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1. Introduction and Conventions

1.1. Introduction

We consider a compact set K in the complex plane and there on one hand the supnorm
closure of the rational functions with poles off K, on the other hand the set of all
continuous functions on K which are analytic on the topological inner of K. Both sets
of functions are algebras, commonly the first is denoted by R and the second by A. The
problem of the rational approximation is the question, when is A = R.

Vitushkin [20] considers functions, which are continuous on the hole of C including
infinity, where they vanish, and which are analytic off compact subsets of the intersection
of open sets with the topological inner of K resp. of K itself, that means pairs of sets
are considered. The functions are scaled and evaluated by |f ′(∞)|. The open sets are
evaluated by the suprema of the function evaluations. The theorem of Vitushkin says,
that equal evaluations of all considered pairs of sets is equivalent to A = R The theorem
of Vitushkin is found in [24].

The constructive method is ahead of the abstract methods since the work of Mergelyan
[12] and Vitushkin [20]. Mergelyan answers the question for finitely many "holes", Vi-
tushkin independently of the number of holes, while the abstract methods essentially
only can solve the case of finitely many holes [3, p. 233, Theorem 8.4], [9, Theorem 3.13],
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[11, Théorème 7.5]. They mostly take the way via the real parts of both of the algebras
and use a result of [21], see [22]. The special case of countably many holes, which [9,
Lemma 3.15] considers, has a hidden finite dimensional structure.

Many papers on this theme work with the Cauchy transform of finite measures (see [24],
who gives a surway for the rational approximation), these transforms are functions, which
can be unbounded. [1, 2.4 Lemma] gives a special condition for measures, in order to
obtain continuous Cauchy transforms. These are analytic off the support of the measure,
from which they stem by Cauchy transformation, and therefore they are candidates for
functions in A. We consider measures, which satisfy a modified Arens-condition, we call
them "wide".

Related fields of work are the investigation of properties of the AC-capacity, whose
definition is found in [24], especially its subadditivity and regularity - we refer to [4], as
well as function spaces of different integrabilities and differentiabilities - we refer to the
papers of H. Triebel and the work group "function spaces" of the university of Jena, e.g.
[17] and [18] - and real Hardy-spaces on R

n - we refer to [13].

In this paper we consider the question of the rational approximation by the more flexible
measures and their Cauchy transforms instead of the less flexible AC-capacity, that
means we step from a structure bearing level beneath the AC-capacity whith help of the
Cauchy transforms directly to the level of functions. This is as far as we know a method
which is not yet used in the literature.

How useful our methods are in a general sense, that we find confirmed in many places.
Measures are tailored, [13] defines measures with linear growth ("creixement lineal"),
[18] defines "d-sets". [17] considers "fractal characteristics of measures".

In Chapter 2 we prove technical lemmata, which we have not found ready to cite. In
Chapter 3 we investigate the wide measures. In Chapter 4 we investigate the Cauchy
transforms of these measures and their supnorm limits. In Chapter 5 we give our amend-
ment of the theorem of Vitushkin, which considers the wide measures on the inner
boundary, the definition is found below. The main theorem of Chapter 5 says, that
A = R holds, when the inner boundary does not support any wide measure. And in two
corollaries a known and a weakened sufficient geometric condition for A = R are given.
Further we confirm a conjecture of [8] for functions, which are continuous on C including
infinity and analytic off a Cantor-set.

Up to here we have represented motivation and results of this paper. In the light of the
paper of R. W. Hilger und J. F. Michaliček [10], which comprehensively clarifies how to
represent analytic functions by generalized Cauchy transforms, we can aspect, that also
other classes than only functions analytic on the topological inner of a bounded subset
of the plane, and continuous on the closure can be investigated by our method. The
investigation of other classes of functions, the question of adjunction and the Corona
problem are left to further work.

1.2. Conventions

We consider a compact set K in the complex plane with countably many holes. Hole
always stands for a connected component Yn of the complement of K, one of them is the
unbounded hole Y0. Let K be a subset of the open disc centered in 0 with radius r0 with



N. Trautmann / Cauchy Arens Vitushkin 607

0 < r0 ≤ 1, we denote this disc by V0. We suppose r0 = 1, this means no restriction. We
name rational support set ρ the subset in V0 of the union of the closures of the Yn. (The
inner boundary is not part of it.) We remind that inner boundary denotes the boundary
of K without the union of the boundaries of the holes, we denote it by ι. We name
analytic support set α = ρ ∪ ι.

We have chosen a notation for the topological inner and outer of a set G ⊆ C, which is

at the same time visualizing and symmetric:
⌢

G and
⌣

G. From now "inner" always means
the topological inner, other meanings as e.g. inner boundary are stated explicitly. We
write qz for the function with qz (ζ) = (ζ − z)−1. We mark by � the end of a proof, an
example or a definition.

2. Technical Lemmata

Lemma 2.1. Let be 0 ≤ g1 ≤ g2 isotone bounded functions on a compact interval with
0 = inf g1 = inf g2 and let be 0 ≤ f an antitone continuous function on the same interval,
then there holds for the Stieltjes-integrals

∫

f (s) d g1 (s) ≤
∫

f (s) d g2 (s) .

Proof. With g = g2 − g1 ≥ 0 and by partial integration

∫ b

a

f (s) d g (s) ≥
∫ b

a

f (s) d g (s) +

∫ b

a

g (s) d f (s)

= f (b) g (b)− f (a) g (a) = f (b) g (b) ≥ 0.

Definition 2.2. We denote by A0 (C, G) the set of the continuous complex valued func-
tions on C vanishing at infinity, which are analytic on an open subset G ⊆ C.

Lemma 2.3. Let be Q the set of all qz with z ∈
⌣

K ∩ V0, then Q generates a supnorm
dense vector subspace of R. (We recall our notation: V0 is the open disc centred in 0
with radius 1 containing K.)

Proof. Let be U the supnorm closure of the vector space, which is generated by the
functions qz with z ∈ Y0 ∩ V0 (We recall our notation: Y0 is the unbounded component
of the complement of K.). Let be T = {z ∈ Y0; qz ∈ U}.
Then we get the following by calculations:

(1) T is relatively closed in Y0,

(2) U is an algebra,

(3) T is open.

Since by our setting T contains the non empty Y0 ∩ V0 and Y0 is connected, we get from
(1) and (3) by a common connectedness argument T = Y0.
That means the closed vector spaces, which are generated by the qz with z ∈ Y0 resp.
z ∈ Y0 ∩ V0, are the same. That further means the closed vector spaces, which are
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generated by the qz with z ∈
⌣

K resp. qz with z ∈
⌣

K ∩ V0, are the same too, so they are
both equal to R.

Lemma 2.4. Each element of the dual space of A0

(

C,
⌢

K
)

can be represented as a finite

Radon-measure on
⌣

K, which annihilates the qz ∀z ∈
⌢

K. (We recall our notation
⌢

K for

the inner of K and
⌣

K for the outer of K).

Proof. For
⌢

K = ∅ this is known [2, Korollar 29.13]. Otherwise the proof consists of
the repeated application of the Hahn-Banach theorem, decomposition of a measure by

the characteristic functions of
⌣

K and K, replacement of a measure on K by one on the
boundary of K with the use of the maximum principle for analytic functions. Here we

note that A0

(

C,
⌢

K
)

∩V = 0, where V is the supnorm closure of the vector space, which

is generated by the qz with z ∈
⌢

K, and all functions are restricted to
⌣

K. For each function

q ∈ V has a representation q =
∑∞

n=1 an qzn with |zn − z1| > δ for suitable z1 ∈
⌢

K and

for n > 1, the proof repeats parts of the proof of our Lemma 2.3. A0

(

C,
⌢

K
)

is supnorm

closed. The direct sum of A0

(

C,
⌢

K
)

and V is complete in the direct sum topology, see

[11, Satz 24, p. 102] and therefore closed in the supnorm topology too. The projection

of A0

(

C,
⌢

K
)

⊕ V onto A0

(

C,
⌢

K
)

is continuous by the closed-graph theorem.

3. The Arens bounded Measures

Definition 3.1. For finite Radon measures µ on C we define their crowding function
µ≈ : µ≈(r) = sup {|µ| (V (z, r)) ; z ∈ C} ∀ 0 ≤ r ≤ ∞. It is isotone. For these measures
µ we consider the Stieltjes integral

∫∞

0
r+1
r
d µ≈ (r).

If the integral is finite, we call µ a wide measure and define its wide norm by 〈µ〉 =
2
∫∞

0
r+1
r
d µ≈ (r) . The name is justified by our Proposition 3.3.

Compare [1, (2.2.2)] to this definition. The plane measure on a bounded set is wide,
since λ≈(r) ≤ π r2 for small r and λ≈(r) = const for big r. Following our Lemma 2.1
and the definition a measure with bounded density to the plane measure is then wide
too.

Estimations 3.2.

3.2.1. µ≈(r) ≤ µ≈(∞) = ‖µ‖ ≤ 1
2
〈µ〉 ∀ r ≥ 0.

3.2.2.
∣

∣

∣

∫

d µ(ζ)
ζ−z

∣

∣

∣
≤
∫

d |µ|(ζ)
|ζ−z|

≤ 1
2
〈µ〉 ∀z ∈ C.

3.2.3. |µ| ≤ |ν| ⇒ µ≈ (r) ≤ ν≈ (r) ∀ r ≥ 0 and 〈µ〉 ≤ 〈ν〉.
3.2.4. The crowding function is homogeneous for the modulus.

3.2.5. For finite sums and series converging in the variation norm we have (
∑

n µn)
≈ (r)

≤∑n µ
≈
n (r).

Proof. All can be calculated, for 3.2.3 we use our Lemma 2.1.
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Proposition 3.3. 〈µ〉 = 2
∫∞

0
r+1
r
d µ≈ (r) is a norm on the finite Radon measures with

finite Stieltjes integral
∫∞

0
r+1
r
dµ≈ (r). Let be S ⊆ C. In the wide norm the wide measures

on S form a Banach space.

Proof. 〈µ〉 = 0 implies µ = 0 following 3.2.2 and [22, page 18, Lemma 6]. The remaining
properties of a norm are calculated with our Estimations 3.2.
We show the completeness. Let be (µn) a Cauchy sequence of wide measures. We choose
if necessary an equally named subsequence of the (µn) with

∑∞
k=0

1
2
〈µk+1 − µk〉 < ∞

and note, that following 3.2.1 the partial sums of the series
∑∞

k=1 (µk+1 − µk) in the
variation norm and the total variations of the

∑n

k=1 (µk+1 − µk)
≈ have the common

bound
∑∞

k=0
1
2
〈µk+1 − µk〉 < ∞ and r+1

r
is continuous on finite intervals off 0 and is

positive and antitone, so that the conditions of [23, Theorem I 16.4] are fullfilled and we
can estimate for µ = µ1 +

∑∞
k=1 (µk+1 − µk) and ε > 0 as follows.

2

∫ ∞

ε

r + 1

r
d (µ− µn)

≈ (r) = 2

∫ ∞

ε

r + 1

r
d

(

∞
∑

k=n

(µk+1 − µk)

)≈

(r)

≤ 2

∫ ∞

ε

r + 1

r
d

∞
∑

k=n

(µk+1 − µk)
≈ (r) =

∞
∑

k=n

2

∫ ∞

ε

r + 1

r
d (µk+1 − µk)

≈ (r)

≤
∞
∑

k=n

2

∫ ∞

0

r + 1

r
d (µk+1 − µk)

≈ (r) =
∞
∑

k=n

〈µk+1 − µk〉.

We take ε → 0 and obtain 〈µ− µn〉 = 2
∫∞

0
r+1
r
d (µ− µn)

≈ (r) ≤∑∞
k=n 〈µk+1 − µk〉. So

we have 〈µ〉 = 〈µ− µn + µn〉 ≤ 〈µ− µn〉 + 〈µn〉 < ∞ and 〈µ− µn〉 → 0 for the chosen
subsequence and for the original sequence as well.

Definition 3.4. We writeW for the set of all finite Radon measures on C with 〈µ〉 < ∞.
We write Wc for the set of all finite Radon measures on C with compact support and
with 〈µ〉 < ∞.
We define W (S) = {µ ∈ W ; support µ ⊆ S}.
We define Wc (S) = {µ ∈ Wc; support µ ⊆ S}.

Proposition 3.5. Let be µ ∈ W and E the support of µ, let be (En) a sequence of
bounded disjoint Baire sets with E =

⋃∞
n=0 En and let be µn = χEn

µ, then µ =
∑∞

n=0 µn

in the wide norm.

Proof. Let be νn =
∑n

k=0 µk, then we have ‖νn − µ‖ → 0 and |νn| ≤ |µ| ∀ n ∈ N.
We have (µ− νn)

≈ (r) ≤ ‖µ− νn‖ and (µ− νn)
≈ (r) ≤ (µ≈ + ν≈

n ) (r) ≤ 2µ≈ (r). We

choose for ε > 0 a δ > 0 with
∫ δ

0
r+1
r
d µ≈ (r) ≤ ε and further we choose a νn with

δ+1
δ

‖µ− νn‖ ≤ ε, so that we can estimate as follows.

∫ ∞

0

r + 1

r
d (µ− νn)

≈ (r) =

∫ δ

0

r + 1

r
d (µ− νn)

≈ (r) +

∫ ∞

δ

r + 1

r
d (µ− νn)

≈ (r)

≤
∫ δ

0

r + 1

r
d 2 µ≈ (r) +

δ + 1

δ
‖µ− νn‖ ≤ 3ε.

We send ε → 0, for a subsequence of the νn we then obtain 〈µ− νn〉 =
2
∫∞

0
r+1
r
d (µ− νn)

≈ (r) → 0. We obtain the same result by our Lemma 2.1 for the



610 N. Trautmann / Cauchy Arens Vitushkin

original sequence as well, since µ − νn ≥ µ − νk ≥ 0 and so (µ− νn)
≈ ≥ (µ− νk)

≈ ≥ 0
for k ≥ n.

As a special case we get the following corollary.

Corollary 3.6. Let be µ ∈ W , then there is a sequence (µn) ⊆ Wc with µ =
∑∞

n=0 µn

in the wide norm.

Proof. Let be E the support of µ. We choose En = E ∩ {z ∈ C;n ≤ |z| < n+ 1} and
apply 3.5.

Example 3.7. The unit intervall of the real numbers does not support any wide mea-
sure.

Proof. The crowding function µ≈ of a finite Radon measure µ on [0, 1] is isotone and
bounded. Without restriction let be µ ≥ 0 and µ≈ (1) = ‖µ‖ = 1. We observe that the
supremum is realized for centres on the unit intervall and that the crowding function
is isotone and give for an element of the sequence (2−n) and for 0 ≤ t ≤ 1 only the
most important steps of the calculation: µ ([t− 2−n+1, t+ 2−n+1]) ≤ µ ([t− 2−n+1, t]) +
µ ([t, t+ 2−n+1]) ≤ 2µ≈ (2−n) and further µ≈ (2−n+1) = sup0≤t≤1 µ ([t− 2−n+1, t+ 2−n+1])
≤ 2µ≈ (2−n) for all natural n and µ≈ (r) ≥ µ≈

(

2−k
)

≥ 2−k+1µ≈ (1) ≥ rµ≈ (1) for all 0 ≤
r ≤ 1 and for a k depending on r. That means following our Lemma 2.1 for an arbitrary
measure on the unit intervall

∫ 1

0
r+1
r
d µ≈ (r) ≥

∫ 1

0
r+1
r
d rµ≈ (1) = µ≈ (1)

∫ 1

0
r+1
r
d r =

∞.

4. The Cauchy Transforms of Arens bounded measures

Definition 4.1. For a measure µ ∈ W we define the Cauchy transform by µ : µ (z) =
∫

qz dµ. We denote Wc = {µ;µ ∈ Wc} and W = {µ;µ ∈ W}.

Estimation 4.2. ‖µ‖ ≤ 1
2
〈µ〉 ∀µ ∈ W .

Proof. 3.2.2.

Properties 4.3.

4.3.1. The transform µ of µ ∈ Wc is defined on C, is continuous on C, vanishes at ∞
and is analytic off the support of µ.

4.3.2. For a measure µ ∈ W there is a representation µ =
∑∞

n=0 µn in the wide norm
with µn ∈ Wc

4.3.3. For each representation µ =
∑∞

n=0 µn in the wide norm with µn ∈ W we have µ
=
∑∞

n=0 µn in the supnorm.

4.3.4. The transform µ of µ ∈ W is defined on C, is continuous on C, vanishes at ∞ and
is analytic off the support of µ.

Proof. 1) see [1, 2.4], 2) see our 3.5, 3) because of our 4.2, 4) because of 1)–3).

Proposition 4.4. Wc is supnorm dense in C0 (C).



N. Trautmann / Cauchy Arens Vitushkin 611

Proof. First we show that Wc is σ∗-dense in C0 (C) by showing that all measures in
the dual space of C0 (C), which are annihilated by Wc, vanish themselves. Let be ν a
finite Radon measure on C, then

∫ ∫

|qz| d |µ| d |ν| (z) ≤ 〈µ〉 ‖ν‖ < ∞ for all µ ∈ Wc.
By Fubini’s theorem we obtain 0 =

∫

µ (z) dν (z) =
∫ ∫

1
ζ−z

dν (z) dµ (ζ) = −
∫

νdµ.

Follwing the remark after 3.1 especially
∫

D
νdλ = 0 holds for all measurable bounded

subsets D of the plane, when we choose for D the sets {z ∈ C; |z| ≤ n,Re ν ≥ 0},
{z ∈ C; |z| ≤ n, Im ν ≥ 0} etc., we see that with ν = 0 Lebesgue-almost everwhere also
ν = 0 holds following [22, page 18, Lemma 6].

Now C0 (C) is a Banach space in the supnorm and the proof is done by [4, page 422,
Theorem 13 and Corollary].

Lemma 4.5. Let be µ a wide measure, let be U an open subset of the plane with µ
analytic on U , then |µ| (U) = 0 holds.

Proof. Let be V ⊆ U , V open disc, let be µ = κ+ ν with κ = χV µ.
Then µ (z) =

∫

qzdµ =
∫

qzdκ+
∫

qzdν holds and the sum as well as the second term are
analytic on V , i.e. also the first term - call it f - is analytic on V . For this term therefore
holds that it is continuous on the whole plane and analytic off the boundary of V . In
V we have f =

∑

anz
n =

∑

bnz̄
n. Following [11, II 1.3] or the classic Fourier analysis

on the unit circle it is constant. Because it vanishes at ∞, we have κ = 0 following [22,
page 18, Lemma 6]. Since V was chosen arbitraryly, |µ| (U) = 0 holds.

We generalize our Lemma 4.4.

Proposition 4.6. Wc

(

⌣

K

)

is supnorm dense in A0

(

C,
⌢

K
)

.

Proof. We refine the proof of 4.4. First we show, that Wc

(

⌣

K

)

is σ∗-dense in A0

(

C,
⌢

K
)

by showing that a measure ν in the dual space of A0

(

C,
⌢

K
)

, which is annihilated by

Wc

(

⌣

K

)

, vanishes itself. Let be ν in the dual space as assumed, then it is following our

Lemma 2.4 a finite Radon measure on
⌣

K with 0 =
∫

µ (z) dν (z) and
∫ ∫

|qz| d |µ| d |ν| (z)

≤ 〈µ〉 ‖ν‖ < ∞ for all µ ∈ Wc

(

⌣

K

)

. By our assumption and by Fubini’s theorem we

obtain 0 =
∫

µ (z) dν (z) =
∫ ∫

1
ζ−z

dν (z) dµ (ζ) = −
∫

νdµ. Especially on the one hand

∫

U
νdλ = 0 holds for all bounded measurable sets U ⊆

⌣

K and on the other holds following

our Lemma 2.4 ν (z) =
∫

qz dν = 0 ∀z ∈
⌢

K. (If
⌢

K = ∅, then nothing besides Proposition
4.4 is to show.) We see that with ν = 0 Lebesgue-almost everywhere also ν = 0 holds

following [22, page 18, Lemma 6]. Now A0

(

C,
⌢

K
)

is a Banach space in the supnorm

and the proof is done by [4, page 422, Theorem 13 and Corollary].

Theorem 4.7. The restrictions to K of the Cauchy transforms of Wc

(⌣

K ∩ V0

)

are a

dense subset of R in the supnorm.
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Proof. Let be z ∈
⌣

K, 0 < r1 < r2, ∆ (z, r2) ⊆
⌣

K and µ = λ
−2π(r2−r1)r

on r1 ≤ r ≤ r2,

where r is the distance from z, then µ is a wide measure with support in
⌣

K, for which
qz (ζ) =

1
2π(r2−r1)

∫ r2

r1

∫ 2π

0
1

ζ−z−reiϕ
dϕd r

r
= µ (ζ) holds. We have calculated with the Cauchy

integral formula.

The qz with z ∈
⌣

K by definition span a supnorm dense vector subspace of R, on the
other hand following a result of Runge [24, Theorem 9.1] and our Proposition 3.5 together

with the property 4.3.3 the restrictions to K of the Cauchy transforms of Wc

(⌣

K
)

are

a vector subspace of R. Following our Lemma 2.3 it is sufficient to consider the qz with

z ∈
⌣

K ∩ V0.

Theorem 4.8. The restrictions to K of the Cauchy transforms of Wc

(

⌣

K ∩ V0

)

are a

dense subset of A in the supnorm.

Proof. Following [12, Satz 3] each function in A can be continued to a function in

A0

(

C,
⌢

K
)

. The parts off V0 of the considered measures can be replaced for the supnorm

approximatin on K by measures supported on Y0 ∩ V0 following our Lemma 2.3. Our
Proposition 4.6 completes the proof.

5. A sufficient condition in the theorem of Vitushkin

We now approach our main theorem and by considering the wide measures on the bound-
ary of K gain a new sufficient condition for A = R. This sufficient condition allows us
to handle whole classes of examples, which are given in the literature for A = R, in a
simpler and visualizing manner.

The boundary of a single hole can support a wide measure, as the Denjoy Example 5.6
shows, when we take the inner boundary there forK. But for the supnorm approximation
we can neglect such measures, as the following lemma shows.

Lemma 5.1. Let be ∁K connected, then the restrictions to K of the supnorm closures

of Wc

(

⌣

K

)

and Wc

(⌣

K
)

are equal.

Proof. The polynome result of Mergelyan [12] gives here A = R. So our Theorems 4.7
and 4.8 finish the proof.

Definition 5.2. We denote R = Wc (ρ) and we denote A = Wc (α) = Wc

(

⌣

K ∩ V0

)

.

R ⊆ A is obvious.

Main Theorem 5.3. If A = R, then A = R.
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The condition means, that the wide measures with compact support on α and on ρ are
the same, or that the inner boundary does not support any wide measure. There are
examples that the condition is not necessary. See our Remark 5.9.

Proof. Let be R = A, then by the definitions and the assumptions of the theorem the

following holds Wc

(⌣

K ∩ V0

)

⊆ Wc (ρ) = R = A = Wc

(

⌣

K ∩ V0

)

. For the supnorm

closures of the restrictions to K of the first two sets equality holds following 5.1, so
A = R holds following our Theorems 4.7 and 4.8.

Our first corollary is a known result, which is included as illustration of our definitions
and results and also to be compared to other methods.

Corollary 5.4. A = R, when the inner boundary is a countable set of points.

Proof. Each measure on a countable set of points is a series of pointmeasures, which
converges in the variation norm. A wide measure on the inner boundary therefore had a
representation as a series of wide pointmeasures converging in the wide norm following
3.2.3 and 3.5. But a wide pointmeasure is 0.

A sufficient geometric condition of Vitushkin for A = R is, that "the inner boundary is
contained in a countable union of Ljapunow curves" [24, Theorem 14.3]. Our sufficient
condition, which uses only measures, suggests that the piecewise differentiability of the
Ljapunow curve is not really used. Indeed we can weaken this condition of Vitushkin
considerably in our second corollary and at the same time we can replace the proof cited
and described there as "long and complicated" by a short and clear one.

Corollary 5.5. A = R, when the inner boundary is contained in a countable union of
continuous curves z (t), each of which fullfills the following conditions:

(5.5.1 ) |z (t)− z (τ)| ≤ c |t− τ | ∀t, τ ∈ [0, 1], where z (t) is its parameter representation
and 0 < c is a real constant, which may depend on the single curve, and

(5.5.2 ) the inverse image of V (z (t) , s) in the parameter representation is connected
∀t ∈ [0, 1], where s > 0 is a real constant, which may depend on the single curve.

Proof. We argue by contradiction. Because of our Proposition 3.5 one of the curves
would already support a positive wide measure µ, which by the measurable inverse image
−1
z of the parameter representation z would be carried to the unit intervall, we name it
ν. For |z (t)− z (τ)| = r holds |t− τ | ≥ rc−1 following (5.5.1 ) or together with (5.5.2 )
−1
z (V (z (t) , r)) ⊇ V (t, rc−1) ∀ 0 ≤ r < s, then µ (V (z (t) , r)) ≥ ν (V (t, rc−1)) holds and
also µ≈ (r) ≥ ν≈ (rc−1) holds ∀ r < s and finally

∫ s

0
r+1
r
dµ≈ (r) ≥

∫ s

0
r+1
r
dν≈ (r c−1) = ∞

because of 2.1 and 3.7.

Example 5.6. As another application we consider continuous functions on C, which are
analytc off Cantor sets of the plane. Such functions were examined already in the early
literature, see [5] and [19]. They used to be represented as limits of convex combinations
of functions qz with poles not in the inner boundary, but tending to it. Let be 0 < t < 1
and let be Kt the Cantor set, which we obtain, when we remove the middle interval
of length t from the unit interval and repeat this process inductively on the 2n closed
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intervals In,j, which remain after the n-th step. Let be Et = Kt ×Kt. Then Et =
⋂

Jn,
where Jn is a union of 4n squares with sides of length sn with s = 1

2
(1− t). Let be

rn = 1
2

√
2 sn the radius of the circle, which surrounds one of the squares, and let be mn,k

the centre of the k-th square at the n-th step. The circles centred in mn,k with radius
rn separate the squares In,j × In,k.

Not for all Cantor sets with parameter 0 < t < 1 such functions exists. In [8] is shown,
that for the parameters 0 < t < 1

2
such functions exist and do not exist for the parameters

1
2
< t < 1. For the parameter t = 1

2
we confirm a conjecture of J. Garnett, that such

functions do not exist. This could not be demonstrated in [8].

The direct application of our results requests as a helping construction a circle, which
surrounds the Cantor set, and holes, which have the Cantor set as inner boundary. On
the compact set K contructed in this way we consider only functions, whose rational
parts vanish.

Lemma 5.7. Let be µ a probability measure on Et, then µ≈ (rn) ≥ 1
4n

holds.
Let be βt the probability measure on Kt with βt (In,k) =

1
2n
, let be β2

t = βt ⊗ βt and let be
1
2

(√
2− 1

)

≤ t < 1, then β2≈
t (rn) =

1
4n

holds.

Proof. By calculations.

Theorem 5.8. Et does not support any wide measure for 1
2
≤ t < 1.

Et supports the wide measure β2
t for

1
2

(√
2− 1

)

≤ t < 1
2
.

Proof. Let be µ a probability measure on Et and let be ν≈ a crowding function with
ν≈ (t) = 1

4n
for all rn+1 ≤ t < rn, then we estimate for 1

2
≤ t < 1 recalling 4s = 2 (1− t)

as follows:

1

2
〈µ〉 ≥

∫ ∞

0

r + 1

r
d ν≈ (r) ≥

∞
∑

n=1

1

rn
(ν≈ (rn)− ν≈ (rn+1))

=
∞
∑

n=1

√
2 s−n

(

1

4n
− 1

4n+1

)

=
3

4

√
2

∞
∑

n=1

(

1

2 (1− t)

)n

= ∞

For 1
2

(√
2− 1

)

≤ t < 1
2
we estimate as follows:

1

2

〈

β2
t

〉

≤ 1 +
∞
∑

n=1

1

rn+1

(

β2≈
t (rn)− β2≈

t (rn+1)
)

= 1 +
∞
∑

n=1

√
2 s−n−1

(

1

4n
− 1

4n+1

)

= 1 +
3

4

√
2
1

s

∞
∑

n=1

(

1

2 (1− t)

)n

< ∞

We have used our Lemmata 2.1 and 5.7.

For the Cauchy transforms of measures on Cantor sets see also [13]. Our method allows
us a more exact glance at a result, which we cite from [6, page 219, 8.5 Corollary]: If K
is compact and ∁K has positive lower Lebesgue density at every point of the boundary
of K, then A = R. The definition of the lower Lebesgue density is found at the cited
place.
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Remark 5.9. Let be K the compact set, which is formed by removing from the current
middle square a concentric square of half of its area according to the construction of
the Cantor set described in our Example 5.6. Then Et = ι and ∁K has positive lower
Lebesgue density at every point of the boundary and A = R holds independant of the
parameter t of the construction. But for the parameters 1

2
≤ t < 1 the inner boundary

does not support any wide measure following our Theorem 5.8. That means in these
cases the assumption of the positive lower Lebesgue density is sufficient for A = R but
weaker than for the other parameters.
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