0}(u) as well, hence c < 0. Together with the above this yields c ∈ B. Since
B ⊂ P is obviously bounded below (we have 0 ≤ b + v for all b ∈ P), we conclude
from (i) and (ii) that B ∈ Q.

(iii) We have A ∈ B
(
{b}(u)

)
for all b ∈ B. Indeed, let v ∈ V. Given b ∈ B there is some

a ∈ Bv(b) ∩ A, that is there are α, β, λ ≥ 0 such that a ≤ αb + βv and 0 ≤ b + λv.

Then for every c ∈ {b}(u), that is b 4 c, we have b ∈ v1(c), hence b ≤ 2c + (2 + λ)v
(see Proposition 4.1(c) with ε = 1). This yields a ≤ 2αc + (2α + λα + β)v and A ≤
2α {b}(u) ⊕ (2α+ λα+ β)v, hence A ∈ B

(
{b}(u)

)
. Consequently,

O(A) ≤ inf
{
{b}(u) | b ∈ B

}
= conv

(⋃
b∈B {b}(u)

)(u)
= B.

(iv) On the other hand, let C ∈ Q such that C ≥ 0, that is C ⊂ {0}(u), and A ∈ B(C).
Let c ∈ C. Given v ∈ V there are α, β ≥ 0 such that A ≤ αC ⊕ βv. According to ro our
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definitions of the neighborhoods in Q (see 3.4(g)), for ε = 1 we find a ∈ A such that
a ≤ γ(αc) + 2(βv) with some 1 ≤ γ ≤ 2. This yields Bv(b) ∩ A 6= ∅ for all v ∈ V, hence
c ∈ B since c < 0. Thus

C = conv
(⋃

c∈C {c}(u)
)(u)

⊂ B.

This shows O(A) ⊂ B, that is O(A) ≥ B, and our claim follows. In particular, we have

O(A) = {0}(u) if and only if Bv(0) ∩ A 6= ∅ for all v ∈ V, that is if and only if for every
v ∈ V there are a ∈ A and λ ≥ 0 such that a ≤ λv, that is if and only if the element
A ∈ Q is bounded above (see 3.4(g)).

For a concrete example let P be the cone of all real-valued bounded below continuous
functions on the open interval (0, 1), endowed with the positive constants as neighbor-
hoods (see 2.1(d)) and let Q be as before. Consider the subset

C =

{
f ∈ P

∣∣∣ f(x) ≥ 1

x
− 2 for all x ∈ (0, 1)

}
.

This set is convex, bounded below and closed with respect to the upper relative topology,
hence C ∈ Q. For a function g ≥ 0 in P, we have B(g) ∩ C 6= ∅ if and only if there are
α, β ≥ 0 such that 1/x ≤ αg(x) + β for all x ∈ (0, 1), that is if and only if the inferior
limit of xg(x) at 0 is greater than 0. Thus

O(C) =

{
g ∈ P

∣∣∣ g ≥ 0 and lim
x→0

xg(x) > 0

}
.

Now according to the cancellation rule in Proposition 7.1(a), if A,B ∈ Q such that
A+ C ≤ B + C, that is B + C ⊂ A+ C, then A ≤ B + O(c), that is B + O(C) ⊂ A.

8. Order Convergence in Locally Convex Complete Lattice Cones

We proceed to define order convergence for nets in a locally convex complete lattice cone
(P,V). A net (ai)i∈I in P is called bounded below if there is i0 ∈ I such that the set
{ai | i ≥ i0} is bounded below in the sense of 3.4(g). We define the superior and inferior
limits of a bounded below net (ai)i∈I in P by

lim
i∈I

ai = sup
i∈I

(
inf
k≥i

ak

)
and lim

i∈I
ak = inf

i∈I

(
sup
k≥i

ak

)
.

Because the order of P is supposed to be antisymmetric, both limits are uniquely defined.
Obviously, limi∈I ai ≤ limi∈I ai. If limi∈I ai and limi∈I ai coincide, we shall denote their
common value by limi∈I ai and say that the net (ai)i∈I is order convergent. Obviously,
every increasing or decreasing bounded below net is order convergent in this sense,
converging towards the supremum or the infimum of the set of its elements, respectively.

Lemma 8.1. Let (P,V) be a locally convex complete lattice cone, and let (ai)i∈I and
(bi)i∈I be bounded below nets in P. Then

lim
i∈I

ai + lim
i∈I

bi ≤ lim
i∈I

(ai + bi) ≤ lim
i∈I

ai + lim
i∈I

bi ≤ lim
i∈I

(ai + bi) ≤ lim
i∈I

ai + lim
i∈I

bi.
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Proof. For any bounded below net (ci)i∈I in P, for i ∈ I, let

s
(c)
i = inf

k≥i
ck and S

(c)
i = sup

k≥i
ck.

The nets (s
(c)
i )i∈I and (S

(c)
i )i∈I are increasing and decreasing, respectively, and

lim
i∈I

ci = sup
i∈I

s
(c)
i and lim

i∈I
ci = inf

i∈I
S
(c)
i .

Now, using the nets (ai)i∈I , (bi)i∈I and (ai + bi)i∈I in place of (ci)i∈I we observe that

s
(a+b)
i ≥ s

(a)
i + s

(b)
i and S

(a+b)
i ≤ S

(a)
i + S

(b)
i

for all i ∈ I. For every k ∈ I we have by (UC1)

s
(a)
k + sup

i∈I
s
(b)
i = sup

i∈I
(s

(a)
k + s

(b)
i ) ≤ sup

l∈I
(s

(a)
l + s

(b)
l ),

as s
(a)
k + s

(b)
i ≤ s

(a)
l + s

(b)
l whenever i, k ≤ l. This shows

lim
i∈I

ai + lim
i∈I

bi = sup
k∈I

s
(a)
k + sup

i∈I
s
(b)
k ≤ sup

l∈I
(s

(a)
l + s

(b)
l ) = lim

i∈I

(ai + bi),

the first part of our claim. A similar argument using the decreasing nets (S
(c)
i )i∈I yields

lim
i∈I

ai + lim
i∈I

bi = inf
k∈I

S
(a)
k + inf

i∈I
S
(b)
k ≥ inf

l∈I
(S

(a)
l + S

(b)
l ) = lim

i∈I
(ai + bi).

Finally, for all i, l ∈ I and j ≥ i, l we have

s
(a+b)
i = inf

k≥i
(ak + bk) ≤ inf

k≥j
(S

(a)
l + bk) = S

(a)
l + inf

k≥j
bk ≤ S

(a)
l + lim

i∈I

bi,

hence
lim
i∈I

(ai + bi) = sup
i∈I

s
(a+b)
i ≤ inf

l∈I
S
(a)
l + lim

i∈I

bi = lim
i∈I

ai + lim
i∈I

bi.

A similar argument shows that

lim
i∈I

ai + lim
i∈I

bi ≤ lim
i∈I

(ai + bi).

Note that Lemma 8.1 implies in particular that

lim
i∈I

(a+ bi) = a+ lim
i∈I

bi and lim
i∈I

(a+ bi) = a+ lim
i∈I

bi

holds for a ∈ P and a bounded below net (bi)i∈I .

Lemma 8.2. Let (P,V) be a locally convex complete lattice cone, let (ai)i∈I and (bi)i∈I
be bounded below nets in P, and let v ∈ V. If ai ≤ bi + v for all i ∈ I, then limi∈I ai ≤
limi∈I bi + v and limi∈I ai ≤ limi∈I bi + v.
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Proof. For every i ∈ I we have infk≥i ak ≤ bj + v for all j ≥ i, hence

inf
k≥i

ak ≤ inf
j≥i

bj + v ≤ lim
j∈J

bj + v

by (DC2). Thus limi∈I ai ≤ limj∈J bj + v by (UC2). A similar argument yields the
second statement.

Lemma 8.2 implies in particular that limi∈I ai ≤ limi∈I bi holds for order convergent nets
(ai)i∈I and (bi)i∈I whenever ai ≤ bi for all i ∈ I. We omit the proof for the following:

Lemma 8.3. Let (P,V) be a locally convex complete lattice cone. Let (ai)i∈I be a
bounded below net in P, and let (αi)i∈I be a bounded net of non-negative reals such
that limi∈I αi > 0. Then

(
lim
i∈I

αi

)(
lim
i∈I

ai

)
≤ lim

i∈I

(αiai) ≤ lim
i∈I

(αiai) ≤
(
lim
i∈I

αi

)(
lim
i∈I

ai

)
.

Corollary 8.4. Let (P,V) be a locally convex complete lattice cone. Let (ai)i∈I and
(bi)i∈I be order convergent nets in P, and let (αi)i∈I be a bounded net of non-negative
reals such that limi∈I αi > 0. Then

lim
i∈I

(ai + bi) = lim
i∈I

ai + lim
i∈I

bi and lim
i∈I

(αiai) =

(
lim
i∈I

αi

)(
lim
i∈I

ai

)
.

This is an obvious consequence of our previous results 8.1 and 8.3. Note that the re-
quirement that limi∈I αi > 0 may not be omitted if the elements of the net (ai)i∈I are
not bounded in P : In the locally convex complete lattice cone R choose an = n and

αn = (1/n). Then limn→∞(αnan) = 1, but
(
lim
n→∞

αn

)(
lim
n→∞

an

)
= 0 · (+∞) = 0.

We proceed to investigate continuity of the lattice operations with respect to order
convergence (c.f. Proposition 5.1).

Proposition 8.5. Let (P,V) be a locally convex complete lattice cone and let (ai)i∈I
and (bi)i∈I be convergent nets in P. Then

(a) limi∈I(ai ∨ bi) =
(
lim
i∈I

ai

)
∨ (limi∈I bi) .

(b) limi∈I(ai ∧ bi) ≤ (limi∈I ai) ∧ (limi∈I bi) ≤ limi∈I(ai ∧ bi) + O (limi∈I(ai ∨ bi)) .

Proof. (a) Let (ai)i∈I and (bi)i∈I be convergent nets. Then

lim
i∈I

(ai ∨ bi) = inf
i∈I

(
sup
l≥i

(al ∨ bl)
)

≤ inf
i∈I

((
sup
l≥i

al

)
∨
(
sup
j≥i

bj

))
.

Because for any choice of i, k ∈ I and any p ∈ I such that both i ≤ p and k ≤ p we have

(
sup
l≥p

al

)
∨
(
sup
j≥p

bj

)
≤
(
sup
l≥i

al

)
∨
(
sup
j≥k

bj

)
,
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we realize that

inf
i∈I

((
sup
l≥i

al

)
∨
(
sup
j≥i

bj

))
≤ inf

i,k∈I

((
sup
l≥i

al

)
∨
(
sup
j≥k

bj

))
.

Now we use Proposition 7.5(a) for

inf
i,k∈I

((
sup
l≥i

al

)
∨
(
sup
j≥k

bj

))
= inf

i∈I

(
sup
l≥i

al

)
∨ inf

k∈I

(
sup
j≥k

bj

)
=

(
lim
i∈I

ai

)
∨
(
lim
i∈I

bi

)
.

Both nets (ai)i∈I and (bi)i∈I are supposed to be convergent. So we have

(
lim
i∈I

ai

)
∨
(
lim
i∈I

bi

)
=

(
lim
i∈I

ai

)
∨
(
lim
i∈I

bi

)
≤ lim

i∈I

(ai ∨ bi).

Summarizing, the above yields

lim
i∈I

(ai ∨ bi) ≤
(
lim
i∈I

ai

)
∨
(
lim
i∈I

bi

)
≤ lim

i∈I

(ai ∨ bi)

as claimed in part (a). Similarly, one verifies part (b): The inequality

lim
i∈I

(ai ∧ bi) ≤
(
lim
i∈I

ai

)
∧
(
lim
i∈I

bi

)
=

(
lim
i∈I

ai

)
∧
(
lim
i∈I

bi

)

is obvious. Next we use part (a), Proposition 5.2 and the limit rules from Lemma 8.1 for

(
lim
i∈I

ai

)
∧
(
lim
i∈I

bi

)
+ lim

i∈I
(ai ∨ bi) =

(
lim
i∈I

ai

)
∧
(
lim
i∈I

bi

)
+

(
lim
i∈I

ai

)
∨
(
lim
i∈I

bi

)

= lim
i∈I

ai + lim
i∈I

bi = lim
i∈I

(ai + bi)

= lim
i∈I

(ai ∧ bi + ai ∨ bi)

≤ lim
i∈I

(ai ∧ bi) + lim
i∈I

(ai ∨ bi)

= lim
i∈I

(ai ∧ bi) + lim
i∈I

(ai ∨ bi).

Now the cancellation rule from Proposition 7.1(a) yields the remaining part of (b).

Series 8.6. A series
∑∞

i=1 ai with terms ai in a locally convex complete lattice cone
(P,V) is said to be order convergent with limit s ∈ P if the sequence sn =

∑n
i=1 ai of its

partial sums is order convergent to s. We write
∑∞

i=1 ai = s in this case.

Proposition 8.7. Let (P,V) be a locally convex complete lattice cone and let ai, bi ∈ P
for i ∈ N. If the series

∑∞
i=1 ai is convergent and if ai ≤ bi for all i ∈ N, then the series∑∞

i=1 bi is also convergent.
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Proof. Let ai, bi ∈ P such that ai ≤ bi for all i ∈ N. Let sn =
∑n

i=1 ai and rn =
∑n

i=1 bi
be the partial sums of the series

∑∞
i=1 ai and

∑∞
i=1 bi, and let s =

∑∞
i=1 ai. Then sn ≤ rn

for all n ∈ N, hence s ≤ limn→∞ rn. For m ≥ n we have

rn + sm = rn + sn +
m∑

i=n+1

ai ≤ rn + sn +
m∑

i=n+1

bi = rm + sn.

For a fixed n ∈ N and m→ ∞ this leads to

rn + s = rn + lim
m→∞

sm = lim
m→∞

(rn + sm) ≤ lim
m→∞

(sn + rm) = lim
m→∞

rm + sn.

Now we let n→ ∞ and obtain

lim
n→∞

rn + s = lim
n→∞

(rn + s) ≤ lim
n→∞

(
lim

m→∞

rm + sn

)

= lim
m→∞

rm + lim
n→∞

sn = lim
m→∞

rm + s.

The cancellation law from Proposition 7.1(a) now yields

lim
n→∞

rn ≤ lim
n→∞

rn + O(s).

But s ≤ limn→∞ rn , as we observed before, and therefore limn→∞ rn+O(s) = limn→∞ rn
by Proposition 7.4. This yields

lim
n→∞

rn ≤ lim
n→∞

rn,

hence convergence of the sequence (rn)n∈N, that is the partial sums of the series
∑∞

i=1 bi.

9. Order Continuous Linear Operators

Let (P,V) and (Q,W) be locally convex complete lattice cones. We shall say that
a continuous linear operator T : P → Q is order continuous if it is continuous with
respect to order convergence, that is if

T

(
lim
i∈I

ai

)
= lim

i∈I
T (ai)

holds for every order convergent net (ai)i∈I in P. The limits refer to order convergence
in P and Q, respectively. For every bounded below net (ai)i∈I in P and every order
continuous linear operator T : P → Q we have

T

(
lim
i∈I

ai

)
= T

(
lim
i∈I

inf
k≥i

ak

)
= lim

i∈I
T

(
inf
k≥i

ak

)
≤ lim

i∈I
inf
k≥i

T (ak) = lim
i∈I

T (ai)

and, likewise

T

(
lim
i∈I

ai

)
= T

(
lim
i∈I

sup
k≥i

ak

)
= lim

i∈I
T

(
sup
k≥i

ak

)
≥ lim

i∈I
sup
k≥i

T (ak) = lim
i∈I

T (ai),
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that is

T

(
lim
i∈I

ai

)
≤ lim

i∈I

T (ai) ≤ lim
i∈I

T (ai) ≤ T

(
lim
i∈I

ai

)
.

The order continuous linear functionals in P∗, that is the order continuous linear op-
erators from P into the completely ordered locally convex cone Rform a subcone of
P∗.

10. Lattice Homomorphisms

Let both (P,V) and (Q,W) be locally convex upward (or downward) lattice cones.
A continuous linear operator T : P → Q is a called upward (or downward) lattice
homomorphism if it is compatible with the lattice operations in P and Q, that is if

T (a ∨ b) = T (a) ∨ T (b) (or T (a ∧ b) = T (a) ∧ T (b))

holds for all a, b ∈ P. If (P,V) and (Q,W) are locally convex lattice cones and T :
P → Q is both an upward and downward lattice homomorphism then T is called a
lattice homomorphism. Linear operators that are both order continuous and lattice
homomorphisms are of particular interest. Suppose that both (P,V) and (Q,W) are
locally convex complete lattice cones. Because the supremum or infimum of any subset
A of P is the limit with respect to order convergence of the net of suprema or infima of
finite subsets of A, we have

T (supA) = sup
{
T (a) | a ∈ A

}
and T (infB) = inf

{
T (b) | b ∈ B

}

for an order continuous lattice homomorphism T : P → Q and for all subsets A and
bounded below subsets B of P. This implies in particular that

T

(
lim
i∈I

ai

)
= lim

i∈I

T (ai) and T

(
lim
i∈I

ai

)
= lim

i∈I
T (ai)

holds for every bounded below net (ai)i∈I in P.
Examples 10.1. (a) Theorem II.6.7 in [3] states that for every neighborhood v ∈ V
in a locally convex upward (or downward) complete lattice cone (P,V) all the extreme
points of its polar v◦ ⊂ P∗ are upward (or downward) lattice homomorphisms from P
into R.

(b) Let (P,V) be a locally convex cone with dual P∗ and let (Q,V) be the cone of all non-
empty convex subsets of P which are closed with respect to the lower topology (see Exam-
ple 3.4(f)). In 6.3(d) we showed that (Q,V) is a locally convex upward complete lattice
cone ordered by the set inclusion. There is a natural embedding µ 7→ µ̃ : P∗ → Q∗,
where

µ̃(A) = sup{µ(a) | a ∈ A}
for µ ∈ P∗ and A ∈ Q. Indeed, if µ ∈ v◦ for some v ∈ V, then A ≤ B ⊕ v for A,B ∈ Q
means that for every a ∈ A and ε ≥ 0 there is b ∈ B such that a ≤ γb+(1+ε)v (see 3.4(g))
with some 1 ≤ γ ≤ 1 + ε. This yields µ(a) ≤ γµ(b) + (1 + ε) ≤ γµ̃(b) + (1 + ε) for all
ε > 0, hence µ(a) ≤ µ̃(B) + 1. This yields µ̃(A) ≤ µ̃(B) + 1, and therefore µ̃ ∈ v◦ ⊂ Q∗.
Moreover, µ̃ is an upward lattice homomorphism even with respect to arbitrary suprema
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in Q : Let A be a subset of Q and let c be an element of conv
(⋃

A∈AA
)
, the convex hull

of the union of all elements of A. Then c =∑n
i=1 αiai for some ai ∈ Ai ∈ A and αi ≥ 0

such that
∑n

i=1 αi = 1. Thus

µ(c) =
n∑

i=1

αiµ(ai) ≤
n∑

i=1

αiµ̃(Ai) ≤ sup
A∈A

µ̃(A).

Since the functional µ : P → R is also continuous with respect to the lower relative
topology on P, we can conclude that

µ̃(supA) = sup



µ(a)

∣∣∣ a ∈ conv

(
⋃

A∈A

A

)(l)




= sup

{
µ(a)

∣∣∣ a ∈ conv

(
⋃

A∈A

A

)}
≤ sup

A∈A

µ̃(A).

The converse inequality is obvious.

(c) Similarly one argues for the locally convex cone (Q,V) of all bounded below convex
subsets of P which are closed with respect to the upper topology (see Examples 3.4(f)
and 6.3(e)). (Q,V) is a locally convex downward complete lattice cone, ordered by the
inverse set inclusion. There is a natural embedding µ 7→ µ̃ : P∗ → Q∗, where

µ̃(A) = inf{µ(a) | a ∈ A}

for µ ∈ P∗ and A ∈ Q. As similar argument as in (b) shows that µ̃(infA) = infA∈A µ̃(A)
holds for every bounded below family of sets A ⊂ Q.
(d) Let (P,V) be a locally convex upward (or downward) lattice cone, X a set, and
consider the locally convex cone

(
FbY (X,P),VY

)
of P-valued functions on X endowed

with the topology of uniform convergence on the sets in a family Y of subsets of X
(Example 2.1(d)). This was seen to be again an upward (or downward) lattice cone.
For µ ∈ P∗ and x ∈ Y for some Y ∈ Y the mapping µx : FbY (X,P) → R such that
µx(f) = µ (f(x)) for all ∈ FbY (X,P) is a continuous linear functional on FbY (X,P).
Moreover, if µ is an upward (or downward) lattice homomorphism for P, then µx is a
lattice homomorphism of the same type for FbY (X,P).

11. Comparison of Topologies

We shall proceed probing different patterns of convergence in a locally convex complete
lattice cone (P,V). For a net (ai)i∈I in P, convergence with respect to the symmetric
relative topology of P towards a ∈ P means that for every v ∈ V and ε > 0 there is
i0 ∈ I such that ai ∈ vsε(a) for all i ≥ i0. (ai)i∈I is a Cauchy net if for every v ∈ V and
ε > 0 there is i0 ∈ I such that ai ∈ vε(ak) for all i, k ≥ i0. Obviously, convergence implies
that (ai)i∈I is a Cauchy net. The converse, that is topological completeness holds also
true:

Proposition 11.1. Every locally convex complete lattice cone is complete with respect
to the symmetric relative topology.
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Proof. Suppose that (ai)i∈I is a Cauchy net in P.We shall first demonstrate that (ai)i∈I
is order convergent. Let v ∈ V and 0 < ε ≤ 1. There is i0 ∈ I such that ai ∈ vε(ak) for
all i, k ≥ i0. Choose λ ≥ 0 such that 0 ≤ ai0 + λv. Following Lemma 3.3(b) and (c) this
implies

ai ≤ (1 + ε)ai0 + ε(1 + λ)v and ai0 ≤ (1 + ε)ai + ε(2 + λ)v

for all i ≥ i0. This shows in particular that (ai)i∈I is bounded below and also that

ai ≤ (1 + ε)2ak + 3ε(2 + λ)v

for all i, k ≥ i0. We infer that

lim
i∈I

ai ≤ (1 + ε)2 lim
k∈I

ak + 3ε(2 + λ)v.

As this holds for all v ∈ V and 0 < ε ≤ 1, and as Q carries the weak preorder which is
supposed to be antisymmetric, we infer that limi∈I ai = limk∈I ak, hence order conver-
gence towards an element a ∈ P. Moreover, the above shows that

ai ≤ (1 + ε2)a+ 3ε(2 + λ)v and a ≤ (1 + ε2)ai + 3ε(2 + λ)v

holds for all i ≥ i0. Thus the net (ai)i∈I converges to a in the symmetric relative topology
as well.

In fact, we just verified that every Cauchy net, hence every convergent net in the sym-
metric relative topology of (P,V) is indeed order convergent with the same limit. We
shall formulae this as a separate proposition:

Proposition 11.2. Let (P,V) be a locally convex complete lattice cone. Convergence
of a net (ai)i∈I in P towards a ∈ P in the symmetric relative topology implies order
convergence towards a.

While convergence in the symmetric relative topology implies order convergence, the
converse is not necessarily true, as a simple example may show: In the completely
ordered locally convex cone R order convergence means convergence in the usual (one-
point compactification) topology of R which for the element +∞ does not coincide
with the symmetric relative topology of R. The sequence (n)n∈N, for example, is order
convergent towards +∞ ∈ R, but does not converge in the symmetric relative topology,
as +∞ is an isolated point in this topology.

11.1. Order topology

While order convergence in a locally convex complete lattice cone (P,V) does not neces-
sarily correspond to a topology on P in the sense that order and topological convergence
for nets coincide (see 1.1.9 in [4]), there is a finest topology O(P) on P with the following
properties (see also V.6 in [10]):

(OT1) Every very element in P admits a basis of both convex and order convex neigh-
borhoods. For every neighborhood U of 0 ∈ P and every bounded element a ∈ P
there is ε > 0 such that εa ∈ U. If a ∈ U is invertible, then −a ∈ U as well.
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(OT2) The mappings (a, b) 7→ a+ b : P2 → P and (α, a) 7→ αa : (0,+∞)× P → P are
continuous.

(OT3) All order convergent nets in P are topologically convergent with the same limit.

Indeed, the family T of all topologies on P with these properties is not empty as it
contains the discrete topology. Let O(P) be the supremum of this family in the lattice
of topologies on P. A neighborhood basis in O(P) for a point a ∈ P is generated by
the intersections of finitely many neighborhoods for a taken from topologies in T. This
shows that O(P) again satisfies (OT1) to (OT3), hence is the finest topology with these
properties. We shall call O(P) the (strong) order topology on P. It is easy to verify that
the symmetric relative topology of P satisfies (OT1) and (OT2), however not (OT3)
in general. To the contrary, we observed earlier in 11.2 that convergence for a net in
the symmetric relative topology implies order convergence, hence convergence in O(P).
Since the closure in any topology of a given subset A of P can be described as the set of
all limit points of convergent nets in this subset, Proposition 11.2 implies that the closure
of A with respect to the symmetric relative topology is contained in the closure of A with
respect to O(P). We infer that O(P) is generally coarser than the symmetric relative
topology. Note thatO(P) is however not necessarily a locally convex cone topology. For
P = R, for example, the order topology is the usual topology of R, where +∞ is not an
isolated point.

We observe that Conditions (OT1) to (OT3) imply the following for O(P) :

(OT4) Let P0 be the subcone of all invertible elements of P. The mapping (α, a) 7→ αa :
R× P0 → P0 is continuous.

We shall make this argument in several short steps: First suppose that ai → 0 for ai ∈ P0

in any topology satisfying (OT1) to (OT3). Given a neighborhood U of 0 there is i0
such that ai ∈ U for all i ≥ i0. This implies −ai ∈ U as well by the last part of (OT1).
Thus (−ai) → 0. Next suppose that ai → a for ai, a ∈ P0. Then (ai + (−a)) → 0 by
(OT2), hence ((−ai) + a) → 0 by the preceding step, and (−ai) → (−a) by (OP2). In
a third step, suppose that αi → 0 for 0 ≤ ai ∈ R and ai → a for ai, a ∈ P0. Given a
neighborhood U of 0 ∈ P there is a second neighborhood V of 0 ∈ P such that U is a
neighborhood for all elements of V. Following (OT1) there is ε > 0 such that εa ∈ V, and
according to (OT2) we have (αi + ε)ai → εa. As U is a neighborhood of εa, there is an
index i0 such that (αi+ε)ai ∈ U for all i ≥ i0. Now the convexity of the neighborhood U
guarantees that αiai ∈ U holds as well. This demonstrates that αiai → 0. Summarizing,
in combination with (OT2) we have αiai → αa whenever αi → α for 0 ≤ αi ∈ R and
ai → a for ai, a ∈ P0. Now in the fourth and final step of our argument, let αi → α
in R and ai → a for ai, a ∈ P0. Let βi = αi ∨ 0 and γi = −(αi ∧ 0). Then βi, γi ≥ 0
and αi = βi − γi. We have βiai → βa and γi(−ai) → γ(−a), where β = α ∨ 0 and
γ = −(α ∧ 0), by the second and third steps of our argument. Thus

αiai = βiai + γi(−ai) → βa+ γ(−a) = αa,

again by (OT2), as claimed.

12. Extensions of Linear Operators

A short inspection of the Hahn-Banach type extension results for linear functionals in [6]
(see also Section 2 before) shows that they are still valid if the range R for the functionals
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is replaced by some locally convex cone (Q,W), provided that

(i) (Q,W) is a full locally convex complete lattice cone,

(ii) all elements of Q, with the exception of the element +∞ = supQ, are invertible,

(iii) the neighborhood system W consist of all (strictly) positive multiples of a single
neighborhood w ∈ W.

Requirement (ii) means of course that Q is a Dedekind complete Riesz space with an
adjoint maximal element +∞. Results about the extension of monotone linear operators
between vector spaces and Dedekind complete Riesz spaces are due to Kantorovič ([1]
and [2]) and may for example be found in Section 1.5 of [4]. Without furnishing the
details of this, we reformulate Corollary 4.1 in [6] (see also Corollary 2.5).

Theorem 12.1. Let (N ,V) be a subcone of the locally convex cone (P,V). Suppose that
(Q,W) is a full locally convex complete lattice cone, that all elements of Q other than
+∞ are invertible, and that W = {αw | α > 0} for some w ∈ W. Then every continuous
linear operator T : N → Q can be extended to a continuous linear operator T : P → Q.

Unfortunately, a similar result is not generally available if the completely ordered locally
convex cone (Q,W) does not meet the stringent additional requirements of Theorem 12.1.
However, we have the following:

Theorem 12.2. Let N be a subcone of the locally convex cone (P,V) and let (Q,W) be
a locally convex complete lattice cone. Every continuous linear operator T : N → Q can
be uniquely extended to N , the closure of N in P with respect to the symmetric relative
topology.

Proof. Let T : N → Q be a continuous linear operator and let a ∈ N . There is a net
(ai)i∈I in N converging to a in the symmetric relative topology. Given w ∈ W and ε > 0
there is v ∈ V such that T (b) ≤ T (c) + w whenever b ≤ c + v for b, c ∈ N . Because
(ai)i∈I is a Cauchy net in N , there is i0 ∈ I such that ai ∈ vε(ak) for all i, k ≥ i0. This
implies T (ai) ∈ wε (T (ak)) for all i, k ≥ i0, hence (T (ai))i∈I is a Cauchy net in Q as well.
Proposition 11.1 shows that this net converges in Q. Moreover, if (bj)j∈J is a second net
in N converging toward the same element a, given w ∈ W and ε > 0 we choose v ∈ V
as above and find i0 ∈ I and j0 ∈ J such that both ai ∈ vε(bj) and bj ∈ vε(ai), hence
T (ai) ∈ wε (T (bj)) and T (bj) ∈ vε (T (ai)) , for all i ≥ i0 and j ≥ j0. This shows that
both nets (T (ai))i∈I and (T (bj))j∈J have the same limit in Q which we denote T (a). It is
now straightforward to verify that this procedure results in a bounded linear extension
T : N → Q of the operator T. Uniqueness of this extension is obvious.

13. The Lattice Completion of a Locally Convex Cone

Every locally convex cone (P,V) can be canonically embedded into a full locally convex
complete lattice cone. For this, we use the representation for (P,V) as a cone of R-valued
functions on its dual cone P∗, that is, with the element a ∈ P we associate the function
ϕa on P∗ such that ϕa(µ) = µ(a). We use the pointwise algebraic operations and order
for functions on P∗. Corresponding to the neighborhoods v ∈ V we consider the R-valued
functions ψv on P∗ such that

ψv(µ) = inf{α > 0 | µ ∈ αv◦}
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for all µ ∈ P∗ (as usual, we set inf ∅ = +∞.) By V̂ we denote the family of all functions
∑n

i=1 ψvi for vi ∈ V. An R-valued function ϕ on P∗ is bounded below relative to V̂ if for

every ψ ∈ V̂ there is λ ≥ 0 such that 0 ≤ ϕ+ λψ. Let P̂ denote the cone of all R-valued
functions ϕ on P∗ that are bounded below relative to V̂ and positive homogeneous, that
is ϕ(ρµ) = ρϕ(µ) holds for all µ ∈ P∗ and ρ ≥ 0. Then (P̂, V̂) is a full locally convex
cone. We claim that a 4 b+ v holds for a, b ∈ P and v ∈ V if and only if ϕa ≤ ϕb + ψv.
Indeed, suppose that a 4 b+ v. Then for µ ∈ P∗ and α > 0 such that µ ∈ αv◦ we have
µ(a) ≤ µ(b)+α, hence ϕa ≤ ϕb+ψv. Conversely, if a 64 b+v, then following Theorem 3.2
in [7] there is µ ∈ v◦ ⊂ P∗ such that µ(a) > µ(b) + 1. The former implies ψv(µ) ≤ 1,
hence ϕa(µ) > ϕb(µ) +ψv(µ). We infer in particular that the functions ϕa are contained

in P̂ for all a ∈ P. Indeed, given v ∈ V there is λ ≥ 0 such that 0 ≤ a + λv, hence
0 ≤ ϕa + λψa. Since every neighborhood in V is a sum of functions ψvi , the function ϕa

is bounded below relative to V̂ as claimed. The canonical embedding

a 7→ ϕa : P → P̂.

is linear and by the preceding investigations preserves the neighborhoods with respect
to the weak preorder of P. The mapping v 7→ ψv : V → P̂ is however not linear. But
we obviously have ψv ≤ ψu whenever v ≤ u, max{ψv, ψu} ≤ ψ(v+u) and ψ(αv) = αψv

for all u, v ∈ V and α > 0. Together with the above, this yields that the locally convex
cone topology induced by the neighborhood system V̂ on the embedding of P into P̂ is
equivalent to the given topology on P which is induced by V , if considered with respect
to the weak preorder.

It is straightforward to check that the full locally convex cone (P̂, V̂) is indeed a complete

lattice cone. Because infima and suprema of subsets of P̂, that is sets of R-valued
functions on P∗, are formed pointwise, it follows that order convergence for bounded
below nets in P̂ is indeed pointwise convergence (with respect to the usual, that is

the order topology of R) of the involved functions. An unbounded below net in P̂,
however, may be pointwise convergent without being order convergent. This phenomenon
is remedied by the use of the order topologyO(P). Indeed, let (ϕi)i∈I be a (not necessarily

bounded below) net in P̂ converging pointwise to ϕ ∈ P̂. Let ψi = ϕi ∨ 0 ∈ P̂ and

ωi = −(ϕi ∧ 0) ∈ P̂Υ Then ψi, ωi ≥ 0, the elements ωi are invertible in P̂, and we
have ϕi = ψi − ωi. Moreover, the nets (ψi)i∈I and (ωi)i∈I are bounded below and are

pointwise, hence order convergent towards ψ = ϕ ∨ 0 ∈ P̂ and ω = −(ϕ ∧ 0) ∈ P̂. This
implies convergence in the order topology O(P) by (OT3). (OT4) yields that the net

(−ωi)i∈I converges to −ω ∈ P̂ with respect to O(P). Thus ϕi = ψi + (−ωi) converges
to ψ + (−ω) = ϕ in O(P) by (OT2). Summarizing, pointwise convergence for any net

in P̂ implies convergence in the order topology. The topology of pointwise convergence
is therefore finer than O(P). The topology of pointwise convergence, on the other hand,
satisfies (OT1), (OT2) and (OT3), and is therefore also coarser than O(P). Thus both
topologies coincide and are obviously Hausdorff.

We call (P̂, V̂) the standard lattice completion of the locally convex cone (P,V). It is

distinguished in the following way: Let Φ : P → P̂, that is a 7→ ϕa be the embedding of
P into P̂ as established above, and suppose that (Q,W) is another locally convex cone
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with an antisymmetric order, and that there is a similar isomorphic embedding Ψ of P
into Q. Let A be a subset of P such that supΨ(A) exists in Q, and let us compare this

to supΦ(A) taken in P̂. For this let µ ∈ P∗. Let εµ ∈ P̂∗ be the point evaluation at µ,

that is εµ(ϕ) = ϕ(µ) for all ϕ ∈ P̂, and let µ̃ ∈ Q∗ be any extension of µ to a functional
on Q, that is µ̃ (Ψ(a)) = εµ (Φ(a)) = µ(a) for all a ∈ P. Because the lattice operations

for the functions in P̂ are performed pointwise on the elements of P∗ we have

εµ (supΦ(A)) = sup
{
Φ (a) (µ) | a ∈ A

}
= sup

{
Ψ(a) (µ) | a ∈ A

}
≤ µ̃ (supΨ(A)) .

If infΨ(A) exists in Q a similar argument yields

εµ (inf Φ(A)) = inf
{
Φ (a) (µ) | a ∈ A

}
= inf

{
Ψ(a) (µ) | a ∈ A

}
≥ µ̃ (infΨ(A)) .

In this sense (P̂, V̂) is a locally convex complete lattice cone extension which yields the
smallest possible suprema and the largest possible infima of subsets of P. In particular,
if supA (or infA) for a subset A of P is already contained as an element of P, then
supΦ(A) ≤ Φ(supA) (or inf Φ(A) ≥ Φ(infA)) in P̂.
It is often preferable to realize the lattice completion of a locally convex cone (P,V) as
a cone of R-valued functions on a suitable subset of P∗ rather than on the whole of P∗.
A subset Υ of P∗ supports the separation property if for a, b ∈ P and v ∈ V such that
a 64 b+v there is α ≥ 0 and µ ∈ Υ∩αv◦ such that µ(a) > µ(b)+α. Following Theorem 3.2

in [7] this holds of course true for Υ = P∗. Let us denote by P̂Υ and V̂Υ the restrictions

to Υ of the functions in P̂ and V̂ . Then (P̂Υ , V̂Υ ) is again a full locally convex complete

lattice cone and the restriction map Λ : P̂ → P̂Υ is an isomorphism on the embedding
of P. Indeed, if ϕa ≤ ϕb + ψv for a, b ∈ P and v ∈ V, then Λ(ϕa) ≤ Λ(ϕb) + Λ(ψv)

holds as well in P̂Υ . Conversely, if ϕa 6≤ ϕb + ψv, then a 64 b+ v and by our assumption
there is α ≥ 0 and µ ∈ Υ ∩ αv◦ such that µ(a) > µ(b) + α. Then ψv(µ) ≤ α, hence

µ(a) > µ(b) + ψv(µ) and Λ(ϕa) 6≤ Λ(ϕb) + Λ(ψv) in P̂Υ . Since the lattice operations are
performed pointwise, we have Λ(supA) = sup (Λ(A)) for every non-empty subset A of

P̂ and Λ(infA) = inf (Λ(A)) for every non-empty bounded below subset A of P̂. Let us
illustrate in two simple examples how a suitable subset set Υ ⊂ P∗ can be chosen:

(i) If V consists of the multiples of a single neighborhood v, that is for example, if P is
normed vector space, then we may choose Υ = {µ ∈ P∗ | ψv(µ) = 1}, that is the dual

unit sphere. The lattice completion P̂Υ of P then consists of all R-valued bounded below
functions on Υ, endowed with the topology of uniform convergence.

(ii) For a second example let X be a compact set and let P = C(X) be the space of all
continuous real-valued functions onX, endowed with the pointwise operations and order.
The neighborhood system V consisting of all positive constants generates the topology
of uniform convergence. Then the set of all point evaluations εx for x ∈ X is a suitable
choice for Υ, rather than the whole dual P∗ of P which consists of all positive regular
Borel measures on X. Υ obviously supports the separation property, and the standard
lattice completion of (P,V) can be realized as a cone of R-valued functions on X.
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