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Let A be a subset of an Abelian group G. We say that f : A → R is convex if

2f(x) ≤ f(x+ h) + f(x− h)

holds for every x, h ∈ G such that x, x+h, x−h ∈ A. We show that several classical theorems on convex
functions defined on Rn can be proved in this general setting. We study extendibility of convex functions
defined on subgroups of G. We show that a convex function need not have a convex extension, not even
if it is defined on a subgroup of a linear space over Q. We give a sufficient condition of extendibility
which is also necessary in groups divisible by 2. We also investigate the continuity and measurability of
convex functions defined on topological Abelian groups.

Introduction

Let G be an Abelian group and let A be a subset of G. We say that f : A → R is convex
if

2f(x) ≤ f(x+ h) + f(x− h) (1)

holds whenever x, h ∈ G and x, x + h, x − h ∈ A. In this paper we show that several
classical theorems on convex functions defined on Rn or on (topological) linear spaces
can be generalized to this general setting.

In Section 1 we prove that convexity implies

f(λx+ (1− λ)y) ≤ λf (x) + (1− λ)f (y) (2)

for every rational λ ∈ [0, 1], whenever λx+ (1− λ)y makes sense in G.

Section 2 is devoted to the problem of extendibility of convex functions defined on sub-
groups of G. As we shall see in Theorem 2.2, a convex function need not have a convex
extension, not even if it is defined on a subgroup of a linear space over Q. In Theorem 2.3
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we give a sufficient condition of extendibility which is also necessary in groups divisible
by 2 (see Theorem 1.5).

In Section 3 we consider convex functions defined on topological groups. By a classical
theorem of Bernstein and Doetsch, if a convex function f is defined on a normed linear
space and is bounded from above on a nonempty open set, then f is continuous, moreover,
locally Lipschitz (see [9, Chap. VII, Sec. 71, Theorem C and Chap. IV, Sec. 41, Theorem
C], also [1]). As we shall see in Theorem 3.6, the same is true for convex functions
defined on metric groups. On topological groups we obtain local uniform continuity. As
a corollary we find that if f is convex on a dense subgroup H of a topological Abelian
group G and if f is bounded from above in a nonempty relatively open subset of H, then
can be extended to G as a continuous convex function (see Corollary 3.8).

In Section 4 we consider convex functions defined on open subsets of locally compact
Abelian groups. We generalize well-known theorems of Blumberg [2], Sierpiński [11] and
Ostrowski [7]. We also prove the category versions of these theorems.

1. The inequality of convexity with rational coefficients

Let D be a convex subset of a linear space over the rationals. It is well-known that if
f : D → R is convex, then it satisfies (2) for every x, y ∈ D and λ ∈ Q ∩ [0, 1]; see [9,
Chap. VII. Sec. 71, Theorem A] and [5, Chap. V, Sec. 3, Theorem 5]. In this section we
prove that (2) holds in every Abelian group for every λ ∈ Q∩[0, 1] whenever λx+(1−λ)y
can be interpreted in G.

Let G be an Abelian group. Given x, y ∈ G and λ ∈ Q we shall write u ∼ λx+(1−λ)y,
if there are coprime integers k and n 6= 0 such that λ = k/n and nu = kx + (n − k)y.
(Note that u ∼ λx+ (1− λ)y does not define a relation on G; it is just an abbreviation
of the statement above.) In general neither the existence nor the uniqueness of such an
element u ∈ G can be claimed. Nevertheless, in the next theorem we show that whenever
an element u ∈ G satisfies u ∼ λx+ (1− λ)y, then (2) holds if we replace λx+ (1− λ)y
by u.

Theorem 1.1. Let G be an Abelian group, and let f : G → R be convex. Then

f(u) ≤ λf (x) + (1− λ)f (y) (3)

holds for every λ ∈ Q ∩ [0, 1] and x, y, u ∈ G such that u ∼ λx+ (1− λ)y.

Lemma 1.2. Let G be an Abelian group, let x, h ∈ G, and suppose that f is convex on

the set {x, x+ h, . . . , x+ nh}. Then

nf(x+ kh) ≤ (n− k)f(x) + kf(x+ nh) (4)

holds for every k = 0, . . . , n.

Proof. We put

F (k) = nf(x+ kh)− [(n− k)f(x) + kf(x+ nh)]

for every k = 0, . . . , n, and M = max0≤k≤n F (k). We have to prove M ≤ 0. Suppose M >
0, and let i ∈ {0, . . . , n} be the smallest integer with M = F (i). Since F (0) = F (n) = 0
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we have 0 < i < n. By the convexity of f we have 2M = 2F (i) ≤ F (i− 1) + F (i+ 1) ≤
F (i − 1) + M, and thus F (i − 1) ≥ M. Then F (i − 1) = M, which contradicts the
minimality of i.

Lemma 1.3. Let A be a subset of an Abelian group G, and let f : A → R be a convex

function. If a ∈ G is of finite order, then f(x + a) = f(x) for every x ∈ G with

x+ Za ⊂ A.

Proof. Clearly, it is enough to show f(x+a) ≤ f(x). Take any n ∈ N such that na = 0.
Applying Lemma 1.2 we obtain

nf(x+ a) ≤ (n− 1)f(x) + f(x+ na) = nf(x),

which completes the proof.

Proof of Theorem 1.1. Let k, n be coprime integers with λ = k/n and nu = kx +
(n− k)y. Then we have n(y − u) = k(y − x). We prove that there is an element h ∈ G
such that y − x = nh. Indeed, as k, n are coprime, there are integers a and b such that
ak + bn = 1. Putting h = a(y − u) + b(y − x) we obtain

nh = an(y − u) + bn(y − x) = ak(y − x) + bn(y − x) = (ak + bn)(y − x) = y − x

as we stated.

Then we have n(x+ (n− k)h) = nx+ (n− k)(y− x) = nu, and thus, by Lemma 1.3, we
have f(x+ (n− k)h) = f(u). Therefore, by Lemma 1.2 we obtain

nf(u) = nf(x+ (n− k)h)

≤ kf(x) + (n− k)f(x+ nh)

= kf(x) + (n− k)f(y)

= nλf(x) + n(1− λ)f(y),

which completes the proof.

If G is a torsion free Abelian group, then for every x, y ∈ G and λ ∈ Q there is at most
one u ∈ G such that u ∼ λx+(1−λ)y. If there is such a u then we say that λx+(1−λ)y
exists in G and write λx+ (1− λ)y = u. The next theorem is an immediate corollary of
Theorem 1.1.

Theorem 1.4. Suppose that G is a torsion free Abelian group, and let f : G → R be

convex. Then

f(λx+ (1− λ)y) ≤ λf (x) + (1− λ)f (y) (5)

holds for every λ ∈ Q∩ [0, 1] and for every x, y ∈ G such that λx+ (1− λ)y exists in G.

Let A be a subset of an Abelian group. We say that f : A → R has property Cn if

nf(x) ≤ f(x1) + . . .+ f(xn) (6)

holds whenever x, x1, . . . , xn ∈ A and nx = x1 + . . . + xn. Thus f is convex if and
only if it satisfies C2. It is easy to see that Cn+1 implies Cn for every n ∈ N. Indeed, if
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x, x1, . . . , xn ∈ A and nx = x1 + . . .+ xn, then (n+ 1)x = x1 + . . .+ xn + x. Now Cn+1

implies
(n+ 1)f(x) ≤ f(x1) + . . .+ f(xn) + f(x),

which proves (6). In particular, if f satisfies Cn for some n ≥ 2, then it is convex. In
the next theorem we shall prove the converse under suitable conditions on the set A.

A subset A of an Abelian group G is said to be convex if x + h, x − h ∈ A implies
x ∈ A for every x, h ∈ G. Note that if G is divisible by 2 and A ⊂ G is convex, then
A + A = 2A. If G is uniquely divisible by 2, then the convexity of A is equivalent to
A + A = 2A. In general, the condition of convexity of the set A is independent of the
condition A+ A = 2A (cf. Examples 1.7 and 1.8).

Theorem 1.5. Let A be a convex subset of an Abelian group G such that A+ A = 2A.
Then every convex function defined on A satisfies Cn for every n ∈ N.

Proof. First we prove that, for every x, h ∈ G, if x ∈ A and x+2kh ∈ A, then x+ih ∈ A
for every i = 0, . . . , 2k. Let I = {i : 0 ≤ i ≤ 2k and x + ih ∈ A}. Then 0, 2k ∈ I by
assumption. We show that if a, b ∈ I and c = (a+ b)/2 is an integer, then c ∈ I. Indeed,
since (x + ch) + (a − c)h = x + ah ∈ A and (x + ch) − (a − c)h = x + bh ∈ A, the
convexity of A implies that x+ ch ∈ A and c ∈ I. Now it is easy to check that, whenever
I ⊂ {0, . . . , 2k} is such that 0, 2k ∈ I and the average of any two elements of I of the
same parity is also an element of I, then I = {0, . . . , 2k}. Thus x + ih ∈ A for every
i = 0, . . . , 2k.

Now let f : A → R be a convex function. We prove that if x, y, z ∈ A and 2k+1x =
2k(y + z) for some k ∈ N, then 2f(x) ≤ f(y) + f(z). Indeed, let a = 2x − (y + z).
Then 2ka = 0. Since z = z + 2ka ∈ A, it follows that z + ia ∈ A for every i. Therefore,
f(z + a) = f(z) by Lemma 1.3. Since 2x = y + (z + a), we have

2f(x) ≤ f(y) + f(z + a) = f(y) + f(z)

by the convexity of f. Now we prove by induction on k that C2k holds for every k ∈ N.
Assume C2k for a k ∈ N and let x, x1, . . . , x2k+1 ∈ A be such that 2k+1x = x1+. . .+x2k+1 .
Since A+A = 2A, there are y, z ∈ A such that 2ky = x1 + . . .+ x2k and 2kz = x2k+1 +
. . .+ x2k+1 . Then 2k+1x = 2k(y + z) and thus, as we proved above, 2f(x) ≤ f(y) + f(z).
Therefore, applying the induction hypothesis, we obtain

2k+1f(x) ≤ 2kf(y) + 2kf(z)

≤ f(x1) + . . .+ f(x2k) + f(x2k+1) + . . .+ f(x2k+1).

This means that f satisfies C2k+1 . We have proved that f satisfies C2k for every k. Since
Cn+1 implies Cn for every n, it follows that f satisfies Cn for every n.

Corollary 1.6. Let A be a convex subset of an Abelian group divisible by 2. Then every

convex function defined on A satisfies Cn for every n ∈ N.

The examples below show that the assumptions imposed on A in Theorem 1.5 are es-
sential.

Example 1.7. Let T = R/Z denote the circle group. We identify T with [0, 1), where
addition is meant modulo 1. Let A = [0, 1/3]. Then A is a subset of the group T such
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that A + A = 2A. Let f(x) = x for every x ∈ A. Then f : A → R is convex, but
does not have property C3. Indeed, for a = 1/3 we have 3a = 0 = 0 + 0 + 0, but
3f(a) = 1 > f(0) + f(0) + f(0) = 0. (Note that A is not convex, as (2/3) ± (1/3) ∈ A
but 2/3 /∈ A.)

Example 1.8. Let G = Z2 and A = G. Then A is a convex subset of G. (However, it
violates A+ A = 2A.)

We construct a convex function on Z2 which does not satisfy C3. Let f : {(0, 0), (1, 1)
(−1, 0), (0,−1)} → R be arbitrary. We prove that f can be extended to Z2 as a convex
function. We may assume that f takes its values in [0, 1]. Let x1, x2, . . . be an enumer-
ation of Z2 such that |x1| ≤ |x2| ≤ . . . . First we extend f to the set {x1, . . . , x9} =
{−1, 0, 1} × {−1, 0, 1} as follows: we define f(0, 1) = f(1, 0) = f(−1,−1) = 2 and
f(−1, 1) = f(1,−1) = 4. It is easy to see that f is convex on {x1, . . . , x9}. Then we
define f(xn) = 2n for every n ≥ 10. We claim that f is convex on Z2. Let x, h ∈ Z2;
we prove (1). We may assume h 6= 0. Let x = xi, x + h = xj and x − h = xk. Since
max{|x+ h|, |x− h|} > |x|, we have max{j, k} > i. By symmetry we may assume j ≤ k
and thus i < k. If k ≤ 9 then (1) follows from the fact that f is convex on {x1, . . . , x9}.
If k ≥ 10 then

2f(x) = 2f(xi) ≤ max{8, 2 · 2k−1} = 2k = f(xk)

= f(x− h) ≤ f(x+ h) + f(x− h),

which again gives (1).

Now take f such that f(0, 0) = 1 and f(1, 1) = f(−1, 0) = f(0,−1) = 0. Then f violates
C3, since 3(0, 0) = (1, 1) + (−1, 0) + (0,−1).

Corollary 1.9. Let A be a convex subset of an Abelian group G, and suppose that A+
A = 2A. If f : A → R is a convex function, then inequality (3) holds for every x, y, u ∈ A
and λ ∈ Q ∩ [0, 1] satisfying u ∼ λx+ (1− λ)y.

Proof. Let k, n be coprime integers with λ = k/n and nu = kx+(n−k)y. By Theorem
1.5 the function f satisfies Cn, so nf(u) ≤ f(x) + (n− k)f(y), which gives (3).

Corollary 1.10. Let A be a convex subset of a linear space over the rationals, and let

f : A → R be a convex function. Then inequality (2) holds for every x, y ∈ A and

λ ∈ Q ∩ [0, 1] such that λx+ (1− λ)y ∈ A.

Corollary 1.11. Let A be a convex subset of a linear topological space and let f : A → R
be a continuous convex function. Then inequality (2) holds for every x, y ∈ A and

λ ∈ [0, 1] such that λx+ (1− λ)y ∈ A.

Proof. Let x, y ∈ A and λ ∈ [0, 1] be arbitrary. Since the set D = {k/2n : n ∈ N, k =
0, . . . , 2n} is dense in [0, 1], there is a sequence (λn)n∈N of elements of D converging to λ.
As A is convex, we have λnx+ (1− λn)y ∈ A for every n ∈ N. To complete the proof it
is enough to make use of Corollary 1.10 and the continuity of f .

2. Extension of convex functions

We start with another consequence of Theorem 1.5.
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Corollary 2.1. Let A be a convex subset of an Abelian group G such that A+A = 2A.
In order that a real function f , defined on a subset of A, be extendible to A as a convex

function, it is necessary that f satisfies condition Cn for every n ∈ N.

In Example 1.8 we defined a function f : H → R, where H = {(0, 0), (1, 1), (−1, 0),
(0,−1)}, which admits a convex extension to Z2 but does not satisfy C3. This shows
that the assumption A+ A = 2A is essential in Corollary 2.1.

Theorem 2.2. There exists a convex function defined on a subgroup of the reals which

cannot be extended to R as a convex function.

Proof. Let a, b ∈ R be linearly independent over the rationals. Then the group H
generated by a and b is isomorphic to Z2. Making use of the function constructed in
Example 1.8 we come to a convex function f : H → R which does not satisfy C3. Since
R is divisible, it satisfies R + R = 2R, and then it follows from Corollary 2.1 that f
cannot be extended to R as a convex function.

Our main aim in this section is to prove the following extension theorem.

Theorem 2.3. Let H be a subgroup of an Abelian group G. If f : H → R satisfies Cn

for every n ∈ N, then f can be extended to G as a function satisfying Cn for every n ∈ N.

Theorem 2.2 shows that in Theorem 2.3 it is not sufficient to assume that f is convex.
Also, the assumption that H is a subgroup of G is essential, as the following simple
example shows. Let −∞ < a < b < ∞ and let f : (a, b) → R be a convex function such
that f(a+) = f(b−) = ∞. Put A = (a, b). By Theorem 1.5, the function f|A satisfies
Cn for every n ∈ N. On the other hand it does not admit a convex extension to R.

As an immediate consequence of Theorems 1.5 and 2.3 we obtain the following.

Corollary 2.4. Let H be a subgroup of the Abelian group G. If H is divisible by 2, then
every convex function defined on H can be extended to G as a convex function.

Proof of Theorem 2.3. I. First we shall assume that G = Rk and H = Zk for some
k ∈ N. Assume that f : Zk → R satisfies Cn for every n ∈ N. Let A denote the convex
hull of the graph of f, and put ϕ(x) = inf{y ∈ R : (x, y) ∈ A} for every x ∈ Rk. We
prove that ϕ is an extension of f and satisfies Cn for every n ∈ N.

Let x ∈ Zk. It is clear that ϕ(x) ≤ f(x). Suppose ϕ(x) < f(x). Then there is a y ∈ R such
that ϕ(x) < y < f(x) and (x, y) ∈ A. Consequently, there are points x1, . . . , xm ∈ Zk and
positive numbers t1, . . . , tm such that

∑m

i=1
ti = 1,

∑m

i=1
tixi = x, and

∑m

i=1
tif(xi) = y.

Slightly changing the numbers ti and y we may assume that t1, . . . , tm ∈ Q. If n is
the common denominator of t1, . . . , tm, then it follows from condition Cn that f(x) ≤
∑m

i=1
tif(xi) = y, which contradicts y < f(x). This proves that ϕ is an extension of f.

It is clear from the definition of ϕ that it is a convex function. Therefore, since Rn is
divisible, ϕ satisfies Cn for every n ∈ N.

II. The element x ∈ G is said to be independent of the subgroup H of G if px /∈ H for
every p ∈ N. We prove that if f : H → R satisfies Cn for every n ∈ N and if x ∈ G is
independent of H, then f can be extended with the same property to the group 〈H, x〉
generated byH and x. Indeed, every element of 〈H, x〉 has a unique representation h+qx,
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where h ∈ H and q ∈ Z. We define f(h + qx) = f(h) for every h ∈ H and q ∈ Z. It is
easy to check that this gives a suitable extension of f to 〈H, x〉.

III. Let H be a finitely generated subgroup of G and let x ∈ G \ H. We prove that if
f : H → R satisfies Cn for every n ∈ N, then f can be extended with the same property
to the group 〈H, x〉.

If x is independent of H, then this was proved in II. Therefore, we may assume that
px ∈ H for some p ∈ N. Let s be the smallest positive integer with this property and let
c = sx. Then every element of 〈H, x〉 has a unique representation h + qx, where h ∈ H
and 0 ≤ q < s. By the fundamental theorem of finitely generated Abelian groups [10,
Theorem 10.26]) there exists a nonnegative integer k such that H is isomorphic to the
direct product of Zk with a finite group. Thus there are subgroups K, F of H such that
K is isomorphic to Zk, F is finite, and every element of H can be written uniquely as
y + z, where y ∈ K and z ∈ F. Choose a ∈ K and b ∈ F such that c = a+ b.

Let i : Zk → K be an isomorphism. Since f satisfies Cn for every n ∈ N, the function
f ◦ i : Zk → R has the same property. Therefore, by I, f ◦ i can be extended to Rk

satisfying Cn for every n ∈ N. Let ϕ be such an extension. Then we put

g(y + z + qx) = ϕ
(

i−1(y) +
q

s
· i−1(a)

)

for every y ∈ K, z ∈ F and q ∈ Z. We claim that the equality above defines a function
g on 〈H, x〉. Let y1 + z1 + q1x = y2 + z2 + q2x, where yj ∈ K, zj ∈ F and qj ∈ Z for
j = 1, 2. Then (q2−q1)x ∈ H and thus q2 = q1+ms with a suitable integer m. Therefore

y1 + z1 = y2 + z2 +msx = y2 + z2 +mc = (y2 +ma) + (z2 +mb),

and hence y1 = y2 +ma. Then we have

i−1(y1) +
q1
s
· i−1(a) = i−1(y2) +m · i−1(a) +

q1
s
· i−1(a)

= i−1(y2) +
q1 +ms

s
· i−1(a) = i−1(y2) +

q2
s
· i−1(a),

which was claimed. If y ∈ K and z ∈ F then

g(y + z) = ϕ
(

i−1(y)
)

= f(y) = f(y + z)

by Lemma 1.3. Therefore g is an extension of f. It is easy to check that g has property
Cn for every n ∈ N.

IV. Let H be an arbitrary subgroup of G and assume that f : H → R satisfies Cn for
every n ∈ N. We prove that for every x ∈ G \ H we can extend f to the group 〈H, x〉
as a function satisfying Cn for every n ∈ N. If x is independent of H, then we already
proved this in II. Therefore, we may assume that px ∈ H for some p ∈ N. Let s be the
smallest positive integer with sx ∈ H, and let a = sx.

Let F be a finitely generated subgroup of H containing a. Then, by III, the restriction of
f to F has an extension gF to the group 〈F, x〉 satisfying Cn for every n ∈ N. Consider
the family G of all functions gF , where F is an arbitrary finitely generated subgroup of
H containing a. We prove that the family G has the following properties:
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(i) for every finite subset A of 〈H, x〉 there is an element of G which is defined at each
element of A;

(ii) for every y ∈ 〈H, x〉 there exists a compact interval Iy such that g(y) ∈ Iy whenever
a function g ∈ G is defined at y.

Indeed, if A = {h1 +m1x, . . . , hp +mpx} for some h1, . . . , hp ∈ H and m1, . . . ,mp ∈ Z,
then gF will be defined on A for F = 〈h1, . . . , hp, a〉. This proves (i).

In order to prove (ii) let y = h+mx for some h ∈ H and m ∈ {0, . . . , s−1}, and suppose
that gF is defined at y. Then y ∈ 〈F, x〉, h = y−mx ∈ 〈F, x〉, and thus h ∈ H∩〈F, x〉 = F.
This implies h+ a, h+ 2a ∈ F.

Since sy = sh+ma = (s−m)h+m(h+ a), the Cs property of gF gives

sgF (y) ≤ (s−m)gF (h) +mgF (h+ a) = (s−m)f(h) +mf(h+ a), (7)

since gF is an extension of f |F . Also,

(2s−m)(h+ a) = sh+ma+ (s−m)(h+ 2a) = sy + (s−m)(h+ 2a).

Then, by the property C2s−m of gF , we have

(2s−m)f(h+ a) = (2s−m)gF (h+ a) ≤ sgF (y) + (s−m)gF (h+ 2a)

= sgF (y) + (s−m)f(h+ 2a).
(8)

Therefore, if we put

Iy =

[

(2s−m)f(h+ a)− (s−m)f(h+ 2a)

s
,
(s−m)f(h) +mf(h+ a)

s

]

,

then, by (7) and (8), we have gF (y) ∈ Iy whenever gF ∈ G is defined at y.

Now we prove, using the compactness of the product T =
∏

y∈〈H,x〉 Iy, that there exists

a function t : 〈H, x〉 → R with the following property: for every finite subset A of 〈H, x〉
and for every ε > 0 there exists an element g of G such that g is defined on A, and
|t(x)− g(x)| < ε for every x ∈ A. Suppose there is no such t. Then for every t ∈ T there
are an εt > 0 and a finite set At ⊂ 〈H, x〉 such that max{|t(x) − g(x)| : x ∈ At} ≥ εt
whenever g ∈ G is defined on At.

The set Ut(At, εt) = {γ ∈ T : |γ(x) − t(x)| < εt for every x ∈ At} is a neighbourhood
of t in T. Therefore, by the compactness of T, there are functions t1, . . . , tN ∈ T such
that

⋃N

i=1
Uti(Ati , εti) = T. Since the set A =

⋃N

i=1
Ati is finite, it follows from (i) that

there is a g ∈ G that is defined on A. Then g(x) ∈ Iy for every x ∈ A, so there is an
extension t ∈ T of g to 〈H, x〉. Then t ∈ Uti(Ati , εti) for some i = 1, . . . , N. But then
|g(x)− ti(x)| < εti for every x ∈ Ati , which contradicts the definition of Ati and εti . This
proves that there is a function t : 〈H, x〉 → R with the properties described above.

To prove that t extends f, fix any y ∈ H and ε > 0. Put A = {y}. Since gF (y) = f(y)
whenever gF ∈ G is defined on A, we have |t(y) − f(y)| < ε. As ε was an arbitrary
positive number, we obtain t(y) = f(y). In a similar way one can prove that t satisfies
property Cn for every n ∈ N.
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V. Now we turn to the proof of the theorem. Let H be an arbitrary subgroup of G and
assume that f : H → R satisfies Cn for every n ∈ N. By Zorn’s lemma there exists
a maximal subgroup M of G such that H ⊂ M and f can be extended to M as a
function satisfying Cn for every n ∈ N. By IV we must have M = G, which completes
the proof.

3. Convex functions on Abelian topological groups

By a well-known theorem of F. Bernstein and G. Doetsch, if D is a convex open subset
of a normed linear space, f : D → R is convex and f is locally bounded from above at a
point of D, then f is continuous (see [5, Chap. VI, Sec. 4, Theorem 2] or [9, Chap. VII,
Sec. 71, Theorem C and Chap. IV, Sec. 41, Theorem C], also [1]). In this section our
aim is to find the possible generalizations of this theorem to topological Abelian groups.

The statement of the Bernstein-Doetsch theorem can be split as follows.

(BD1) If D is a convex open subset of a normed linear space, f : D → R is a convex

function, bounded from above, then f is continuous.

(BD2) If D is a convex open subset of a normed linear space, f : D → R is a convex

function, locally bounded from above at a point of D, then f is locally bounded

from above at each point of D.

We shall prove that (BD1) is valid in every topological Abelian group. Moreover, the
convexity of D plays no part in the statement, and even the local uniform continuity of
f follows. In addition, in metric groups, that is, in groups endowed with an invariant
metric, the local Lipschitz property of f can be proved.

Theorem 3.1. Let U be an open subset of an Abelian topological [metric] group G, and
let f : U → R be a convex function. If f is bounded from above, then it is locally

uniformly continuous [locally Lipschitz] in U.

Lemma 3.2. Let A be a subset of an Abelian topological group G, and let f : A → R be

a convex function. Assume that f is bounded from above on the set x0 + V ⊂ A, where
x0 ∈ A and V ⊂ G is a symmetric neighbourhood of 0. Then f is bounded on x0 + V .

Proof. We may assume x0 = 0. Suppose that f(x) ≤ M for every x ∈ V . If x ∈ V
then −x ∈ V , whence, by the convexity of f , 2f(0) ≤ f(x) + f(−x) ≤ f(x) +M . Thus
|f(x)| ≤ K for every x ∈ V , where K = max{|M |, |2f(0)−M |}.

Lemma 3.3. Let A be a subset of an Abelian topological group G, and let f : A → R be a

convex function. Assume that f is bounded from above on the set x0+V +V ⊂ A, where
x0 ∈ A and V ⊂ G is a symmetric neighbourhood of 0. Then f is uniformly continuous

on x0 + V .

Proof. We may assume x0 = 0. By Lemma 3.2, there is a real number K such that
|f(x)| ≤ K for every x ∈ V +V . Let ε > 0 be given, choose a positive integer n > 2K/ε,
and let W ⊂ G be a symmetric neighbourhood of 0 such that the n-fold sum W+ . . .+W
is a subset of V. We prove that if x, y ∈ V and y − x ∈ W, then |f(y) − f(x)| < ε. Let
h = y − x. Then ih ∈ V and x + ih ∈ V + V for every i = 0, . . . , n. In particular,
x, x + nh ∈ V + V, and thus |f(x)| ≤ K, |f(x + nh)| ≤ K. It follows from Lemma 1.2



42 W. Jarczyk, M. Laczkovich / Convexity on Abelian Groups

that

nf(y) = nf(x+ h) ≤ (n− 1)f(x) + f(x+ nh) ≤ (n− 1)f(x) +K ≤ nf(x) + 2K,

and f(y)−f(x) ≤ 2K/n < ε. Exchanging the roles of x and y we obtain |f(y)−f(x)| < ε.
Thus f is uniformly continuous on V .

Proof of Theorem 3.1. For every x0 ∈ U there is a symmetric neighbourhood V of 0
such that x0+V +V ⊂ U , so the local uniform continuity of f follows from Lemma 3.3.

Next let G be a metric group with an invariant metric d, and denote by B(x0, r) the open
ball centred at x0 ∈ G with radius r. We prove that f is Lipschitz in a neighbourhood of
an arbitrary x0 ∈ U . We may assume x0 = 0. Choose a positive r such that B(0, 2r) ⊂ U.
By Lemma 3.2, there is a real number K such that |f(x)| ≤ K for every x ∈ B(0, 2r).
It is enough to prove that

|f(x)− f(y)| ≤
4K

r
d(x, y) (9)

holds for every x, y ∈ B(0, r). This is clear if x = y or d(x, y) ≥ r, therefore we may
assume that 0 < d(x, y) < r. Then there is a nonnegative integer n such that

r

2n+1
≤ d(x, y) <

r

2n
.

Put h = y − x. Then, for every m = 0, . . . , 2n we have

d(x, x+mh) ≤
m
∑

i=1

d(x+ (i− 1)h, x+ ih) = m · d(x, x+ h)

= m · d(x, y) ≤ 2nd(x, y) < r.

Thus d(0, x+mh) < d(0, x)+ r < 2r, x+mh ∈ B(0, 2r) and |f(x+mh)| ≤ K for every
m = 0, . . . , 2n. Then it follows from Lemma 1.2 that

2nf(y) = 2nf(x+ h) ≤ (2n − 1)f(x) + f(x+ 2nh) ≤ 2nf(x) + 2K.

Thus

f(y)− f(x) ≤
2K

2n
=

4K

r

r

2n+1
≤

4K

r
d(x, y).

Exchanging the roles of x and y we obtain (9), which completes the proof.

Now we consider the possible generalization of the statement (BD2). As we shall see
in Theorem 3.6, the statement is valid in every Abelian group G in which every convex
neighbourhood U ⊂ G of 0 is absorbing; i.e., for every x ∈ G there is an n ∈ N such that
x ∈ 2nU . First we show that this condition cannot be omitted.

Example 3.4. Let G = R×Z and put d((x1, n1), (x2, n2)) = |x1−x2|+|n1−n2| for every
(x1, n1), (x2, n2) ∈ G. It is clear that d is an invariant metric on G, and the topology
induced by d is the product topology when the factors R and Z are equipped with the
Euclidean topology and the discrete topology, respectively.

Then D = R× {0, 1} is convex and open. Let a : R → R be a non-continuous additive
function, and let f : D → R be given by f(x, n) = n · a(x). Then f is convex. Indeed,
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if (x, n) ∈ D and (x + h, n + k) ∈ D, (x − h, n − k) ∈ D, then k must be zero, and
2f(x, n) = 2n · a(x) = 2n · a(x+ h) + 2n · a(x− h) = f(x+ h, n) + f(x− h, n). The set
U = R×{0} is an open subset of D, and f vanishes on U. Still, f is not locally bounded
at any point of R× {1}, as f(x, 1) = a(x) for every x ∈ R.

Example 3.5. Let d0 be the discrete metric on R, that is d0(x, y) = 1 if x, y are distinct
real numbers and d0(x, x) = 0 for every x ∈ R. Let G = R×R. Put d((x1, y1), (x2, y2)) =
|x1 − x2| + d0(y1, y2) for every (x1, y1), (x2, y2) ∈ G. It is clear that d is a metric on
G, and the topology induced by d is the product topology when the first R factor is
equipped with the Euclidean topology and the second R factor is equipped with the
discrete topology. Note that G is divisible.

Then D = R × [0, 1] is convex and open. Let a : R → R be a non-continuous additive
function, and put f(x, y) = 0 for every x ∈ R, y ∈ [0, 1) and f(x, 1) = a(x)2 for every
x ∈ R. Then f is convex on D. Indeed, let (x, y), (x+ h, y + k), (x− h, y − k) ∈ D; we
prove

2f(x, y) ≤ f(x+ h, y + k) + f(x− h, y − k). (10)

If y < 1 then f(x, y) = 0 and then (10) is obvious. If y = 1 then k must be zero, and
then (10) follows from 2a(x)2 ≤ a(x+ h)2 + a(x− h)2.

Now U = R × {0} is an open subset of D and f vanishes on U. Still, f is not locally
bounded at any point of R× {1}, as f(x, 1) = a(x)2 for every x ∈ R.

In the next theorem we shall prove that, in every topological Abelian group, both (BD2)
and the statement of the Bernstein-Doetsch theorem are true if, among others, D = G
or D is connected. Note that statement (iii) below generalizes the Bernstein-Doetsch
theorem even in the case G = Rn, as our notion of convexity of sets is more general
than the classical one. Our statement (iii) is closely related to [3, Theorem 1], where a
similar result is proved without the assumption of the commutativity of G. However, in
[3] it is assumed that G is “root-approximable�, which is slightly more restrictive than
our condition, and the local uniform continuity of f is not stated.

Theorem 3.6. Let D be an open subset of an Abelian topological [metric] group G, and
assume that D and G satisfy one of the following conditions.

(i) D = G;

(ii) D is connected;

(iii) D is convex, and every convex neighbourhood of 0 is absorbing.

If a convex function f : D → R is locally bounded from above at a point, then f is locally

uniformly continuous [locally Lipschitz] in D.

Lemma 3.7. Let G be an Abelian topological group G and let f : G → R be a convex

function. If f is locally bounded from above at a point, then there is a neighbourhood V
of 0 such that f is bounded from above on x+ V for every x ∈ G.

Proof. Let f(x) ≤ M for every x ∈ U , where U is a nonempty open subset of D. We
may assume 0 ∈ U . Let V be a symmetric neighbourhood of 0 such that 2V ⊂ U .
If x ∈ G and v ∈ V, then 2v ∈ U and, by the convexity of f , we have 2f(x + v) ≤
f(2x) + f(2v) ≤ f(2x) +M . Thus f is bounded from above on x+ V .
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Proof of Theorem 3.6. By Theorem 3.1, it is enough to show that f is locally bounded
from above at each point of D.

(i) Apply Lemma 3.7.

(ii) Let E = {x ∈ D : f is locally bounded from above at x}. Then E is an open subset
of D. In order to prove E = D, it is enough to show that E is relatively closed in D. Let
x0 ∈ (clE) ∩D be arbitrary; we prove x0 ∈ E.

Let V be a symmetric neighbourhood of zero such that x0 + V ⊂ D. Since x0 ∈ clE, it
follows that (x0 + V ) ∩ E 6= ∅. Let h0 ∈ V be such that x0 + h0 ∈ E. Then x0 − h0 ∈
x0 + V ⊂ D by the symmetry of V.

Since x0 + h0 ∈ E, there are a neighbourhood W of 0 and a real number K such
that x0 + h0 + W ⊂ D and f(x0 + h0 + x) ≤ K for every x ∈ W. Now let Z be a
symmetric neighbourhood of 0 such that Z ⊂ V and 2Z ⊂ W. If h ∈ Z then 2h ∈
W, f(x0 + h0 + 2h) ≤ K, and

2f(x0 + h) ≤ f(x0 − h0) + f(x0 + h0 + 2h) ≤ f(x0 − h0) +K

by the convexity of f . Thus f is bounded from above in x0 + Z, which proves x0 ∈ E.

(iii) We may assume that f is bounded from above in a neighbourhood U ⊂ D of 0.
Assume that f(x) ≤ M for every x ∈ U . Let x0 ∈ D be arbitrary. Since D − x0 is
a convex neighbourhood of 0, it is absorbing, and thus there is an n ∈ N such that
x0 ∈ 2n(D − x0). Select an a ∈ D satisfying x0 = 2n(a − x0), and a neighbourhood
V of 0 such that x0 + V ⊂ D and (2n + 1)V ⊂ U . We prove that f is bounded from
above on x0 + V . Let x ∈ V be arbitrary. Then the point b = (2n + 1)x is in U , whence
f(b) ≤ M . Put h = x− a+ x0. Then (2n + 1)h = (2n + 1)x− (2n + 1)(a− x0) = b− a.
As a + h = x0 + x ∈ D and b ∈ D, it follows from the convexity of D that a + kh ∈ D
for every k = 0, . . . , 2n + 1. Therefore, by Lemma 1.2,

(2n + 1)f(a+ h) ≤ 2nf(a) + f(a+ (2n + 1)h),

that is,
(2n + 1)f(x0 + x) ≤ 2nf(a) + f(b) ≤ 2nf(a) +M.

Thus f(x0 + x) ≤ (2nf(a) +M)/(2n + 1) for every x ∈ V .

As an application of Theorem 3.6 we obtain the following result about extensions of
convex functions.

Corollary 3.8. Let H be a dense subgroup of an Abelian topological group G, and let

f : H → R be a convex function. If f is locally bounded from above at a point, then f
can be extended to G as a continuous convex function.

Proof. By Lemmas 3.7 and 3.3 there exists a relative neighbourhood U of 0 in H such
that f is uniformly continuous in x + U for every x ∈ H. Let V be a neighbourhood
of zero in G such that U = V ∩ H, and choose a neighbourhood W of zero in G such
that 2W ⊂ V. Let x ∈ G be arbitrary. Then f is uniformly continuous in (x+W ) ∩H.
Indeed, as H is dense in G, there is an element y ∈ (x−W ) ∩H. Thus (x+W ) ∩H ⊂
(y+2W )∩H ⊂ (y+V )∩H = y+U, and f is uniformly continuous in y+U by the choice
of U. This implies that the limit limt→x f(t) exists. (In fact, the limit equals c, where
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{c} =
⋂

Z cl f(Z ∩ H) and Z runs through all neighbourhoods of x.) Now, if we define
f(x) by this limit, then we obtain an extension having the properties required.

4. Convex functions on locally compact Abelian groups

A well-known theorem of Blumberg and Sierpiński states that every Lebesgue measurable
convex function, defined on an open convex subset of Rk, is continuous (see [2] and
[11], also [5, Chap. IX, Sec. 4, Theorem 2]). The same is true if we replace Lebesgue
measurability by the Baire property (see [5, Chap. IX, Sec. 3, Theorem 2] and [5, Exercise
7, p. 231]). The Blumberg–Sierpiński theorem was generalized to locally compact groups
in [3, Corollary 2] with a sketch of proof (see [3, Proposition 4]). Below we propose
another short argument in the commutative case.

Theorem 4.1. Let U be an open subset of a locally compact Abelian topological [metric]
group. If f : U → R is a measurable convex function, then f is locally uniformly

continuous [locally Lipschitz] in U.

Proof. By Theorem 3.1 it is enough to show that f is locally bounded from above at any
point x0 ∈ U . We may assume that x0 = 0. Let V ⊂ U be a symmetric neighbourhood of
0 with compact closure, and put Ak = {x ∈ V : max{f(x), f(−x)} ≤ k}, k ∈ N. Since
⋃∞

k=1
Ak = V, there is a k ∈ N such that 0 < µ(Ak) < ∞, where µ is the Haar measure.

The function ϕ given by ϕ(x) = µ(Ak∩(x−Ak)) is continuous (see [4, (20.17) Corollary]).
Since ϕ(0) = µ(Ak ∩ (−Ak)) = µ(Ak) > 0, it follows that there exists a neighbourhood
V1 of 0 such that ϕ(x) > 0 for every x ∈ V1. Let V2 be a neighbourhood of 0 such that
2V2 ⊂ V1. We prove that f is bounded from above in V2. Let x ∈ V2 be arbitrary. Then
2x ∈ V1, and µ(Ak∩(2x−Ak)) = ϕ(2x) > 0, and thus the set Ak∩(2x−Ak) is nonempty.
If y is an element of this set, then y ∈ Ak and 2x − y ∈ Ak, and thus f(y) ≤ k and
f(2x− y) ≤ k, whence, by the convexity of f , we obtain 2f(x) ≤ f(y)+ f(2x− y) ≤ 2k,
and f(x) ≤ k.

The next result is the category analogue of Theorem 4.1.

Theorem 4.2. Let U be an open subset of a locally compact Abelian topological [metric]
group. If f : U → R is a convex function with the Baire property, then f is locally

uniformly continuous [locally Lipschitz] in U.

Proof. By Theorem 3.1 it is enough to show that f is locally bounded from above
at any point x0 ∈ U . We may assume that x0 = 0. Let V ⊂ U be a symmetric
neighbourhood of 0, and put Ak = {x ∈ V : max{f(x), f(−x)} ≤ k}, k ∈ N. Since
⋃∞

k=1
Ak = V, there is a k ∈ N such that Ak is of second category. Let W ⊂ V be an

open set such that W∆Ak is meager (that is, of first category). Since Ak is symmetric,
the set (−W )∆Ak = − [W∆Ak] is also meager, and thus W ∩ (−W ) 6= ∅. Take a
point w ∈ W ∩ (−W ); then 0 ∈ w + W . Let V1 be a neighbourhood of 0 such that
2V1 ⊂ w +W. We prove that f is bounded from above in V1. Let x ∈ V1 be arbitrary.
Then 2x ∈ w+W, and w ∈ W ∩ (2x−W ). Thus W ∩ (2x−W ) is a nonempty open set.
Since [W ∩ (2x−W )]∆[Ak ∩ (2x−Ak)] is a subset of [W∆Ak] ∪ [2x− (W∆Ak)] which
is meager, it follows that Ak ∩ (2x−Ak) is nonempty. If y is an element of this set, then
y ∈ Ak and 2x− y ∈ Ak, and thus f(y) ≤ k and f(2x− y) ≤ k. By the convexity of f ,
we obtain 2f(x) ≤ f(y) + f(2x− y) ≤ 2k, and f(x) ≤ k.
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Remark 4.3. As the proof shows, Theorem 4.2 is valid in every topological Abelian
group G in which every nonempty open set is of second category. It is easy to see that
this happens if and only if G is of the second category. Indeed, if there is a nonempty
open set which is of the first category then, as its translations cover G, it follows that G
is the union of a family of open sets of the first category. By Banach’s Category Theorem
[8, Theorem 16.1], this implies that G is of the first category.

However, in Theorems 4.1 and 4.2 the condition of local compactness cannot be removed
altogether, as the following example shows. Let α be an irrational number, and let
G = {n + kα : n, k ∈ Z}; then G is a subgroup of R. Let G be equipped with the
subspace topology. Since G is countable, every function on G is Borel. However, there
are convex functions on G which are not continuous. Indeed, let f : G → R be given
by f(n + kα) = k. It is additive, therefore convex, but it is not continuous, even not
bounded on any nonempty open set.

Ostrowski proved in [7] that in the Blumberg–Sierpiński theorem the measurability of
the function f can be replaced by the condition that f is bounded from above on a
measurable set of positive measure. (See also [5, Chap. IX, Sec. 3, Theorem 1].) If we
want to generalize this result to topological groups then we run into difficulties. First,
as we saw in the Examples 3.4 and 3.5, the statement is not true for functions that are
convex on arbitrary open and convex subsets of the group. Thus we have to impose some
restrictions on the open set on which f is convex, as we did in Theorem 3.6. The second
problem is that the statement may be false even if the function is defined on the whole
group, as the following example shows.

Let G be as in Example 3.5, and let a : R → R be a non-continuous additive function.
We define f(x, y) = a(x) for every (x, y) ∈ G. Then f is convex on G, and is bounded
on the set F = {0} × R, which is a closed set of positive (infinite) measure. Still, f is
not continuous.

What makes this example possible is the fact that, although the set F is measurable and
has positive measure, the interior of F + F is empty (see the second footnote on page
296 of [4]). Therefore, in generalizing Ostrowski’s theorem we have to assume that f is
bounded from above on a measurable set of finite (or σ-finite) and positive measure.

Finally, the most natural proof seems to depend on the following statement: if A ⊂ G is

a measurable set of finite and positive measure, then the interior of A + A contains an

element 2x for some x ∈ G. If this is true then we shall say that G has property (P).

It is well-known that if G is a locally compact Abelian group and A ⊂ G is a measurable
set of finite and positive measure, then the interior of A + A is nonempty [4, (20.17)
Corollary]. Therefore, every locally compact Abelian group divisible by 2 has property
(P).

Note that in general there can be nonempty open sets in G which do not contain elements
of the form 2x. For example, if G is compact and 2G $ G (which happens in the Cantor
group or in the group of 2-adic integers) then G\(2G) is such an open set. It is not clear,
however, whether or not property (P) holds in every locally compact Abelian group.

Now we present our generalization of Ostrowski’s theorem. It extends [3, Theorem 2] as
well.
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Theorem 4.4. Let D be an open and convex subset of a locally compact Abelian topo-

logical [metric] group G, and assume that G and D satisfy at least one of the following

conditions.

(i) D = G and G has property (P);

(ii) D is connected;

(iii) every convex neighbourhood of 0 is absorbing.

If a convex function f : D → R is bounded from above on a measurable set of finite

positive measure, then f is locally uniformly continuous [locally Lipschitz] in D.

Proof. By Theorem 3.6 it is enough to show that f is bounded from above on a
nonempty open set. Let f(x) ≤ M for every x ∈ A, where A is a measurable sub-
set of D with finite positive measure. Suppose that G has property (P). Then we have
2x ∈ int(A+ A) for an x ∈ G. Thus 2x = a+ b for some a, b ∈ A ⊂ D, and then x ∈ D
by the convexity of D.

Let U be a neighbourhood of zero such that 2x + U ⊂ A + A and x + U ⊂ D. Choose
another neighbourhood V of zero with V + V ⊂ U. If v ∈ V, then 2x + 2v ∈ 2x + U ⊂
A + A, and thus 2x + 2v = c + d for some c, d ∈ A. By the convexity of f we obtain
2f(x + v) ≤ 2M, which proves that f is bounded from above in x + V. This proves the
theorem in case (i).

Suppose (ii), and letH be the connected component of zero. We may assume that 0 ∈ D.
Then H is a connected locally compact Abelian group containingD. Then it follows from
(24.19) Corollary and (24.23) Theorem of [4] that 2H is dense in H. This immediately
implies that H has property (P). Therefore, as we proved above, f is bounded on a
nonempty open subset of H.

Finally, if every convex neighbourhood of 0 is absorbing, then G is divisible by 2, and
thus G has property (P).

Our next result is the category analogue of Theorem 4.4; it generalizes Mehdi’s theorem
[6] (see also [5, Chap. IX, Sec. 3, Theorem 2]).

Theorem 4.5. Let G be an Abelian topological [metric] group, let D be an open subset

of G, and assume that D and G satisfy one of the conditions (i)–(iii) of Theorem 3.6.
If a convex function f : D → R is bounded from above on a set of second category with

the Baire property, then f is locally uniformly continuous [locally Lipschitz] in D.

Proof. Suppose that f is bounded from above on the set A, where A is residual in a
nonempty open set U. We may assume that A ⊂ U. We prove that A + A = U + U.
Indeed, if z ∈ U + U, then V = U ∩ (z − U) is a nonempty open subset of U. Since A
and z − A are both residual in V, it follows that A ∩ (z − A) 6= ∅, and thus z ∈ A + A.
This proves A+ A = U + U.

Therefore, if x ∈ A, then 2x ∈ A+A = U +U = int (A+A). From this we can complete
the argument as in the proof of Theorem 4.4.
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