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1. Introduction

In a previous article (see [2]) the authors studied a model of nonlinear membrane where
the external surface loading induces a density of bending moment. Due to the special
form of the applied surface forces, the emerging Cosserat vector, result of the 3D-2D
dimension reduction, was restricted to a class of two dimensional functions. In this
paper we analyze the more general case where the Cosserat vector depends also on the
thickness variable. In order to detail our main result, relating it with the one in [2], we
will use the same notations.

Let w be an open bounded subset of R? and let I be the interval (—1/2,1/2). Define
Q:=wxI, ¥ = wx{*£1/2}, T := dw x I and, for each ¢ > 0, Q. = w x &I,
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YEi=wx {+e/2}, . == 0w x el

In what follows £V stands for the N-dimensional Lebesgue measure in RV, N = 2,3, and
H? denotes the 2-dimensional Hausdorff measure in R3. Greek indexes will be used to
distinguish the first two components of a tensor, for instance (z,) and (z,, z3), designates
(x1,22) and (x1, z9, x3), respectively.

We write R3*2 to denote the vector space of 3 x 2 real-valued matrices, and for Fe ]R3X_2
and b € R3, let (F'|b) denote the 3 x 3 matrix whose first two columns are those of F'
and the last one is b.

Consider the rescaled total energy of a deformation U : 7 € Q. — U(Z) € R?,
1 ~
g/ W(DU) di — < F. .U >,
Qe

where DU = (D,U|D3U) is the strain of the deformation U € WP(Q_;R3), W satisfies
some suitable growth hypotheses (see (H)) and F. represents the external loading. The
key point in [2] is that we used an external surface loading of the kind (for simplicity we
will not consider bulk loads)

Foi= 2 g(H(SE —H21SE), 1

with g € L”/(w;R?’) and p' = p/(p — 1) for a fixed p such that 1 < p < 400, and where
the scaling factor e~ enhances the role of the Cosserat vector field as described below.

Let WrP(Q;R?) (respectively Wi?(Q; R?)) denote the space of functions in W12 (Q.; R?)
(respectively WP(Q;R?)) that vanish on T'. (respectively on TI'). Assuming that the
deformations of the body satisfy a boundary condition of place on I';, the equilibrium
problem under the load F. given in (1) can be formulated as the minimization problem

inf {E/QEW(DU) di—<Fg,U>}. (2)

U—zeWp P (Qc;R3)

In the sequel we will assume that the potential W is a Borel function satisfying the
following p-growth and coercivity conditions

() ZIEP = C < W(E) < O+ k),

for some C' > 0 and for all £ € R3*3.

The existence of a solution for problem (2) may be obtained via the Direct Method of
the Calculus of Variations under the additional hypothesis that W is quasiconvez, i.e. it
satisfies

W(E) < gy [ Wie+ Du) e

for all € € R®*3 and for all ¢ € W, *°(D;RR?), where D is any open bounded domain of
R? such that £3(0D) = 0.



G. Bouchitté, I. Fonseca, M. L. Mascarenhas / The Cosserat Vector in ... 353

In order to transform the problem (2) from the thin, varying domain €., into the fixed
domain 2, we perform the usual change of variables that to each & = (Z,,Z3) € .
associates ¥ = (&q, ¥3) = (Za, 123) € Q, and define u, u* and ug. by

1

U (To, x3) := U(ZTy, T3), ui(a:a) = (ma,ii) , Upe(Ta, T3) 1= (Ta, ET3).

Taking into account (1), we may rewrite (2) as

1
(P.) inf { / W (Dau ‘ —Dgu) dr — Ls(u)},
ufuo,EGW%’p(Q;Rﬂ Q €

where now the work L.(u) of the external surface loads is given by

L.(u) ::/wg (lﬁ%) dz, :/wg </I§D3u€> dre.

Defining b, := %Dgug, one easily sees that, due to the loading forces, only the weak limit

of the mean b, := [, b plays a role in the limit problem.

In [2], to describe the limit problem we proved that the I-limit with respect to the weak
topology of the corresponding stored energy

1 1 3
EL(u,5) = /QW(D““ EDS“) e 16 2 [ Dyuta.as) dy =Bz,

400 otherwise,

with (u,b) € W'P(Q; R3) x LP(w;R3), has the form

E(u,b) := /WQ*W(DQU | b)dz, , if (u,b) € V x LP(w;R?),

—+00 otherwise,

where V := {u € W'?(Q;R?) | Dsu(z) = 0 a.e. in z € Q}, and where Q*IV introduced
in [2] is given by (46). It coincides with the cross-quasiconvex envelop of W, used in [5]
(see also [7]; the detailed argument may be found in the Appendix), precisely

QW (F|b)

3
= ot { [ Wi Do) s pewpr@imy, ve gy,
@5 Q'

for ' € R®*? and b € R?, where Q := (—1/2,1/2)3,Q" := (—1/2,1/2)%, L5(Q';R?) is
the subspace of LP(Q'; R?) of functions with null mean. In view of the upper bound in
(H), it can be shown that (3) remains unchanged if the condition ¢ € Wy*(Q"; R?) is
replaced by ¢ € W;p (Q';R3), the subscript # in W;%’p (Q';R3) indicating the subspace
of @’-periodic functions in Wh?(Q’; R?).
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We remark that the description of the limit energy in terms of the 2D deformation u(x,,)
and adittionally of the mean Cosserat vector b(z,), the bending moment, given in [2] is
more precise than the one given in the usual membrane models. However, this still does
not give insight into the limit energy in the case where the Cosserat vector field b may
also depend on the x3 variable. In this note we seek to characterize the I'-limit of the
sequence of internal energy functionals independently of the applied forces. We study
the asymptotic behavior of the sequence with respect to u and to the Cosserat vector b,
instead of its mean with respect to the thickness of the membrane, the bending moment
b. Precisely, in Theorem 2.3 we present an integral representation of the I'-limit, with
respect to the weak topology, of the functional Z. : W'P(Q; R3) x LP(;R?) — R defined

by
W D,
T.(u,b) == /Q ( !

+00 otherwise.

1 1
—Dsu | dx if —Dsu =0,
£ £ (4)

In spite of the particular case analyzed in Proposition 2.4 (see also Remark 2.5), we
conjecture that, in general, the limit functional is non local. This is an interesting open
problem.

In Section 2 we state the main result whose proof is developed in Section 3.

2. Main result.

As it is usual, we localize the functionals Z. introduced in (4). Representing by A(w)
the family of all open subsets of w, define Z. : W'P(Q;R?) x LP(;R?) x A(w) — R by

W Dyu
Is(ua b7 A) = /AXI (

+00 otherwise.

1 1
—D3u> der if —Dsu=bon A X I,
€ €

We are interested in the integral representation of the following functional, defined for
(u,b, A) € V x LP(;R3) x A(w) by

Z(u,b, A)

= inf{hminf W (Dot | Ay D3uy)da | uy, — win w - WHP(A x I;R?),
n AxI (5>

Ap — +00, \pyDsu, = b inw- LP(A X I;R3)}.

Finding an integral representation of Z independent of the sequence {\,} corresponds
to determining the I'-limit of the sequence {Z.} introduced above, with respect to the
weak topology of W1P(Q;R3) x LP(€); R3).

Fix a countable dense family {6;}icn in L” (I; R?), where p’ is the conjugate exponent
of p. For every k € N and (F,b) € R¥*? x LP(I;R3) define Q := (—=1/2,1/2)3, Q' :=
(—1/2,1/2)%,

QW (F|b) := sgp QLW (F|b) (6)
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where

QLW (F|b)

{/ W(F + Dag| A Dsp) dz | A >0, ¢ € WHP(Q;R?), (-, 23) is (7)
Q

Q I

Remark 2.1. Let us emphasize that Q. W (F,-) is a functional defined in LP(I,R3).
We conjecture that, in general, this functional is non local in the sense that it does not
exist any integrand W so that

inf
(v, A)

Q' periodic a.e. 3 € I,

1

QW (F,b) = /I W (F, b(z3)) dxs. (8)

Notice that (8) would imply that Q. W (F,b(-)) is completely determined by its restric-
tion to constant functions. In fact, this is the case if the initial energy density W is
cross-quasiconvex (see Proposition 2.4 bellow). Finding an explicit counter example to
(8) is a challenging problem.

The main theorem of this paper is

Theorem 2.2. Let W be a Borel function satisfying hypothesis (H). Then
Z(u,b, A) :/ QoW (Dou(xa)|b(xy, ) dz,
A

for every (u,b) € V x LP(Q;R3).

Remark 2.3. We observe that, in view of (H), we may assume, without loss of general-
ity, that W is quasiconvex. As we will see in Proposition 2.6, denoting the quasiconvex
envelop of W by QW (see [3] for the definition), we get

QoW (F[b) = Qoo (QW)(F[D).

Also in (6) the definition of Z(u, b, A) remains unchanged if we replace the integrand W
by QW (see Proposition 2.7). Therefore, since a quasiconvex function with p-growth is
p-Lipschitz (see [8]), in the sequel we may assume that

(W) -W(E)<C @+ + [P hIE—¢] (9)
for some C' > 0 and for all £,& € M33,

Proposition 2.4. The following inequality holds
/ QW (Fb(zs)) dus < QW (F|b) < / W (F|b(xs)) dos,
I I
for (F,b) € R¥? x LP(I;R?). Consequently, if W is cross-quasiconver (Q*W = W ) then

Q. W (F|b) = / W (Flb(s)) des.
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Proof. To see that QW (F|b) < [, W(F|b(xz3)) dxs, it suffices to take ¢(z3) :=

% Ox" b(s) ds as test function in the definition (7).

To prove the other inequality, let £ € N and let (¢, \) denote an arbitrary admissible
pair for the infimum in (7). Since Q*W is given by (3), we have

QU (Fb) = inf / W(F + Dag| A Dyp)da
(CP,A) Q
= inf /{/ W (F+Dag0(xa,x3)‘ A | Dsp dy,
(oA Jr / Q'
+ <)\D3g0 — A | Ds3p dya>) dxa} dxs (10)
Q/

> inf / QW (F‘ / D3¢> ds
Q/

> inf / Q"W (F| ¢) dzs,

ceLP(I;R3)

/c@ldxg—/bé’zdxg
1 1

Using (10) and (11), we associate to each k a function ¢, € LP(I;R?) satisfying

where ¢ satisfies

1
<o Vi=lok (11)

QW (FIb) > / QW(F| ) ds — + (12)

k
/Ckezdxg—/bezdl’:g
I I

In view of hypothesis (H) the cross-quasiconvex envelope of W, Q*W | is also coercive
(see [2] or [7]) and therefore {c;} is a bounded in LP(Q;R?) and, in view of (13), it
converges weakly in LP(€;R3) to b. From the definition of Q. W, from the convexity
of Q*W with respect to its second variable and from the lower semicontinuity of convex
functionals, one obtains, from (12)

and

1
<o Vi=look (13)

O W (F|b) > lirr}finf/Q*W(F\ c) ds > /Q*W(F| b) dus,
I I

and this completes the proof. Il

Remark 2.5. If W is cross-quasiconvex, then we conclude, from Theorem 2.2 and
Proposition 2.4, that

Z(u,b,A) = W(Dyu(zs)|b(x)) dx

AxI

We end this section by proving the two properties mentioned in Remark 2.3 and related
to the invariance of the asymptotic energy with respect to the quasiconvexification of
the bulk energy.
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Proposition 2.6. Let QW represent the quasiconvex envelop of W. Then

QoW (F[b) = Qoo (QW)(FID). (14)
Proof. In order to obtain (14) it is enough to prove that for each k € N

QLW (F|b) = Qr(QW)(F|b).

Since W > QW it follows that QW (F|b) > Qx(QW)(F|b). To obtain the opposite
inequality we use the Relaxation Theorem (see [1]) to guarantee, for a fixed pair (¢, \)
admissible for Qx(QW)(F|b)), the existence of a sequence {p,} weakly converging in
WhP(Q;R?) to ¢ and satisfying

/ OW (F + Duyp| A D3p) do = lim/ W(F + Duypn| A Dspy,) da.
Q " JQ

Making use of hypothesis (H) and of the Decomposition Lemma (see [6]), up to a subse-
quence (not relabeled) we may write ¢, = v, +w,, where v, — ¢ weakly in WHP(Q; R?),
{IVv,[P} is equi-integrable and the Lebesgue measure of {w,, # 0} converges to zero. It
follows that

/ OW(F + Dyp| A D3yp) dx > limsup/ W(F + Dyv,| A Dsv,) dx
Q n Q

For each j € N, let ¢, € C*(Q',[0,1]) be a cutt-off function such that ¢; — 1 in
LP(Q';R?) and define v;,, := v, + (1 — ¥;)p. We have v;,(-, z3) Q'periodic and, due
to the equi-integrability of {|Vv,|’} and hypothesis (H), we easily obtain that

lim sup limsup/ W(F + Dyvj,| A D3vj,,) do < / QW (F + Dyp| A Dsp) dx (15)
J n Q Q
and

lim lim
7 n

/ )\Dg?)j,n 91 dr — /b 91 dl’g
Q I

Q 1

In view of (15) and (16) we may find a sequence n = n(j) such that

1 (16)
< Vi=look

limsup/ W(F + Davj,n(j)| A D3vj,n(j)) dx < / QW(F + DQQO| A DgQO) dx (].7)
J Q Q

and

1
’/AD?;an(j)@idI—/bHidm?) <=, Vi=1-- k.
Q 7 I k

Since all v;,,(;) are admissible for QW (F'|b), we deduce from (17) that

/ QW(F + Da@| A D390) dz Z QkW(F“)) (18)
Q

and, taking the infimum in all the admissible pairs (¢, A) on the left hand side of (18),
we obtain Qx(QW)(F|b) > QW (F|b), and this completes the proof. O
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Proposition 2.7. The infimum in (6) remains unchanged if W is replaced by its quasi-
convex envelope QW .

Proof. Fix (u,b, A) € V x LP(A x I;R?) x A(w) and define

Z(u,b, A)

= inf{lim inf OW (Dt [Mp Dsuy)dz | u, — uin w - WHP(A x I;R?),
m AxI

An — F00, \pDsu, — b, inw - LP(A x I;R3)}.

We show that Z(u, b, A) = Z(u,b, A).
Since QW < W it follows that Z(u,b, A) > Z(u,b, A).

We prove the opposite inequality. For fixed § > 0, let u,, — u weakly in WP(A x I;R3?)
and \, Dsu, — b weakly in LP(A x I;R?) be such that

T(u,b, A) >lim [ QW (Daun

" JAxI

)angun> dz — 6. (19)

Using, as in Proposition 2.6, the Relaxation Theorem (see [1]), for each n there exists a
sequence {u, ;} converging to u, weakly in WP(A x I;R?) such that

[ o0 oo

From (19) and (20) we have

)\anun> de=lm [ W (Daun,k

)\anumk) dz. (20)
AxIT

i’(u, b, A) > lim lilgn w (Daun,k )\anumk) dx — 9 (21)
n AxI
with
lim 1i]1€fn |tne — vl Lr(axrrs)y = 0 (22)
and, for the weak topology of LP(A x I;R3),
lim li}gn AnDstiy i, = b. (23)
In view of hypothesis (H) we have
Sup (1A D3t || oaxrzrs) + [unpllwreaxrzrs) < +oo. (24)

Since the weak topology is metrizable in bounded sets of LP(A x I;R3?), (21), (22),
(23) and (24) yield the existence of a diagonal sequence {u,,, } satisfying u, , — u in
LP(A x I;R?) (and weakly in W'P(A x I;R®)), A, Daunx, — b weakly in LP(A x [;R3),
and realizing the double limit in the right hand side of (21). Consequently we have

Z(u,b, A) > lim W (Dot i,

noJAxI

> T(u,b, A) — 6.

An D3ty ,) dx—9§

Letting 0 go to zero, the conclusion follows. O
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3. Proof of Theorem 2.3.

The following three lemmas are simple adaptations of Lemma 2.1 and Lemma 2.2 pre-
sented in [2] and we will omit the proof.

Lemma 3.1. Let W be a Borel function satisfying hypothesis (H). Then the functional
defined in (5) satisfies

Z(u,b, A)

= inf{lim inf W (Dot |An Dsun) d | w, — u in w - WHP(A x I; R?),
" AxI (25)

AnDsti, = b, inw- LP(Ax L;R?), u,=u onanI},

for all (u,b, A) € V x LP(Q;R3) x A(w).

Lemma 3.2. Let W be a Borel function satisfying hypothesis (H). Then the following
inequality holds

T(u,b,A) < C (£2(A) + / |Doul? dzq + / |bJ? dx) : (26)
A AxI

for some constant C' > 0 and for all (u,b, A) € V x LP(;R3?) x A(w).

Lemma 3.3. Let W be a Borel function satisfying hypothesis (H). Then there exists a
subsequence of {\,} (not relabeled), such that for (u,b) € V x LP(Q;R3), the set function
Z(u,b,-) defined in (5) is the trace on A(w) of a measure, absolutely continuous with
respect to the two dimensional Lebesque measure L.

The proof of Theorem 2.3 is a consequence of the two propositions below.

Proposition 3.4. Let W be a Borel function satisfying hypotheses (H1). Consider the
functional defined in (5). Then

Z(u,b,A) > /AQOOW(DQU(IQ)M(IQ,-)) dx,, (27)

for each (u,b) € V x LP(;R?).

Proof. Step 1. We prove that for k € N, u(z,) := Fxg+ug with F € R¥>2 ug € R, b €
LP(I;R3), and for any two sequences ), — +o0o and ¢, — 0 in WHP(Q;R3), such that
AnDsp, —bin LP(Q' x I;R3) fori = 1,--- , k, then

lim inf / W(F + Dagn| Ay Dsgy) dz > QuW(F, b).
" Q

Fix n € N. By Lemma 3.1 we may assume that ¢, = 0 on 9Q" x I (see (25)). Since
f[ A D3y, 0; drz — b; in LP(Q;R3) for i = 1,--- |k, there exists nj, € N such that for
n > ny implies

1

’/)\angon 0, dr —b; | < —, foralli=1---k.
0 k
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Then, for n > ny , A\, and ¢, are admissible with respect to the infimum in the right
hand side of (5), and so

liminf/ W(F 4 Dopn| A Dspn) doe > QW (F|b).
" Q

Taking the supremum in k£ we get

T(u,b;Q") > QW (F|b).

Step 2. Now we establish (27) in the general case.

Fix (u,b, A) € V x LP(Q,R?) x A(w). Consider {u,} and {\,} such that u,, — u weakly
in WP(A x I;R3), N\, Dsu, — b weakly in LP(A x I;R?), and upon the extraction of a
subsequence (not relabeled) we may assume that

lim inf W (Dgauy, | A D3uy,) dz =lim W(Duty | A Dsuy,) de.

n AxI " JAxI

Define the sequence of measures pu, := (f[ W(Dgquy, |An D3uy,) dasg) L?| A. Since {pn,}
is bounded, up to a further subsequence (not relabeled) it converges weakly-* to some
measure . Represent by p the absolutely continuous part of p with respect to the 2-
dimensional Lebesgue measure. To prove (27) it suffices to show that, for a.e. o € A
and for an arbitrary fixed £ € N,

plo) = QW (Dau(ro), b(x0,-)) (28)

Let b;(zq) = J;0(2a, x3) Oi(x3) drs, i =1,--- k. It is known that, for a.e. zy € A,

/
p(xg) = hII(l] M exists and is finite, (29)
1 p
m— o |u(zq) — u(zo) — Vu(zo) (e — 20)|P dze =0, (30)
1 _ _
lim—2/ Bi(we) — Bi(wo)|? dwg =0, i=1,-- k. (31)
=0 xo+eQ’

Let xq satisfy (29), (30) and (31). Let {} represent a sequence converging to zero such
that, for all ¢,

w(0(xo + Q")) = 0. (32)
Using (29), the definition of u and (32), we have

e—=0 n £

1
p(xo) = lim lim—2/ W(Dquy, |An D3uy) dz
(wo+eQ’)xI

= lin% lim [ W(Duun(xo + €Ya, y3) |An Datin(xo + €Ya, y3)) dy (33)
£E—> n Q

= lin% lim | W(Dytne |eXn, Dsuyc) dy,
E—> n Q
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where u, . (y) := Un(To + €Y Ys) — u(xo).
5

Since u,, — u in LP(A x I;R3), (30) yields

lim lim [Juy, o (-) — Vu(2o) - || r(@ir3) = 0. (34)

e—0 n

We also have for all p € L' (Q';R?), and as A, [, Dsu, 0; dus — b;, i =1, , k, weakly
in LP(A;R3),

lin% lim | e\, Dsuy,c(y) ©(ya) 6i(ys)dy

To — o

o]
= {11_1%1171111?/( , )\anun(a:)g0< . )Hi(xg)d:c
zo+eQ’)x 1

1 - Lo — X0
= lim—/ bi(xa) 4,0( > dz,
=0 g2 z0+eQ’ €

— bi(xo)//<ﬁ(yo¢) dYer,

where we have used (31).

By means of a standard diagonalization process, from (33), (34) and (35), we construct
Uj = Ug,; n;, and Aj := g\, such that

Aj— 400, @;(y) = Daulxe)y in LP(Q;R?),
by /Daﬂj 0; dys — bi(wo) weakly in LP(Q';R”)
I
and

p([Eo) = 11]?1/ W(Daﬂj |/~\] Dgﬂj) dy (36)
Q

Since by Step 1 we have
im / W(Daii; |A; Dyity) dy > QuW (Dati(0)[b(0)).
Q

(28) follows from (36) and from the arbitrariness of {u,} and {\,}. O

Proposition 3.5. Let W be a Borel function satisfying hypothesis (H). Consider the
functional defined in (5). Then

Z(u,b,A) < /AQOOW(Dau(:Uaﬂb(xa, ) dzq,

for each (u,b, A) € V x LP(Q,R?) x A(w)

Proof. Step 1. First we consider the case where wu(z,) := Fzq + up, with F € R3*2
and vy € R? and b € LP(I;R3). Clearly it suffices to consider the case where
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sup, QxW (F|b) < +oo. Since Qi W(F|b) is nondecreasing in k, we have that
sup, QW (F|b) = limy QW (F|b). Using the definition of QW (F|b) there exist {t;}
and {pF}, satisfying o* € WIP(Q;R3), ©*(-,z3) is Q' periodic a.e. in z3 € I,

‘thkak 0; dz — [, b 6; datg‘ <L foralli=1-Fk and

1
QLW (F,b) < / W(F + Do" | t;.D3") dx < QW (F,b) + = (37)
Q

Let \, — +o00. Using the Q'-periodicity of ©*, we define ¥ : R2 x I — R3 by ©F(x) :=
f gk (30 wa,m).

For fixed k we have ¢f € W1P(AxI;R?) and, as n goes to +00, by the Riemann-Lebesgue
Lemma we get

o0, A, / Dyt ds

(38)

tk/Dggo ( l’a,l’g) 0; des — tk/ Dgcpk(ya,x3) 0; dy. dxs =: b; + rf,
1Jg

weakly in WP(A x I;R3) and weakly in LP(A;R?) respectively, with |r¥| < 1/k, for all
1=1,---,k, and

lim [ WP+ Dagh | MDagk) = £2(4) [ W + Da | uDse). (39
o JAxI Q

In view of the coercivity hypothesis (H) and since the weak topology is metrizable
on bounded sets, using a diagonal argument, (38) and (39) allow us to construct a
sequence {A,, } and {¢F }, satisfying of — 0in W'P(Ax I;R?), X,, [, D3l 0; deg —
J;b 0; deg in LP(A;R?) for all i € N (so that A, Dspk — bin LP(A x I;R?)) and
limy, [, W(F + Dol | Ay Dagk ) = L2(A) sup;, QW (F,b). Consequently

Z(u,b, A) < L2(A) sup Qx W (F,b) = L*(A) QoW (F, b).

Step 2. We prove the claim for v and b for which there exists a finite and measurable
partition {A;},=1.. m» of A such that u is affine and b independent of z,, in each A;. For
each j we have, using Step 1,

T(u,b, Aj) < L2(A}) QuW (Dau, b).

By Lemma 3.3 Z(u, b, -) is a measure, thus

T(u,b, A) = Z (u, b, A;) gz ) QW (Do, b) = /Qoo (Dou, b) di,.

j—

Step 3. We prove the claim for an arbitrary (u,b, A) € W'P(w; R?) x LP(;R?) x A(w).



G. Bouchitté, I. Fonseca, M. L. Mascarenhas / The Cosserat Vector in ... 363

For (u,b) € V x LP(A x I;R3) let {(uy,b,)} be a sequence piecewisely defined like in
the previous step and strongly converging in W1P(A x I;R3) x LP(A x I;R3) to (u,b).
For the construction of such a sequence we may assume, by a density argument, that
u and b are C§° functions, so that we can apply, with minor adaptation the classical
Approximation Theorem (see, for instance, [4]).

The lower semicontinuity of (u,b) € V x LP(A x I;R?) — Z(u,b, A) with respect to the
weak topology yields, together with Step 2,

Z(u,b, A) < liminfZ(u,,b,, A) < lim inf/ QoW (Dytin, by,) dz,. (40)
n n A
To complete the proof it is enough to remark that
liminf/ Qoo W (Dytin, by,) dzy < / QoW (Dyu,b) dz,,
n A A

which is a consequence of the growth conditions (26) and of the continuity of
(F,b) € R¥2 x LP(I;R?) = Q W (F,b). (41)
Indeed, to prove the continuity of (41), let A € R and k € N be fixed and define
MV (F|b)

= inf{/ W(F + Dol A D) dv | o € WH(Q;R?), (-, x3) is
ks Q

Q 1

For (F,b),(F', V) € R3*? x LP(I;R®), consider QW (F|b) and QW (F'|b). For any
infimizing sequence {¢,} in the definition of QYW (F|b), consider the sequence 1), :=

©n + I mS(b/(S) P) % ot admissible functions in the definition of Q)W (F'|V'), since

Q' periodic a.e. 3 € I

1

b —b
)\ )

Dawn = Doz(pn ) D377bn = D390n + (42)

Q I
Q I

From the p-Lipschitz condition (10) (see Remark 2.3) and Hdélder inequality, we obtain

we get

 Vi=1---k, VYneN.

/ W (F'" + Dot |\ D3y, da: — / W(F + Dapn|A D3py) dx

< O (14 I(F" + Datbul ADsn) i, (43)

| (F + DaealADsn) gy ) (1F = F'L+ 116 = llzor)
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for a constant C' independent of n.

Since QpW (F|b) < [, W(F|b) dxs, using hypothesis (H) we conclude from (43) that

’/ W<F,+ Daqu)np‘ D377Z)n) dr — / W(F+Da§0n|)‘ D390n) dx
Q

(44)
< C (14 PP+ FP 4 10 + 105 (F = F 4+ 15— Vi)
Letting n — 400 in (44) we obtain
QW (F', V) — Q)W (F,b)
< C(LHIFP P+ W + 1B ) (F = F+ b= ¥l)
Using the same argument for the pair (F’,1') in place of (F,b), we get
| QW (F.b) — QuW (F', V)|
< C (1 IFP + PP+ bl + 16158 ) (1F = F+ b= ¥llwm)
Again the independence of C' with respect to A and k allow us to conclude that
QoW (F,0) = QoW (£, )]
< (THIFPT A+ IFPT G + W1 ) (1F = F+ b= ¥ll) -
O

A. Appendix
We recall the potential Q*W, as defined in [2]. Consider, for every F' € R**? and b € R3,

W) = inf {/ W(F 4 Dag|A Dsg) dz: A€ R, € WP(Q: R),

e (45)

©(-,3) is Q' -periodic L' a.e. x3 € I, )\/ Dsp dx = b} ,
Q

with Q := (=1/2,1/2)3, Q' := (—1/2,1/2)%
We prove here that Q*W coincides with the cross-convex envelope of W, QW, defined
by

QW (F,b) := sup {G(F,b) : G < W},

GeF

where F is the family of all G : (F,b) € R*? x R3 — R that are quasiconvex with
respect to F, for fixed b, and convex with respect to b, for fixed F. The cross-convex
envelope of W is also characterized as follows:

W (F|b)

46
= it { [ WiE Do) oo W@, ve @Ry
Ps Q'
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for F € R3? and b € R?, where the subscript # in W;’p (Q’; R3) indicates the subspace of
Q'-periodic functions of W?(Q';R3) and L5(Q’;R3) the subspace of LP(Q'; R?) formed
by the functions with null mean (see [5] and [7]).

Proposition A.1. For all F € R3*? and b € R? it holds
QW (F|b) = QW (F|b).

Proof. Since QW is the cross-convex envelope of W and Q*W is cross-convex (see [2,
Remark 1.4]), one has Q*W (F|b) < QW (F|b), for all F' € R3*? and b € R3.

To obtain the converse inequality, we consider, for F' € R3*? and b € R?, ¢ € WP(Q;R3)
and \ € R, satisfying (-, x3) Q' -periodic £L! a.e. z3 € I, and /\fQ D3 dx = b. Define
(REIDN Dgcp—fQ, A D5 dz,. Then, using (46) and the convexity of QW (F,-), we obtain

/ W(F + Dop|\ Dsp) dz, dxs
1Jg

= / W(F 4+ Dyp| | A Dsp drg + ) dz, dos
1JqQ Q' (47)

> /QW(F| A D3y dz,,) dxs
I Q'
> QW (F|b).

Taking the infimum in the left hand side of (47), we get Q*W (F|b) > QW (F|b). O
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