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We study the boundary value problem −div(a(x,∇u)) = f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth
bounded domain in R
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for general data f dependent of u where the variable exponent p(.) is not necessarily continuous.
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1. Introduction

Consider the nonlinear Dirichlet boundary value problem

{

−div(a(x,∇u)) = f(x, u) in Ω

u = 0 on ∂Ω,
(1)

where Ω is a bounded domain of RN (N > 1) with smooth boundary.
One of the common approaches to the weak solvability of the problem (1) when f is
independent of u is based on the Browder Theorem and assumes the following Leray-
Lions type conditions are satisfied (see [4, 19]):

(H1): The function a : Ω × R
N → R

N is a Carathéodory function (continuous in ξ for
a.e. x ∈ Ω and measurable in x for every ξ ∈ R

N) and there exist p ∈ (1, N), λ > 0 such
that

a(x, ξ).ξ ≥ λ |ξ|p

holds for every ξ ∈ R
N and a.e. x ∈ Ω.
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(H2): For every ξ and η ∈ R
N , ξ 6= η, and a.e. x ∈ Ω there holds

(a(x, ξ)− a(x, η)) .(ξ − η) > 0.

(H3): There exists Λ > 0 such that

|a(x, ξ)| ≤ Λ(j(x) + |ξ|p−1)

holds for every ξ ∈ R
N with j ∈ Lp′(Ω), p′ = p/(p− 1). It is then natural to look for a

weak solution in the Sobolev space W 1,p
0 (Ω).

Consider a more general situation, when Ω = Ω1 ∪Ω2, 1 < p1 < p2 < N , and conditions
(H1) − (H3) are satisfied with pi on Ωi. If we simply use the above scheme to find the
weak solution of (1) inW k,p(Ω), we see that the validity of conditions (H1)–(H3) requires
p = max {p1, p2} and p = min {p1, p2}, respectively. Even more difficult situations occur
when p is a function of x ∈ Ω.
If p is a function of x ∈ Ω, appropriate analogues of the Lebesgue spaces Lp and of the
Sobolev spacesW k,p may be suggested. It is clear that we cannot simply replace p by p(x)
in the usual definition of the norm in Lp. Kovacik and Rakosnik in [16] studied the spaces
Lp(.)(Ω) and W k,p(.)(Ω) where they proved that Lp(.)(Ω) and Lp(Ω) have many common
properties except a very important one: the p-mean continuity. In general, Lp(.)(Ω) is not
invariant with respect to translation (cf. [16, Ex. 2.9]). They also showed that, in general,

the Sobolev space W 1,p(.)(Ω) is not embedded in Lp∗(.)(Ω), where p∗(.) = Np(.)
N−p(.)

is the

variable Sobolev exponent (see [16, Ex. 3.2]), but when p is continuous, they showed that
the embedding W 1,p(.)(Ω) in Lq(.)(Ω) for 1 ≤ q(.) ≤ p∗(.) − ǫ holds true for some ǫ > 0.
Ruzicka (cf. [26]) proved another interesting result by considering the level sets of p and
using the power series expansion of the exponential function. Afterwards, Edmunds and
Rakosnik showed (cf. [9]) that if p(.) is a Lipschitz function such that supΩ p(.) < N , then
the embeddingW 1,p(.)(Ω) in Lp∗(.)(Ω) holds true. To compare the three results mentioned
above in the study of Lebesgue and Sobolev spaces with variable exponent, we first note
that each concerns a different class of functions p(.). The function p(.) in [16] is assumed
only continuous but the target space is rather far from the desired optimal case. The
function p(.) in [26] can be even discontinuous but there is the Logarithmic defect on the
estimation. On the other hand, Lipschitz (and even C∞) functions p(.) do not, in general
satisfy the assumptions in [26]. In [10], Edmunds and Rakosnik improved their result in
[9] by showing that if p(.) : Ω → [1, N) is a function in W 1,σ(Ω) for a σ ∈ (N,∞) and
such that supΩ p(.) < N , the embedding W 1,p(.)(Ω) in Lp∗(.)(Ω) holds true. Recently,
Diening (cf. [7]) improved the result by Edmunds and Rakosnik in [10] by showing that
for a merely log-Hölder continuous p(.), the embedding W 1,p(.)(Ω) in Lp∗(.)(Ω) holds true
and that whenever q(.) ≤ p∗(.)− ǫ for some ǫ > 0, the compact embedding W 1,p(.)(Ω) in
Lq(.)(Ω) holds true.
The interest of the study of Lebesgue and Sobolev spaces with variable exponent lies
on the fact that most materials can be modelled with sufficient accuracy using classical
Lebesgue and Sobolev spaces Lp and W 1,p where p is a fixed constant, but for some
materials with inhomogeneities, for instance electrorheological fluids (sometimes referred
to as “smart fluids�), this is not adequate, but rather the exponent p should be able to
vary (cf. [26]). These fluids are smart materials which are concentrated suspensions of
polarizable particles in a non-conducting dielectric liquid. By applying an electric field,
the viscosity can be changed by a factor up to 105, and the fluid can be transformed
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from liquid state into semi-solid state within milliseconds. The process is reversible. An
example of electrorheological fluids are alumina Al2O3 particles.
Using the results by Edmunds and Rakosnik (cf. [9]), Sanchon and Urbano (cf. [27])
studied problem (1) for f ∈ L1(Ω) independent of u and showed that this problem has a
unique entropy solution with some regularities results of the entropy solution and then,
extended the results by Bénilan et al (cf. [4]) for variable exponent case. Their work was
done under the following condition on p(.):

(H4): p(.) is a measurable function such that

p(.) ∈W 1,∞(Ω) and 1 < ess inf
x∈Ω

p(x) ≤ ess sup
x∈Ω

p(x) < N.

Assumption (H4) allowed them, in particular to exploit the embeddings Theorems of
Lebesgue and Sobolev spaces with variable exponent (as in the constant exponent case)
arising in the study of problem (1). Note also that in (H4), the Lipschitz condition al-
lowed Sanchon and Urbano in particular to perform some estimates needed for existence,
uniqueness and regularities results in [27] since they can differentiate p(.). In this paper,
we study problem (1) with less regularity on the variable exponent p(.), more precisely,
we assume that







p(.) : Ω → R is a measurable function such that

1 < ess inf
x∈Ω

p(x) ≤ ess sup
x∈Ω

p(x) < +∞.
(2)

For the vector fields a(., .), we assume (cf. [21]) that a(x, ξ) : Ω × R
N → R

N is the
continuous derivative with respect to ξ of the mapping A : Ω × R

N → R, A = A(x, ξ),
i.e. a(x, ξ) = ∇ξA(x, ξ) such that:

• The following equality holds

A(x, 0) = 0, (3)

for almost every x ∈ Ω.

• There exists a positive constant C1 such that

|a(x, ξ)| ≤ C1

(

j(x) + |ξ|p(x)−1
)

(4)

for almost every x ∈ Ω and for every ξ ∈ R
N , where j is a nonnegative function in

Lp′(.)(Ω), with 1/p(x) + 1/p′(x) = 1.

• The following inequalities hold

(a(x, ξ)− a(x, η)) . (ξ − η) > 0, (5)

for almost every x ∈ Ω and for every ξ, η ∈ R
N , with ξ 6= η, and

|ξ|p(x) ≤ a(x, ξ).ξ ≤ p(x)A(x, ξ) (6)

for almost every x ∈ Ω and for every ξ ∈ R
N .

As examples of models with respect to above assumptions, we can give the following:



526 S. Ouaro, S. Traore / Second Order Elliptic Equation

(i) Set A(x, ξ) = (1/p(x)) |ξ|p(x), a(x, ξ) = |ξ|p(x)−2 ξ where p(x) ≥ 2. Then we get the
p(x)-Laplace operator

div(|∇u|p(x)−2∇u).

(ii) Set A(x, ξ) = (1/p(x))
[

(

1 + |ξ|2
)p(x)/2

− 1
]

, a(x, ξ) =
(

1 + |ξ|2
)(p(x)−2)/2

ξ, where

p(x) ≥ 2. Then we obtain the generalized mean curvature operator

div
(

(

1 + |∇u|2
)(p(x)−2)/2

∇u
)

.

Remark 1.1. (a) Since for almost every x ∈ Ω, a(x, .) is a gradient and is monotone
then the primitive A(x, .) of a(x, .) is necessarily convex.

(b) Stationary PDE’s with operator A satisfying (3)–(6) (as well as examples (i) and
(ii)) have been studied for the first time by Mihailescu and Radulescu (cf. [21]) in the
framework of existence and multiplicity of weak solutions.
The novelty of this work is on three orders. Firstly, note that in [27], for the proof of the
existence of entropy solution, the authors used a classical approximation method and
assumed that the approximated problem is well posed by the work of Fan and Zhang
(cf. [11, Theorem 4.2]). But in [11], the authors studied the model case of example (i)
above which is a particular case of the problem considered in [27]. Consequently, to
avoid this error, we have made in this work some additionnal assumptions on the vector
field a(., .) (cf. assumptions (3) and (6)) in order to study first, existence result of (1)
when the right-hand side f = f(x) ∈ L∞(Ω) which will permit us following [27] to use
approximation method in a right way. Secondly, the exponent p(.) is assumed less regular
than in [27] since it can be discontinuous. Thirdly it is the study of weak energy solution
when the right-hand side in (1) depends on u.
The paper contains five sections. In Section 2, we recall the definitions of Lebesgue and
Sobolev spaces with variable exponent and some of their properties. In Section 3, we
prove the existence and uniqueness of weak energy solution of (1) when the right-hand
side f is independent of u and has enough integrability i.e., f ∈ L∞(Ω). Using the
results of Section 3, we study in Section 4, the question of the existence and uniqueness
of entropy solution of (1) for f ∈ L1(Ω) and independent of u. Finally, in Section 5, we
prove some existence results of weak energy solution of problem (1) for an f assuming
to be dependent of u.

2. Lebesgue and Sobolev spaces with variable exponent

In this section, we define Lebesgue and Sobolev spaces with variable exponent and give
some of their properties. Since p(.) is not continuous or merely log-Hölder continuous,
we don’t expect embedding Theorems (cf. [16, Ex. 3.2]).
Given a measurable function p(.) : Ω → [1,∞), we will use the following notation
throughout the paper:

p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x).

We define the Lebesgue space with variable exponent Lp(.)(Ω) as the set of all measurable
function u : Ω → R for which the convex modular

ρp(.)(u) :=

∫

Ω

|u|p(x) dx
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is finite. If the exponent is bounded, i.e., if p+ <∞, then the expression

|u|p(.) := inf
{

λ > 0 : ρp(.)(u/λ) ≤ 1
}

defines a norm in Lp(.)(Ω), called the Luxembourg norm. The space (Lp(.)(Ω), |.|p(.)) is a

separable Banach space. Moreover, if p− > 1, then Lp(.)(Ω) is uniformly convex, hence
reflexive, and its dual space is isomorphic to Lp′(.)(Ω), where 1

p(x)
+ 1

p′(x)
= 1. Finally, we

have the Hölder type inequality:

∣

∣

∣

∣

∫

Ω

uvdx

∣

∣

∣

∣

≤

(

1

p−
+

1

p′−

)

|u|p(.) |v|p′(.) , (7)

for all u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω).
Now, let

W 1,p(.)(Ω) :=
{

u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)
}

,

which is a Banach space equipped with the norm

‖u‖1,p(.) := |u|p(.) + |∇u|p(.) .

Next, we define W
1,p(.)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(.)(Ω) under the norm

‖u‖ := |∇u|p(.) .

The space
(

W
1,p(.)
0 (Ω), ‖u‖

)

is a separable and reflexive Banach space.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by
the modular ρp(.) of the space Lp(.)(Ω).
We have the following result (cf. [12]):

Lemma 2.1. If un, u ∈ Lp(.)(Ω) and p+ < +∞ then the following relations hold:

(i) |u|p(.) > 1 ⇒ |u|
p−
p(.) ≤ ρp(.)(u) ≤ |u|

p+
p(.) ;

(ii) |u|p(.) < 1 ⇒ |u|
p+
p(.) ≤ ρp(.)(u) ≤ |u|

p−
p(.) ;

(iii) |u|Lp(.)(Ω) < 1 (respectively = 1;> 1) ⇔ ρp(.)(u) < 1 (respectively = 1;> 1);

(iv) |un|Lp(.)(Ω) → 0 (respectively → +∞) ⇔ ρp(.)(un) → 0 (respectively → +∞);

(v) ρp(.)

(

u/ |u|Lp(.)(Ω)

)

= 1.

Let us introduce the following notation: given two bounded measurable functions
p(.), q(.) : Ω → R, we write

q(.) ≪ p(.) if ess inf
x∈Ω

(p(x)− q(x)) > 0.

3. Existence and uniqueness of weak energy solution for f ∈ L∞(Ω)

In this section, we study the weak energy solution of (1).
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Definition 3.1. A weak solution of (1) is a function u ∈ W 1,1
0 (Ω) such that a(.,∇u) ∈

(L1
loc(Ω))

N
and

∫

Ω

a(x,∇u).∇ϕdx =

∫

Ω

f(x)ϕdx, for all ϕ ∈ C∞
0 (Ω). (8)

A weak energy solution is a weak solution such that u ∈W
1,p(.)
0 (Ω).

The main result of this section is the following

Theorem 3.2. Assume (2)–(6) and f ∈ L∞(Ω). Then, there exists a unique weak

energy solution of (1).

Proof. ∗ Existence. Let E denote the generalized Sobolev space W
1,p(.)
0 (Ω).

Define the energy functional I : E → R by

I(u) =

∫

Ω

A(x,∇u)dx−

∫

Ω

fudx.

We first establish some basic properties of I.

Proposition 3.3. The functional I is well-defined on E and I ∈ C1(E,R) with the

derivative given by

〈I ′(u), ϕ〉 =

∫

Ω

a(x,∇u).∇ϕdx−

∫

Ω

fϕdx,

for all u, ϕ ∈ E.

To prove Proposition 3.3, we define the functonal Λ : E → R by

Λ(u) =

∫

Ω

A(x,∇u)dx, for all u ∈ E.

Lemma 3.4.

(i) The functional Λ is well-defined on E.

(ii) The functional Λ is of class C1(E,R) and

〈Λ′(u), ϕ〉 =

∫

Ω

a(x,∇u).∇ϕdx,

for all u, ϕ ∈ E.

Proof of Lemma 3.4. (i) For any x ∈ Ω and ξ ∈ R
N , we have

A(x, ξ) =

∫ 1

0

d

dt
A(x, tξ)dt =

∫ 1

0

a(x, tξ).ξdt.

Then by (4),

A(x, ξ) ≤ C1

∫ 1

0

(

j(x) + |ξ|p(x)−1 tp(x)−1
)

|ξ| dt ≤ C1j(x) |ξ|+
C1

p(x)
|ξ|p(x) .
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The above inequality and (6) imply

0 ≤

∫

Ω

A(x,∇u)dx ≤ C1

∫

Ω

j(x) |∇u| dx+
C1

p−

∫

Ω

|∇u|p(x) dx, for all u ∈ E.

Using (7) and Lemma 2.1, we deduce that Λ is well-defined on E.

(ii) Existence of the Gateaux derivative. Let u, ϕ ∈ E. Fix x ∈ Ω and 0 < |r| < 1. Then
by the mean value Theorem, there exists ν ∈ [0, 1] such that

|a(x,∇u(x) + νr∇ϕ(x))| |∇ϕ(x)| = |A(x,∇u(x) + r∇ϕ(x))− A(x,∇u(x))| / |r|

≤
[

C1j(x) + C12
p+(|∇u(x)|p(x)−1 + |∇ϕ(x)|p(x)−1)

]

|∇ϕ(x)| .

Next, by (7), we have

∫

Ω

C1j(x) |∇ϕ(x)| dx ≤ β |C1j|p′(x) . |∇ϕ|p(x)

and
∫

Ω

|∇u|p(x)−1 |∇ϕ| dx ≤ α
∣

∣

∣
|∇u|p(x)−1

∣

∣

∣

p′(x)
. |∇ϕ|p(x) .

The above inequalities imply

C1

[

j(x) + 2p+
(

|∇u(x)|p(x)−1 + |∇ϕ(x)|p(x)−1
)]

|∇ϕ(x)| ∈ L1(Ω).

It follows from the Lebesgue Theorem that

〈Λ′(u), ϕ〉 =

∫

Ω

a(x,∇u).∇ϕdx.

Assuming now un → u in E. Let us define ψ(x, u) = a(x,∇u). Using assumption (4),
Theorems 4.1 and 4.2 in [17], we deduce that ψ(x, un) → ψ(x, u) in (Lp′(x)(Ω))N . By
(7), we obtain

|〈Λ′(un)− Λ′(u), ϕ〉| ≤ C |ψ(x, un)− ψ(x, u)|p′(x) |∇ϕ|p(x)

and so
‖Λ′(un)− Λ′(u)‖ ≤ C |ψ(x, un)− ψ(x, u)|p′(x) → 0, as n→ ∞.

The proof of Lemma 3.4 is complete.

By Lemma 3.4, it is clear that Proposition 3.3 holds true and then, the proof of Propo-
sition 3.3 is also complete.

Lemma 3.5. The functional Λ is weakly lower semi-continuous.

Proof of Lemma 3.5. By Corollary III.8 in [5], it is enough to show that Λ is lower
semi-continuous. For this, fix u ∈ E and ǫ > 0. Since Λ is convex (by Remark 1.1 (a)),
we deduce that for any v ∈ E, the following inequality holds

∫

Ω

A(x,∇v)dx ≥

∫

Ω

A(x,∇u)dx+

∫

Ω

a(x,∇u).(∇v −∇u)dx.
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Using (4) and (7), we have

∫

Ω

A(x,∇v)dx ≥

∫

Ω

A(x,∇u)dx−

∫

Ω

|a(x,∇u)| |∇v −∇u| dx

≥

∫

Ω

A(x,∇u)dx− C1

∫

Ω

j(x) |∇(v − u)| dx− C1

∫

Ω

|∇u|p(x)−1 |∇(v − u)| dx

≥

∫

Ω

A(x,∇u)dx− C2 |j|p′(x) |∇(v − u)|p(x) − C3

∣

∣

∣
|∇u|p(x)−1

∣

∣

∣

p′(x)
|∇(v − u)|p(x)

≥

∫

Ω

A(x,∇u)dx− C4 ‖v − u‖ ≥

∫

Ω

A(x,∇u)dx− ǫ,

for all v ∈ E with ‖v − u‖ < δ = ǫ/C4, where C2, C3 and C4 are positive constants.
We conclude that Λ is weakly lower semi-continuous. The proof of Lemma 3.5 is com-
plete.

Proposition 3.6. The functional I is bounded from below, coercive and weakly lower

semi-continuous.

Proof of Proposition 3.6. Using (6), we have

I(u) =

∫

Ω

A(x,∇u)dx−

∫

Ω

fudx ≥

∫

Ω

1

p(x)
|∇u|p(x) dx−

∫

Ω

fudx

≥

∫

Ω

1

p(x)
|∇u|p(x) dx− ‖f‖(p−)′ ‖u‖p− ≥

1

p+

∫

Ω

|∇u|p(x) dx− ‖f‖(p−)′ ‖u‖p− ,

where ‖u‖p− =
(∫

Ω
|u|p− dx

)
1

p
− .

For the coerciveness of I, we want to show that lim‖u‖→+∞ I(u) = +∞. For this, we
can assume that ‖u‖ = |∇u|p(x) > 1 and then, by Lemma 2.1 we obtain from above
inequalities that

I(u) ≥
1

p+
|∇u|

p−
p(x) − C ‖u‖p− ≥

1

p+
‖u‖p− − C ′ ‖u‖ ,

since E is continuously embedded in Lp−(Ω).
As p− > 1, then I is coercive. It is obvious that I is bounded from below. By Lemma
3.5, Λ is weakly lower semi-continuous. We show that I is weakly lower semi-continuous.
Let (un) ⊂ E be a sequence which converges weakly to u in E. Since Λ is weakly lower
semi-continuous, we have

Λ(u) ≤ lim inf
n→+∞

Λ(un). (9)

On the other hand, E is embedded in Lp−(Ω). This fact together with relation (9) imply

I(u) ≤ lim inf
n→+∞

I(un).

Therefore, I is weakly lower semi-continuous. The proof of Proposition 3.6 is complete.
Since I is proper, lower semi-continuous and coercive, then I has a minimizer which is a
weak energy solution of (1). The proof of existence is then complete.
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∗ Uniqueness. Let u1, u2 be two weak energy solutions of (1). Then

∫

Ω

(a(x,∇u1)− a(x,∇u2)) .(∇u1 −∇u2)dx = 0. (10)

Using (5) in (10), we obtain

∫

Ω

|∇u1 −∇u2|
p(x) dx = 0. (11)

We deduce from (11) by using Poincaré Inequality (since W
1,p(.)
0 (Ω) ⊂ W

1,p−
0 (Ω)) that

∫

Ω

|u1 − u2|
p− dx = 0. (12)

From (12) it follows
u1 = u2.

4. Entropy solutions

In this section, we study the problem (1) for a right-hand side f ∈ L1(Ω). In the L1

setting, the suitable notion of solution for the study of (1) is the notion of entropy
solution. We refer to [4] for more details.
We first define the troncation function Tt by Tt(s) := max {−t,min {t, s}}.

Definition 4.1. A measurable function u is an entropy solution to problem (1) if, for

every t > 0, Tt(u) ∈W
1,p(.)
0 (Ω) and

∫

Ω

a(x,∇u).∇Tt(u− ϕ)dx ≤

∫

Ω

f(x)Tt(u− ϕ)dx (13)

for all ϕ ∈W
1,p(.)
0 (Ω) ∩ L∞(Ω).

Remark 4.2. A function u such that Tt(u) ∈W
1,p(.)
0 (Ω) for all t > 0 does not necessarily

belong to W 1,1
0 (Ω). However, it is possible to define its weak gradient, still denoted by

∇u.

Our main result in this section is the following:

Theorem 4.3. Assume (2)–(6) and f ∈ L1(Ω). There exists a unique entropy solution

u to problem (1).

Proof. ∗ A priori estimates. We start with the existence of the weak gradient for
every measurable function u such that Tt(u) ∈W

1,p(.)
0 (Ω) for all t > 0.

Proposition 4.4. If u is a measurable function such that Tt(u) ∈ W
1,p(.)
0 (Ω) for all

t > 0, then there exists a unique measurable function v : Ω → R
N such that

vχ{|u|<t} = ∇Tt(u) for a.e. x ∈ Ω, and for all t > 0,

where χB denotes the characteristic function of a measurable set B. Moreover, if u
belongs to W 1,1

0 (Ω), then v coincides with the standard distributional gradient of u.
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Proof. As Tt(u) ∈ W
1,p(.)
0 (Ω) ⊂ W

1,p−
0 (Ω) for all t > 0, then by Theorem 1.5 in [3], the

result follows.

Proposition 4.5. Assume (2)–(6) and f ∈ L1(Ω). Let u be an entropy solution of (1).
If there exists a positive constant M such that

∫

{|u|>t}

tq(x)dx ≤M, for all t > 0, (14)

then
∫

{|∇u|α(.)>t}
tq(x)dx ≤ ‖f‖1 +M for all t > 0,

where α(.) = p(.)/(q(.) + 1).

Proof. We know that
∫

Ω

|∇Tt(u)|
p(x) dx ≤ t ‖f‖1 , for all t > 0.

Therefore, defining ψ := Tt(u)/t, we have, for all t > 0,

∫

Ω

tp(x)−1 |∇ψ|p(x) dx =
1

t

∫

Ω

|∇Tt(u)| dx ≤ ‖f‖1 .

From the above inequality, the definition of α(.) and (14), we have

∫

{|∇u|α(.)>t}
tq(x)dx ≤

∫

{|∇u|α(.)>t}∩{|u|≤t}

tq(x)dx+

∫

{|u|>t}

tq(x)dx

≤

∫

{|u|≤t}

tq(x)

(

|∇u|α(x)

t

)

p(x)
α(x)

dx+M ≤ ‖f‖1 +M, for all t > 0.

Proposition 4.6. Assume (2)–(6) and f ∈ L1(Ω). Let u be an entropy solution of (1),
then

1

h

∫

{|u|≤h}

|∇Th(u)|
p(x) dx ≤M

for every h > 0, with M a positive constant. More precisely, there exists D > 0 such

that

meas {|u| > h} ≤ Dp−
1 + h

hp−
.

Proof. Taking ϕ = 0 in the entropy inequality (13) and using (6), we obtain

∫

{|u|≤h}

|∇Th(u)|
p(x) dx ≤

∫

{|u|≤h}

a(x,∇u).∇udx ≤

∫

Ω

f(x)Th(u)dx ≤ h ‖f‖1 ≤Mh

for all h > 0. Next,

∫

{|u|≤h}

|∇Th(u)|
p(x) dx ≤Mh⇒

∫

{|u|≤h}

|∇Th(u)|
p− dx ≤ C(1 + h).
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By the Poincaré inequality in constant exponent, we obtain

‖Th(u)‖Lp
− (Ω) ≤ D(1 + h)

1
p
− .

The above inequality implies that

∫

Ω

|Th(u)|
p− dx ≤ Dp−(1 + h),

from which we obtain

meas {|u| > h} ≤ Dp−
1 + h

hp−
.

∗ Uniqueness of entropy solution. Let h > 0 and u, v two entropy solutions of (1).
We write the entropy inequality (13) corresponding to the solution u, with Thv as test
function, and to the solution v, with Thu as test function. Upon addition, we get















∫

{|u−Thv|≤t}

a(x,∇u).∇(u− Thv)dx+

∫

{|v−Thu|≤t}

a(x,∇v).∇(v − Thu)dx

≤

∫

Ω

f(x)(Tt(u− Thv) + Tt(v − Thu))dx.

(15)

Define

E1 := {|u− v| ≤ t, |v| ≤ h} , E2 := E1 ∩ {|u| ≤ h} and E3 := E1 ∩ {|u| > h} .

We start with the first integral in (15). By (6), we have































































































































































∫

{|u−Thv|≤t}

a(x,∇u).∇(u− Thv)dx

=

∫

{|u−Thv|≤t}∩({|v|≤h}∪{|v|>h})

a(x,∇u).∇(u− Thv)dx

=

∫

{|u−Thv|≤t,|v|≤h}

a(x,∇u).∇(u− Thv)dx

+

∫

{|u−Thv|≤t,|v|>h}

a(x,∇u).∇(u− Thv)dx

=

∫

{|u−v|≤t,|v|≤h}

a(x,∇u).∇(u− v)dx+

∫

{|u−h|≤t,|v|>h}

a(x,∇u).∇udx

≥

∫

{|u−v|≤t,|v|≤h}

a(x,∇u).∇(u− v)dx =

∫

E1

a(x,∇u).∇(u− v)dx

=

∫

E1∩({|u|≤h}∪{|u|>h})

a(x,∇u).∇(u− v)dx

=

∫

E2

a(x,∇u).∇(u− v)dx+

∫

E3

a(x,∇u).∇(u− v)dx

=

∫

E2

a(x,∇u).∇(u− v)dx+

∫

E3

a(x,∇u).∇udx−

∫

E3

a(x,∇u).∇vdx

≥

∫

E2

a(x,∇u).∇(u− v)dx−

∫

E3

a(x,∇u).∇vdx.

(16)
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Using (4) and (7), we estimate the last integral in (16) as follows



















∣

∣

∣

∣

∫

E3

a(x,∇u).∇vdx

∣

∣

∣

∣

≤ C1

∫

E3

(

j(x) + |∇u|p(x)−1
)

|∇v| dx

≤ C

(

|j|p′(.) +
∣

∣

∣
|∇u|p(x)−1

∣

∣

∣

p′(.),{h<|u|≤h+t}

)

|∇v|p(.),{h−t<|v|≤h} .

(17)

where
∣

∣

∣
|∇u|p(x)−1

∣

∣

∣

p′(.),{h<|u|≤h+t}
=
∥

∥

∥
|∇u|p(x)−1

∥

∥

∥

Lp′(.)({h<|u|≤h+t})
.

The quantity C

(

|j|p′(.) +
∣

∣

∣
|∇u|p(x)−1

∣

∣

∣

p′(.),{h<|u|≤h+t}

)

is finite, since u ∈ W
1,p(.)
0 (Ω) and

j ∈ Lp′(.); then by Proposition 4.6, the last expression converges to zero as h tends to
infinity. Therefore, from (16) and (17), we obtain

∫

{|u−Thv|≤t}

a(x,∇u).∇(u− Thv)dx ≥ Ih +

∫

E2

a(x,∇u).∇(u− v)dx, (18)

where Ih converges to zero as h tends to infinity. We may adopt the same procedure to
treat the second term in (15) to obtain

∫

{|v−Thu|≤t}

a(x,∇v).∇(v − Thu)dx ≥ Jh −

∫

E2

a(x,∇v).∇(u− v)dx, (19)

where Jh converges to zero as h tends to infinity.
Next, consider the right-hand side of inequality (15). Noting that

Tt(u− Thv) + Tt(v − Thu) = 0 in {|u| ≤ h, |v| ≤ h} ;

we obtain

∣

∣

∣

∣

∫

Ω

f(x)(Tt(u− Thv) + Tt(v − Thu))dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

{|u|>h}

f(x)(Tt(u− Thv) + Tt(v − Thu))dx

+

∫

{|u|≤h}

f(x)(Tt(u− Thv) + Tt(v − Thu))dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

{|u|>h}

f(x)(Tt(u− Thv) + Tt(v − Thu))dx

+

∫

{|u|≤h,|v|>h}

f(x)(Tt(u− Thv) + Tt(v − Thu))dx

∣

∣

∣

∣

≤ 2t

(
∫

{|u|>h}

|f | dx+

∫

{|v|>h}

|f | dx

)

.

According to Proposition 4.6, both meas {|u| > h} and meas {|v| > h} tend to zero as
h goes to infinity, then by the inequality above, the right-hand side of inequality (15)
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tends to zero as h goes to infinity. From this assertion, (15), (18) and (19), we obtain,
letting h→ +∞,

∫

{|u−v|≤t}

(a(x,∇u)− a(x,∇v)).∇(u− v)dx ≤ 0, for all t > 0.

By assertion (5), we conclude that ∇u = ∇v, a.e. in Ω.
Finally, from Poincaré inequality, we have

∫

Ω

|Tt(u− v)|p− dx ≤ C

∫

Ω

|∇(Tt(u− v))|p− dx = 0, for all t > 0;

and hence u = v, a.e. in Ω.

∗ Existence of entropy solutions. Let (fn)n be a sequence of bounded functions,
strongly converging to f ∈ L1(Ω) and such that

‖fn‖1 ≤ ‖f‖1 , for all n. (20)

Note that this choice is possible by taking for example fn = Tn(f).
We consider the problem

{

−div(a(x,∇un)) = fn in Ω

un = 0 on ∂Ω.
(21)

It follows from Theorem 3.2 that problem (21) has a unique weak energy solution un ∈

W
1,p(.)
0 (Ω). Our interest is to prove that these approximated solutions un tend, as n goes

to infinity, to a measurable function u which is an entropy solution of the limit problem
(1). We start the proof of existence by proving that the sequence (un)n∈N of solutions of
problem (21) converges in measure to a measurable function u.

Proposition 4.7. Assume (2)–(6), f ∈ L1(Ω) and (20). Let un ∈ W
1,p(.)
0 (Ω) be the

solution of (21). The sequence (un)n∈N is Cauchy in measure. In particular, there exists

a measurable function u and a subsequence still denoted un such that un → u in measure.

Proof of Proposition 4.7. Let s > 0 and define

E1 := {|un| > t} , E2 := {|um| > t} and E3 := {|Tt(un)− Tt(um)| > s} ,

where t > 0 is to be fixed. We note that

{|un − um| > s} ⊂ E1 ∪ E2 ∪ E3,

and hence

meas {|un − um| > s} ≤ meas (E1) +meas (E2) +meas (E3) . (22)

Let ǫ > 0. Using (20) and the uniform bound given by Proposition 4.6, we choose t = t(ǫ)
such that

meas(E1) ≤ ǫ/3 and meas(E2) ≤ ǫ/3. (23)
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On the other hand, taking ϕ = 0 in the entropy condition (13) for un yields

∫

Ω

|∇Tt(un)|
p(x) dx ≤ t ‖f‖1 , for all n ≥ 0,

by using (6) and (20). The above inequality implies that

∫

Ω

|∇Tt(un)|
p− dx ≤M(1 + t), for all n ≥ 0, (24)

therefore, by Sobolev embedding, we can assume that (Tt(un))n is a Cauchy sequence in
Lp−(Ω). Consequently, there exists a measurable function u such that

Tt(un) → Tt(u), in Lp−(Ω) and a.e.

Thus,

meas(E3) ≤

∫

Ω

(

|Tt(un)− Tt(um)|

s

)p−

dx ≤
ǫ

3
,

for all n,m ≥ n0(s, ǫ).
Finally, from (22), (23) and the last estimate, we obtain that

meas {|un − um| > s} ≤ ǫ, for all n,m ≥ n0(s, ǫ), (25)

i.e., (un)n∈N is a Cauchy sequence in measure.
Next, in order to prove that the sequence (∇un)n∈N converges in measure to the weak
gradient of u, we need two technical Lemmas.

Lemma 4.8 (cf. [27, Lemma 5.2]). Let (vn)n be a sequence of measurable functions.

If vn converges in measure to v and is uniformly bounded in Lp(.)(Ω) for some 1 ≪ p(.) ∈
L∞(Ω), then vn → v strongly in L1(Ω).

The second technical Lemma is a standard fact in measure theory (cf. [14]).

Lemma 4.9. Let (X,M, µ) be a measure space such that µ(X) < +∞. Consider a

measurable function γ : X → [0,+∞] such that

µ ({x ∈ X : γ(x) = 0}) = 0.

Then, for every ǫ > 0, there exists δ > 0 such that

µ(A) < ǫ, for all A ∈ M with

∫

A

γdµ < δ.

We can now prove the convergence in measure of the weak gradient, the last ingredient
in the proof of existence.

Proposition 4.10. Assume (2)–(6), f ∈ L1(Ω) and (20). Let un ∈ W
1,p(.)
0 (Ω) be the

weak energy solution of (21). The following assertions hold:

(i) ∇un converges in measure to the weak gradient of u.

(ii) a(x,∇un) converges to a(x,∇u) strongly in (L1(Ω))
N
.
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(iii) a(x,∇u) ∈
(

Lp′(.)(Ω)
)N

.

Proof of Proposition 4.10. (i) We claim that (∇un)n is Cauchy in measure. Indeed,
let s > 0, and consider

E1 := {|∇un| > h} ∪ {|∇um| > h} , E2 := {|un − um| > t} ,

and

E3 := {|∇un| ≤ h, |∇um| ≤ h, |un − um| ≤ t, |∇un −∇um| > s} ,

where h and t will be chosen later. We note that

{|∇un −∇um| > s} ⊂ E1 ∪ E2 ∪ E3. (26)

Let ǫ > 0. By Proposition 4.5, we may choose h = h(ǫ) large enough such that
meas(E1) ≤ ǫ/3 for all n,m ≥ 0. On the other hand, by Proposition 4.7 (see (25)),
we have that meas(E2) ≤ ǫ/3 for all n,m ≥ n0(t, ǫ). Moreover, by assumption (5), there
exists a real valued function γ : Ω → [0,+∞] such that meas ({x ∈ Ω : γ(x) = 0}) = 0
and

(a(x, ξ)− a(x, ξ′).(ξ − ξ′)) ≥ γ(x), (27)

for all ξ, ξ′ ∈ R
N such that |ξ| , |ξ′| ≤ h, |ξ − ξ′| ≥ s, for a.e. x ∈ Ω. Let δ = δ(ǫ) be

given from Lemma 4.9, replacing ǫ and A by ǫ/3 and E3, respectively. Using (27), the
equation and (20), we obtain

∫

E3

γdx ≤

∫

E3

(a(x,∇un)− a(x,∇um)) .∇(un − um)dx ≤ 2 ‖f‖1 t < δ,

by choosing t = δ/(4 ‖f‖1). From Lemma 4.9, it follows that meas(E3) < ǫ/3. Thus,
using (26) and the estimates obtained for E1, E2 and E3, it follows that

meas ({|∇un −∇um| ≥ s}) ≤ ǫ, for all n,m ≥ n0(s, ǫ),

and then the claim is proved.
As a consequence, (∇un)n∈N converges in measure to some measurable function v.

Finally, since(∇Tt(un))n∈N is uniformly bounded in
(

Lp(.)(Ω)
)N

for all t > 0, it converges

weakly to ∇Tt(u) in (L1(Ω))
N
. Therefore, by Proposition 4.4, v coincides with the weak

gradient of u.

(ii)–(iii) By part (i) and Nemytskii Theorem (cf. [17, Lemma 2.1]), we obtain that
a(x,∇un) converges to a(x,∇u) in measure. Moreover, using (4), we have

|a(x,∇un)| ≤ C1

(

j(x) + |∇un|
p(x)−1

)

,

with j ∈ Lp′(.)(Ω). By (20), we have that
(

|∇un|
p(x)−1

)

n∈N
is uniformly bounded in

Lp′(.)(Ω). hence, using Lemma 4.8, we obtain that a(x,∇un) converges to a(x,∇u)

strongly in (L1(Ω))
N
, and a(x,∇u) ∈ (Lp′(.)(Ω))N .
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Now, fix t > 0, ϕ ∈ W
1,p(.)
0 (Ω) ∩ L∞(Ω), and choose Tt(un − ϕ) as test function in (8),

with u replaced by un, to obtain

∫

Ω

a(x,∇un).∇ (Tt(un − ϕ)) dx =

∫

Ω

fn(x)Tt(un − ϕ)dx.

Note that this choice can be made using a standard density argument. We now pass to
the limit in the previous identity. For the right-hand side, the convergence is obvious
since fn converges strongly in L1 to f and Tt(un − ϕ) converges weakly-∗ in L∞, and
a.e., to Tt(u− ϕ).
Next, we write the left hand side as

∫

{|un−ϕ|≤t}

a(x,∇un).∇undx−

∫

{|un−ϕ|≤t}

a(x,∇un).∇ϕdx (28)

and note that {|un − ϕ| ≤ t} is a subset of {|un| ≤ t+ ‖ϕ‖∞}. Hence, taking s = t +
‖ϕ‖∞, we rewrite the second integral in (28) as

∫

{|un−ϕ|≤t}

a(x,∇Ts(un)).∇ϕdx.

Since a(x,∇Ts(un)) is uniformly bounded in (Lp′(.)(Ω))N (by (24) and assumption (4)),
by Proposition 4.10 (i), we have that it converges weakly to a(x,∇Ts(u)) in (Lp′(.)(Ω))N .
Therefore, the last integral converges to

∫

{|u−ϕ|≤t}

a(x,∇Ts(u)).∇ϕdx.

The first integral in (28) is nonnegative by (7), and it converges a.e. by Proposition 4.10.
It follows from Fatou’s Lemma that

∫

{|u−ϕ|≤t}

a(x,∇u).∇udx ≤ lim inf
n→+∞

∫

{|un−ϕ|≤t}

a(x,∇un).∇undx.

Gathering results, we obtain

∫

Ω

a(x,∇u).∇Tt(u− ϕ)dx ≤

∫

Ω

f(x)Tt(u− ϕ)dx,

i.e., u is an entropy solution of (1).

Remark 4.11. In [27], for the proof of uniqueness of entropy solution, the authors used
a so-called “Poincaré inequality� (cf. [27, Proposition 2.1]) which was presented for the
first time by Y. Fu (see [13, Lemma 2.14]) and also used in [6] for the study of existence
of weak solution. But, the “Poincaré inequality� claimed by Y. Fu is incorrect (see [25]
for more details) in the context of assumptions used by Fu and by Sanchon and Urbano
and then, the proof of uniqueness in [27] may be done in the same way as in this paper.
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5. Weak energy solutions for a right-hand side dependent of u

In this section, we study problem (1) for an f more general. We assume that

f : Ω× R → R is a Carathéodory function. (29)

Let

F (x, t) =

∫ t

0

f(x, s)ds.

We assume that there exists C1 > 0, C2 > 0 such that

|f(x, t)| ≤ C1 + C2 |t|
β−1 , where 1 ≤ β < p−. (30)

We have the following result.

Theorem 5.1. Under assumptions (2)–(6), (29) and (30), the problem (1) has at least

one weak energy solution.

Proof. Let g(u) =
∫

Ω
F (x, u)dx, then g′ : E → E∗ is completely continuous i.e. un ⇀

u⇒ g′(un) → g′(u), and thus the functional g is weakly continuous.
Consequently,

I(u) =

∫

Ω

A(x,∇u)dx−

∫

Ω

F (x, u)dx, u ∈ E

is such that I ∈ C1(E,R) and is lower semi-continuous. We then have to prove that I
is bounded from below and coercive in order to complete the proof. From (30), we have
|F (x, t)| ≤ C(1 + |t|β) and then

I(u) ≥
1

p+

∫

Ω

|∇u|p(x) dx− C

∫

Ω

|u|β dx− C3.

We know that E is continuously embedded in Lβ(Ω). It follows that there exists C4 > 0
such that

‖u‖ > C4 |u|β , for all u ∈ E.

On the other hand, by Lemma 2.1, we have

∫

Ω

|∇u|p(x) dx ≥ ‖u‖p− , for all u ∈ E with ‖u‖ > 1.

Then, we get

I(u) ≥ ‖u‖p− − C5 ‖u‖
β − C3 → +∞ as ‖u‖ → +∞.

Consequently, I is bounded from below and coercive. The proof is then complete.

Assume now that F+(x, t) =
∫ t

0
f+(x, s)ds is such that there exists C1 > 0, C2 > 0 such

that
∣

∣f+(x, t)
∣

∣ ≤ C1 + C2 |t|
β−1 , where 1 ≤ β < p− (31)

Then we have the following result
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Theorem 5.2. Under assumptions (2)–(6), (29) and (31), the problem (1) has at least

one weak energy solution.

Proof. As f = f+ − f−, let F−(x, t) =
∫ t

0
f−(x, s)ds. Then















I(u) =

∫

Ω

A(x,∇u)dx+

∫

Ω

F−(x, u)dx−

∫

Ω

F+(x, u)dx

≥

∫

Ω

A(x,∇u)dx−

∫

Ω

F+(x, u)dx.

Then by the same way as in the proof of Theorem 5.1, the result of Theorem 5.2 follows.

Remark 5.3. There is no uniqueness of weak energy solution of (1) under assumptions
(30) or (31). Indeed, the function

f(x, t) = λ(tγ−1 − tβ−1) (32)

where 1 < β < γ < p− and λ > 0 verify (29) and (30). Then by Mihailescu and
Radulescu’s work (see [21, Theorem 2.1]), problem (1) with particular data (32) has at
least two distinct non-negative non-trivial weak energy solutions.
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[20] M. Mihǎilescu, P. Pucci, V. Rǎdulescu: Nonhomogeneous boundary value problems in
anisotropic Sobolev spaces, C. R., Math., Acad. Sci. Paris 345 (2007) 561–566.
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