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In this paper we use the penalty approach in order to study a large class of inequality-constrained
minimization problems in Banach spaces. A penalty function is said to have the generalized exact
penalty property if there is a penalty coefficient for which approximate solutions of the unconstrained
penalized problem are close enough to approximate solutions of the corresponding constrained problem.
In this paper we show that the generalized exact penalty property is stable under perturbations of cost
functions, constraint functions and the right-hand side of constraints.
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1. Introduction

Penalty methods are an important and useful tool in constrained optimization. See, for
example, [1–7, 9–15] and the references mentioned there. In this paper we use the penalty
approach in order to study inequality-constrained minimization problems in Banach
spaces. A penalty function is said to have the exact penalty property [3, 4, 7, 11, 12] if
there is a penalty coefficient for which a solution of an unconstrained penalized problem
is a solution of the corresponding constrained problem. The notion of exact penalization
was introduced in [9, 13]. For a review of the literature on exact penalization see [3, 4,
7].

In this paper we will establish the exact penalty property for a large class of inequality-
constrained minimization problems

(P ) f(x) → min subject to x ∈ A

where

A = {x ∈ X : gi(x) ≤ ci for i = 1, . . . , n} .

Here X is a Banach space, ci, i = 1, . . . , n are real numbers, and the constraint functions
gi, i = 1, . . . , n and the objective function f are lower semicontinuous and satisfy certain
assumptions.

We associate with the inequality-constrained minimization problem above the corre-

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



262 A. J. Zaslavski / Existence of Exact Penalty and its Stability

sponding family of unconstrained minimization problems

f(z) + γ
n

∑

i=1

max {gi(z)− ci, 0} → min, z ∈ X

where γ > 0 is a penalty. In this paper we establish the existence of a penalty coefficient
for which approximate solutions of the unconstrained penalized problem are close enough
to approximate solutions of the corresponding constrained problem. This novel approach
in the penalty type methods was used in [14, 15]. In the present paper we obtain a
generalization of the main results of [15].

Consider a minimization problem h(z) → min, z ∈ X where h : X → R1 is a lower
semicontinuous bounded from below function. If the space X is infinite-dimensional,
then the existence of solutions of the problem is not guaranteed and in this situation
we consider δ-approximate solutions. Namely, x ∈ X is a δ-approximate solution of the
problem h(z) → min, z ∈ X, where δ > 0, if h(x) ≤ inf {h(z) : z ∈ X}+ δ.

In [15] and in this paper we are interested in approximate solutions of the unconstrained
penalized problem and in approximate solutions of the corresponding constrained prob-
lem. Under certain assumptions which hold for a large class of problems we show the
existence of a constant Λ0 > 0 such that the following property holds:

For each ǫ > 0 there exists δ(ǫ) > 0 which depends only on ǫ such that if x is a δ(ǫ)-
approximate solution of the unconstrained penalized problem whose penalty coefficient
is larger than Λ0, then there exists an ǫ-approximate solution y of the corresponding
constrained problem such that ||y − x|| ≤ ǫ.

This property implies that any exact solution of the unconstrained penalized problem
whose penalty coefficient is larger than Λ0, is an exact solution of the corresponding
constrained problem. Indeed, let x be a solution of the unconstrained penalized problem
whose penalty coefficient is larger than Λ0. Then for any ǫ > 0 the point x is also a δ(ǫ)-
approximate solution of the same unconstrained penalized problem and in view of the
property above there is an ǫ-approximate solution yǫ of the corresponding constrained
problem such that ||x − yǫ|| ≤ ǫ. Since ǫ is an arbitrary positive number we can easily
deduce that x is an exact solution of the corresponding constrained problem. Therefore
our results also includes the classical penalty result as a special case.

It should be mentioned that if one uses methods in order to solve optimization problems
these methods usually provide only approximate solutions of the problems. Therefore our
results are important and useful even when optimization problems have exact solutions.
Note that exact penalty results in the classical sense for convex minimization problems
on finite-dimensional spaces were obtained in [6, 9] and our results are their extensions.

In [15] we established the existence of exact penalty for the problem (P ) with convex
constraint functions gi, i = 1, . . . , n and assuming that the objective function f belongs
to a large class of functions. This class of functions includes the set of all convex bounded
from below semicontinuous functions f : X → R1 which satisfy the growth condition
lim||x||→∞ f(x) = ∞ and the set of all functions f onX which satisfy the growth condition
above and which are Lipschitzian on all bounded subsets of X.

In this paper we study the stability of the generalized exact penalty property under
perturbations of the functions f and g1, . . . , gn and of the parameters c1, . . . , cn. The
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stability of the generalized exact penalty property is crucial in practice. One reason is
that in practice we deal with a problem which consists a perturbation of the problem we
wish to consider. Another reason is that the computations introduce numerical errors.

In this paper we continue to study the problem (P ) with constraint functions g1, . . . , gn
and an objective function f as in [15]. More precisely, we consider a family of con-
strained minimization problems of type (P ) with an objective function close to f and
with constraint functions close to g1, . . . , gn in a certain natural sense. We show that
all the constrained minimization problems belonging to this family possess the general-
ized exact penalty property with the same penalty coefficient which depends only on f ,
g1, . . . , gn, c1, . . . , cn. It should be mentioned that for a general natural number n we
suppose that constraint functions of any problem from our family are convex while for
n = 1 constraint functions are not assumed to be necessarily convex.

2. Preliminaries and the main result

In this paper we use the convention that λ · ∞ = ∞ for all λ ∈ (0,∞), λ+∞ = ∞ and
max {λ,∞} = ∞ for any real number λ and that supremum over empty set is −∞.

Let (X, || · ||) be a Banach space. For each x ∈ X and each r > 0 set

B(x, r) = {y ∈ X : ||x− y|| ≤ r} , Bo(x, r) = {y ∈ X : ||x− y|| < r} .

For each function f : X → R1 ∪ {∞} and each nonempty set A ⊂ X put

dom(f) = {x ∈ X : f(x) <∞} , inf(f) = inf {f(z) : z ∈ X} ,

inf(f ;A) = inf {f(z) : z ∈ A} .

For each x ∈ X and each B ⊂ X set

d(x,B) = inf {||x− y|| : y ∈ B} . (1)

Let n be a natural number. For each κ ∈ (0, 1) denote by Ωκ the set of all γ =
(γ1, . . . , γn) ∈ Rn such that

κ ≤ min {γi : i = 1, . . . , n} and max {γi : i = 1, . . . , n} = 1. (2)

Assume that φ : X → R1 satisfies

lim
||x||→∞

φ(x) = ∞ and inf(φ) > −∞. (3)

In this paper we will consider problems of type (P ) with objective functions f which
satisfy f(x) ≥ φ(x) for all x ∈ X.

Let c̄0 ∈ R1, c̄ = (c̄1 . . . , c̄n) ∈ Rn and let fi : X → R1 ∪ {∞}, i = 1, . . . , n be convex
lower semicontinuous functions and put

A = {x ∈ X : fi(x) ≤ c̄i for all i = 1, . . . , n} . (4)

In this paper we will consider a family of problems of type (P ) with constraint functions
close to f1, . . . , fn in a certain natural sense. We assume that θ ∈ X satisfies

fi(θ) < c̄i, i = 1, . . . , n. (5)
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Let us now describe the collection of objective functions (denoted by A) which corre-
sponds to our family of constrained minimization problems.

By (3) there is a real number M0 such that

||θ||+ 4 < M0,

φ(z) > c̄0 + 4 for all z ∈ X satisfying ||z|| ≥M0 − 4. (6)

Let X0 be a nonempty convex subset of Bo(0,M0) such that θ ∈ X0.

Assume that a function h : Bo(0,M0)×X0 → R1 ∪ {∞} satisfies the following assump-
tions:

(A1) h(z, y) is finite for all y, z ∈ X0 and h(y, y) = 0 for each y ∈ X0;

(A2) for each y ∈ X0 the function h(·, y) : Bo(0,M0) → R1 ∪ {∞} is convex;

(A3) for each z ∈ X0

sup {h(z, y) : y ∈ X0} <∞.

Let M1 > 0. We denote by A a set of all lower semicontinuous functions f : X →
R1 ∪ {∞} such that

f(x) ≥ φ(x) for all x ∈ X, (7)

f(θ) ≤ c̄0,

Bo(0,M0) ∩ dom(f) ⊂ X0

and that the following assumption holds:

(A4) for each y ∈ dom(f) ∩ Bo(0,M0) there exists a neighborhood V of y in X such
that V ⊂ Bo(0,M0) and that

f(z)− f(y) ≤M1h(z, y) for all z ∈ V.

Below we consider two examples of the function h and the set A.

Example 2.1. Assume that a function f0 : X → R1 is Lipschitz on bounded subsets of
X, f0(θ) ≤ c̄0 and that f0(x) ≥ φ(x) for all x ∈ X. Then there exists L0 > 0 such that

|f0(z1)− f0(z2)| ≤ L0||z1 − z2|| for all z1, z2 ∈ B(0,M0).

Let L1 > 0 and set

M1 = L0 + L1, h(z, y) = ||z − y||, z, y ∈ X,

X0 = Bo(0,M0).

It is not difficult to see that the set A contains all lower semicontinuous functions f :
X → R1 ∪ {∞} such that f(x) ≥ φ(x) for all x ∈ X, f(θ) ≤ c̄0, f(z) is finite for all
z ∈ Bo(0,M0) and that

|(f − f0)(z1)− (f − f0)(z2)| ≤ L1||z1 − z2|| for all z1, z2 ∈ Bo(M0).
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Example 2.2. Assume that f0 : X → R1 ∪ {∞} is a lower semicontinuous convex
function such that f0(x) ≥ φ(x) for all x ∈ X and f0(θ) ≤ c̄0. Let L1 > 0 and set

X0 = dom(f0) ∩B
o(0,M0).

Clearly, θ ∈ X0. Put M1 = 1.

For each z ∈ Bo(0,M0) and each y ∈ X0 define

h(z, y) = sup {ξ(z)− ξ(y) : ξ ∈ B}+ L1||z − y||, (8)

where B is the set of all convex functions ξ : Bo(0,M0) → R1 ∪ {∞} such that

|ξ(v)− f0(v)| ≤ L1 for all v ∈ dom(f0) ∩B
o(0,M0).

It is not difficult to see that the function h(·, ·) is well defined and that the assumptions
(A1), (A2) and (A3) hold.

Assume that f : X → R1 ∪ {∞} is a lower semicontinuous function such that

f(θ) ≤ c̄0, f(x) ≥ φ(x) for all x ∈ X, (9)

dom(f) ∩Bo(0,M0) = dom(f0) ∩B
o(0,M0)

and that there exists a convex function g : Bo(0,M0) → R1 ∪ {∞} such that

dom(f) ∩B0(0,M0) = dom(g) ∩Bo(0,M0), (10)

|f0(z)− g(z)| ≤ L1 for all z ∈ dom(f0) ∩B
o(0,M0), (11)

|(f − g)(z1)− (f − g)(z2)| ≤ L||z1 − z2|| for all z1, z2 ∈ dom(f0) ∩B
o(0,M0).

We show that f ∈ A. In order to meet this goal it is sufficient to show that (A4) holds.

Let y ∈ Bo(0,M0) ∩ dom(f) and z ∈ Bo(0,M0). If f(z) = ∞, then f0(z) = ∞ and

h(z, y) ≥ f0(z)− f0(y) = ∞ = f(z)− f(y)

by definition.

If f(z) < ∞, then it follows from (9) and (10) that f0(z) < ∞, g(z) < ∞, f0(y) < ∞
and g(y) <∞. Together with (8)–(12) this implies that

f(z)− f(y) = g(z)− g(y) + [(f − g)(z)− (f − g)(y)]

≤ g(z)− g(y) + L1||z − y|| ≤ h(z, y).

Thus f(z)− f(y) ≤ h(z, y) in both cases, (A4) holds and f ∈ A.

Let us now describe the collections of constraint functions which correspond to our family
of constrained minimization problems.

For each i ∈ {1, . . . , n} and each ǫ > 0 denote by V(i, ǫ) the set of all convex lower
semicontinuous functions g : X → R1 ∪ {∞} such that

dom(g) ∩Bo(0,M0) = dom(fi) ∩B
o(0,M0), (12)

|fi(x)− g(x)| ≤ ǫ for all x ∈ dom(fi) ∩B
o(0,M0). (13)

We will establish the following result.
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Theorem 2.3. Let κ ∈ (0, 1). Then there exist Λ0 > 0 and ∆0 ≥ 1 such that for each

ǫ > 0 there exists δ ∈ (0, ǫ) for which the following assertion holds:

If g0 ∈ A, gi ∈ V(i,∆−1
0 ), i = 1, . . . , n, γ ∈ Ωκ, λ ≥ Λ0, c = (c1, . . . , cn) ∈ Rn satisfies

|c̄i − ci| ≤ ∆−1
0 , i = 1, . . . , n

and if x ∈ X satisfies

g0(x) +
n

∑

i=1

λγimax {gi(x)− ci, 0}

≤ inf

{

g0(z) +
n

∑

i=1

λγimax {gi(z)− ci, 0} : z ∈ X

}

+ δ,

then there is y ∈ X such that

||y − x|| ≤ ǫ, gi(y) ≤ ci, i = 1, . . . , n,

g0(y) ≤ inf {g0(z) : z ∈ X and gi(z) ≤ ci, i = 1, . . . , n}+ ǫ.

Theorem 2.3 implies the following result.

Corollary 2.4. Let κ ∈ (0, 1) and let Λ0 > 0 and ∆0 ≥ 1 be as guaranteed by Theorem

2.3. Then for each g0 ∈ A, each gi ∈ V(i,∆−1
0 ), i = 1, . . . , n, each γ ∈ Ωκ, each λ ≥ Λ0,

each c = (c1, . . . ., cn) ∈ Rn which satisfies |c̄i−ci| ≤ ∆−1
0 , i = 1, . . . , n and each sequence

{xi}
∞
i=1 ⊂ X which satisfies

lim
j→∞

[

g0(xj) +
n

∑

i=1

λγimax {gi(xj)− ci, 0}

]

= inf

{

g0(z) +
n

∑

i=1

λγimax {gi(z)− ci, 0} : z ∈ X

}

there is a sequence {yi}
∞
i=1 ⊂ {z ∈ X : gi(z) ≤ ci, i = 1, . . . , n} such that

lim
j→∞

g0(yj) = inf {g0(z) : z ∈ X and gi(z) ≤ ci, i = 1, . . . , n} ,

lim
i→∞

||xi − yi|| = 0.

3. Proof of Theorem 2.3

We show that there is Λ0 ≥ 1 such that the following property holds:

(P1) For each ǫ ∈ (0, 1) there is δ ∈ (0, ǫ) such that for each g0 ∈ A, each gi ∈ V(i,Λ−1
0 ),

i = 1, . . . , n, each c = (c1, . . . , cn) ∈ Rn satisfying

|c̄i − ci| ≤ Λ−1
0 , i = 1, . . . , n,
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each γ ∈ Ωκ, each λ ≥ Λ0, each x ∈ X which satisfies

g0(x) +
n

∑

i=1

λγimax {gi(x)− ci, 0}

≤ inf

{

g0(z) +
n

∑

i=1

λγimax {gi(z)− ci, 0} : z ∈ X

}

+ δ

there is y ∈ X such that

||y − x|| ≤ ǫ, gi(yi) ≤ ci for all i = 1, . . . , n,

g0(y) +
n

∑

i=1

λγimax {gi(y)− ci, 0} ≤ g0(x) +
n

∑

i=1

λγimax {gi(x)− ci, 0} .

It is clear that Theorem 2.3 easily follows from the property (P1).

Assume that there is no Λ0 ≥ 1 such that (P1) holds. Then for each natural number k
there exist

ǫk ∈ (0, 1), g
(k)
0 ∈ A, g

(k)
i ∈ V(i, k−1), i = 1, . . . , n, (14)

c(k) = (c
(k)
1 , . . . , c

(k)
n ) ∈ Rn satisfying

∣

∣

∣
c
(k)
i − c̄i

∣

∣

∣
≤ 1/k, i = 1, . . . , n, (15)

γ(k) =
(

γ
(k)
1 , . . . , γ(k)n

)

∈ Ωκ, λk ≥ k (16)

and xk ∈ X which satisfies

g
(k)
0 (xk) +

n
∑

i=1

λkγ
(k)
i max

{

g
(k)
i (xk)− c

(k)
i , 0

}

(17)

≤ inf

{

g
(k)
0 (z) + λk

n
∑

i=1

γ
(k)
i max

{

g
(k)
i (z)− c

(k)
i , 0

}

: z ∈ X

}

+ 2−1ǫkk
−2

and
{

y ∈ B(xk, ǫk) : g
(k)
i (y) ≤ ci for all i = 1, . . . , n and

g
(k)
0 (y) +

n
∑

i=1

λkγ
(k)
i max

{

g
(k)
i (y)− c

(k)
i , 0

}

(18)

≤ g
(k)
0 (xk) +

n
∑

i=1

λkγ
(k)
i max

{

gi(xk)− c
(k)
i , 0

}

}

= ∅.

For any integer k ≥ 1 set

ψk(z) = g
(k)
0 (z) +

n
∑

i=1

λkγ
(k)
i max

{

g
(k)
i (z)− c

(k)
i , 0

}

, z ∈ X. (19)
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Clearly, for any natural number k the function ψk is lower semicontinuous and

ψk(z) ≥ φ(z) for all z ∈ X. (20)

Let k be a natural number. It follows from (17), (19) and Ekeland’s variational principle
[8] that there is yk ∈ X such that

ψk(yk) ≤ ψk(xk), (21)

||yk − xk|| ≤ (2k)−1ǫk, (22)

ψk(yk) ≤ ψk(z) + k−1||z − yk|| for all z ∈ X. (23)

By (18), (19), (21) and (22) for all natural numbers k

yk 6∈
{

z ∈ X : g
(k)
i (z) ≤ c

(k)
i for all i = 1, . . . , n

}

. (24)

For each natural number k we set

I1k =
{

i ∈ {1, . . . , n} : g
(k)
i (yk) > c

(k)
i

}

, (25)

I2k =
{

i ∈ {1, . . . , n} : g
(k)
i (yk) = c

(k)
i

}

,

I3k =
{

i ∈ {1, . . . , n} : g
(k)
i (yk) < c

(k)
i

}

,

In view of (24) and (25),

I1k 6= ∅ for all integers k ≥ 1. (26)

Extracting a subsequence and re-indexing we may assume without loss of generality that

I1k = I11, I2k = I21, I3k = I31 for all natural numbers k. (27)

By (5) there exists a natural number k0 such that

8k−1
0 < min {c̄i − fi(θ) : i = 1, . . . , n} . (28)

Assume that an integer k ≥ k0. In view of (14), (15), (5), (6) and (28) for all integers
i = 1, . . . , n

c
(k)
i − g

(k)
i (θ) ≥ −k−1 + c̄i − fi(θ)− k−1 ≥ 8k−1

0 − 3k−1 > 0. (29)

By (14), the definition of A, (29), (19), (17), (14), (21) and (25)–(27),

c̄0 ≥ g
(k)
0 (θ) ≥ inf

{

g
(k)
0 (z) : z ∈ X and g

(k)
i (z) ≤ c

(k)
i for all integers i = 1, . . . , n

}

= inf
{

ψk(z) : z ∈ X and g
(k)
i (z) ≤ c

(k)
i for all integers i = 1, . . . , n

}

≥ inf(ψk) ≥ ψk(xk)− 1 ≥ ψk(yk)− 1

= g
(k)
0 (yk) +

∑

i∈I11

λkγ
(k)
i

(

g
(k)
i (yk)− c

(k)
i

)

− 1.

(30)
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Relations (25)–(27) and (30) imply that

g
(k)
0 (yk) ≤ c̄0 + 1 for all natural numbers k ≥ k0. (31)

Together with (14) and (7) this implies that

φ(yk) ≤ c̄0 + 1 for all natural numbers k ≥ k0. (32)

Relations (32) and (6) imply that

||yk|| ≤M0 − 4 for all natural numbers k ≥ k0. (33)

Let k ≥ k0 be an integer. By (A4), (14), (31) and (33) there exists a neighborhood Vk
of yk in X such that

Vk ⊂ Bo(0,M0),

g
(k)
0 (z)− g

(k)
0 (yk) ≤M1h(z, yk) for all z ∈ Vk. (34)

In view of (30), (25)–(27), (16), (14), (7), (3) and (2) for each i ∈ I11 and each integer
k ≥ k0,

0 < g
(k)
i (yk)− c

(k)
i ≤

[

1 + c̄0 − inf
(

g
(k)
0

)](

γ
k)
i

)−1

k−1

≤ [1 + c̄0 − inf(φ)]k−1κ−1. (35)

Let k ≥ k0 be an integer. Since the functions g
(k)
i , i = 1, . . . , n are lower semicontinuous

it follows from (25)–(27) that there exist a positive number rk < 1 such that for each
y ∈ B(yk, rk)

g
(k)
i (y) > c

(k)
i for each i ∈ I11. (36)

It follows from (19), (25)–(27), (36), (21), (17), (30), (31) and (23) that for each z ∈

B(yk, rk) ∩ dom
(

g
(k)
0

)

∑

i∈I11

λkγ
(k)
i

(

g
(k)
i (z)− c

(k)
i

)

+
∑

i∈I21∪I31

λkγ
(k)
i max

{

g
(k)
i (z)− c

(k)
i , 0

}

−
∑

i∈I11

λkγ
(k)
i

(

g
(k)
i (yk)− c

(k)
i

)

−
∑

i∈I21∪I31

λkγ
(k)
i max

{

g
(k)
i (yk)− c

(k)
i , 0

}

= ψk(z)− ψk(yk)− g
(k)
0 (z) + g

(k)
0 (yk) ≥ −k−1||z − yk||+ g

(k)
0 (yk)− g

(k)
0 (z).

This relation implies that for each z ∈ B(yk, rk)

∑

i∈I11

γ
(k)
i g

(k)
i (z) +

∑

i∈I21∪I31

γ
(k)
i max

{

g
(k)
i (z)− c

(k)
i , 0

}

−
∑

i∈I11

γ
(k)
i g

(k)
i (yk)−

∑

i∈I21∪I31

γ
(k)
i max

{

g
(k)
i (yk)− c

(k)
i , 0

}

+ λ−1
k

(

g
(k)
0 (z)− g

(k)
0 (yk)

)

≥ −λ−1
k k−1||yk − z||. (37)
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In view of (37) and (34) for each z ∈ B(yk, rk) ∩ Vk

∑

i∈I11

γ
(k)
i g

(k)
i (z) +

∑

i∈I21∪I31

γ
(k)
i max

{

g
(k)
i (z)− c

(k)
i , 0

}

+ λ−1
k M1h(z, yk) + λ−1

k k−1||yk − z||

≥
∑

i∈I11

γ
(k)
i g

(k)
i (yk) +

∑

i∈I21∪I31

γ
(k)
i max

{

g
(k)
i (yk)− c

(k)
i , 0

}

. (38)

By (14) the functions g
(k)
i , i = 1, . . . , n are convex. It follows from (A2), (31), (14), (33)

and (7) that the function

∑

i∈I11

γ
(k)
i g

(k)
i (z) +

∑

i∈I21∪I31

γ
(k)
i max

{

g
(k)
i (z)− c

(k)
i , 0

}

+ λ−1
k M1h(z, yk) + λ−1

k k−1||z − yk||, z ∈ Bo(0,M0)

is convex. Combined with (A1) this implies that (38) is true for all z ∈ Bo(0,M0).

Extracting a subsequence and re-indexing we may assume without loss of generality that
for each i ∈ {1, . . . , n} there is

γi = lim
k→∞

γ
(k)
i ∈ [0, 1]. (39)

Clearly,
γ = (γ1, . . . , γn) ∈ Ωκ.

Let
z ∈ B0(0,M0) ∩ [∩n

i=1dom(fi)] ∩X0. (40)

Relations (16) and (33) imply that

lim
k→∞

λ−1
k k−1||z − yk|| = 0. (41)

In view of (16), (A3), (40), (33), (31), (14) and (7),

lim
k→∞

λ−1
k M1h(z, yk) = 0. (42)

By (40), (14), (25), (13), (15), (41), (42), (38) which holds for z, (25), (27), (39) and
(35),

∑

i∈I11

γifi(z) +
∑

i∈I21∪I31

γimax {fi(z)− c̄i, 0}

= lim
k→∞

[

∑

i∈I11

γ
(k)
i g

(k)
i (z) +

∑

i∈I21∪I31

γ
(k)
i max

{

g
(k)
i (z)− c

(k)
i , 0

}

+ λ−1
k k−1||z − yk||+ λ−1

k M1h(z, yk)

]

≥ lim sup
k→∞

∑

i∈I11

γ
(k)
i g

(k)
i (yk) =

∑

i∈I11

lim
k→∞

(

γ
(k)
i g

(k)
i (yk)

)

=
∑

i∈I11

γic̄i.
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Therefore we have shown that for each z ∈ X satisfying (40) we have

∑

i∈I11

γifi(z) +
∑

i∈I21∪I31

γimax {fi(z)− c̄i, 0} ≥
∑

i∈I11

γic̄i.

Combined with (5), (6) the inclusions θ ∈ X0 and γ ∈ Ωκ, (5) and (25)-(27) this implies
that

∑

i∈I11

γic̄i ≤
∑

i∈I11

γifi(θ) +
∑

i∈I21∪I31

γimax {fi(θ)− c̄i, 0}

=
∑

i∈I11

γifi(θ) <
∑

i∈I11

γic̄i.

The contradiction we have reached proves that there exists Λ0 ≥ 1 such that the property
(P1) holds. This completes the proof of Theorem 2.3.

4. An extension of Theorem 2.3 for minimization problems with one con-

straint function

In this section we assume that n = 1 and use the notation and definitions from Section
2. In this case

c̄ ∈ R1. (43)

Set
f = f1. (44)

In this case we also have that

A = {x ∈ X : f(x) ≤ c̄} , f(θ) < c̄. (45)

For each ǫ > 0 denote by U(ǫ) the set of all lower semicontinuous functions g : X →
R1 ∪ {∞} for which there exists a convex function h : X → R1 ∪ {∞} such that

dom(g) ∩Bo(0,M0) = dom(f) ∩Bo(0,M0) = dom(h) ∩Bo(0,M0), (46)

|f(x)− h(x)| ≤ ǫ for all x ∈ dom(f) ∩Bo(0,M0), (47)

|(h− g)(z1)− (h− g)(z2)| ≤ ǫ||z1 − z2|| for all z1, z2 ∈ dom(f) ∩Bo(0,M0), (48)

|h(z)− g(z)| ≤ ǫ for all z ∈ dom(f) ∩Bo(0,M0). (49)

We will establish the following result.

Theorem 4.1. There exist Λ0 > 0 and ∆0 ≥ 1 such that for each ǫ > 0 there exists

δ ∈ (0, ǫ) for which the following assertion holds:

If g0 ∈ A, g ∈ U(∆−1
0 ), λ ≥ Λ0, c ∈ R1 satisfies |c̄− c| ≤ ∆−1

0 and if x ∈ X satisfies

g0(x) + λmax {g(x)− c, 0} ≤ inf {g0(z) + λmax {g(z)− c, 0} : z ∈ X}+ δ,

then there is y ∈ X such that

||y − x|| ≤ ǫ, g(y) ≤ c,

g0(y) ≤ inf {g0(z) : z ∈ X and g(z) ≤ c}+ ǫ.
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Since the set U(ǫ) is larger than the set V(1, ǫ) Theorem 4.1 is a generalization of Theorem
2.3 in the case n = 1.

Theorem 4.1 implies the following result.

Corollary 4.2. Let Λ0 > 0 and ∆0 ≥ 1 be as guaranteed by Theorem 4.1. Then for each

g0 ∈ A, each g ∈ U(∆−1
0 ), each λ ≥ Λ0, each c ∈ R1 which satisfies |c̄− c| ≤ ∆−1

0 , and

each sequence {xi}
∞
i=1 ⊂ X which satisfies

lim
j→∞

[g0(xj) + λmax {g(xj)− c, 0}] = inf {g0(z) + λmax {g(z)− c, 0} : z ∈ X}

there is a sequence {yi}
∞
i=1 ⊂ {z ∈ X : g(z) ≤ c} such that

lim
j→∞

g0(yj) = inf {g0(z) : z ∈ X and g(z) ≤ c} and lim
i→∞

||xi − yi|| = 0.

5. Proof of Theorem 4.1

We show that there is Λ0 ≥ 1 such that the following property holds:

(P2) For each ǫ ∈ (0, 1) there is δ ∈ (0, ǫ) such that for each g0 ∈ A, each g ∈ U(Λ−1
0 ),

each c ∈ R1 satisfying |c̄− c| ≤ Λ−1
0 , each λ ≥ Λ0 and each x ∈ X which satisfies

g0(x) + λmax {g(x)− c, 0} ≤ inf {g0(z) + λmax {g(z)− c, 0} : z ∈ X}+ δ

there is y ∈ X such that

||y − x|| ≤ ǫ, g(y) ≤ c,

g0(y) + λmax {g(y)− c, 0} ≤ g0(x) + λmax {g(x)− c, 0} .

It is clear that Theorem 4.1 easily follows from the property (P2).

Assume that there is no Λ0 ≥ 1 such that (P2) holds. Then for each natural number k
there exist

ǫk ∈ (0, 1), g
(k)
0 ∈ A, g(k) ∈ U(k−1), (50)

c(k) ∈ R1 satisfying

|ck − c̄| ≤ 1/k, (51)

λk ≥ k (52)

and xk ∈ X which satisfies

g
(k)
0 (xk) + λk max

{

g(k)(xk)− ck, 0
}

≤ inf
{

g
(k)
0 (z) + λk max

{

g(k)(z)− ck, 0
}

: z ∈ X
}

+ 2−1ǫkk
−2 (53)

and

{

y ∈ B(xk, ǫk) : g
(k)(y) ≤ ck and

g
(k)
0 (y) + λk max

{

g(k)(y)− ck, 0
}

≤ g
(k)
0 (xk) + λk max

{

g(k)(xk)− ck, 0
}

}

= ∅.
(54)
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For any integer k ≥ 1 set

ψk(z) = g
(k)
0 (z) + λk max

{

g(k)(z)− ck, 0
}

, z ∈ X. (55)

Clearly, for any natural number k the function ψk is lower semicontinuous and

ψk(z) ≥ φ(z) for all z ∈ X. (56)

Let k be a natural number. It follows from (53), (55), (56) and Ekeland’s variational
principle [8] that there is yk ∈ X such that

ψk(yk) ≤ ψk(xk), (57)

||yk − xk|| ≤ (2k)−1ǫk, (58)

ψk(yk) ≤ ψk(z) + k−1||z − yk|| for all z ∈ X. (59)

By (54), (55), (57) and (58) for all natural numbers k

g(k)(yk) > ck. (60)

By (52) there exists a natural number k0 such that

8k−1
0 < c̄− f(θ). (61)

Assume that an integer k ≥ k0. In view of (51), (50), (54), (52), (55) and (61),

ck − g(k)(θ) ≥ −k−1 + c̄− f(θ)− k−1 ≥ 8k−1
0 − 2k−1 > 0. (62)

By (50), the definition of A, (55), (53), (50), (57) and (60),

c̄0 ≥ g
(k)
0 (θ) ≥ inf

{

g
(k)
0 (z) : z ∈ X and g(k)(z) ≤ ck

}

= inf
{

ψk(z) : z ∈ X and g(k)(z) ≤ ck
}

≥ inf(ψk) ≥ ψk(xk)− 1 ≥ ψk(yk)− 1 = g
(k)
0 (yk) + λk

(

g(k)(yk)− ck
)

− 1. (63)

Relations (60) and (63) imply that

g
(k)
0 (yk) ≤ c̄0 + 1 for all natural numbers k ≥ k0. (64)

Together with (50) and (7) this implies that

φ(yk) ≤ c̄0 + 1 for all natural numbers k ≥ k0.

Combined with (6) this implies that

||yk|| ≤M0 − 4 for all natural numbers k ≥ k0. (65)

Let k ≥ k0 be an integer. By (A4), (50), (65), (64) and (7) there exists a neighborhood
Vk of yk in X such that

Vk ⊂ Bo(0,M0),

g
(k)
0 (z)− g

(k)
0 (yk) ≤M1h(z, yk) for all z ∈ Vk. (66)
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In view of (60), (63), (50) and (7) for each integer k ≥ k0,

0 < g(k)(yk)− ck ≤
[

1 + c̄0 − inf
(

g
(k)
0

)]

λ−1
k ≤ [1 + c̄0 − inf(φ)]k−1. (67)

Let k ≥ k0 be an integer. Since the function g(k) is lower semicontinuous it follows from
(60) that there exists a positive number rk < 1 such that

B(yk, rk) ⊂ Vk,

g(k)(y) > ck for each y ∈ B(yk, rk). (68)

It follows from (68), (65) and (64) that for each z ∈ B(yk, rk) ∩ dom
(

g
(k)
0

)

λk(g
(k)(z)− ck)− λk(g

(k)(yk)− ck) = ψk(z)− ψk(yk)− g
(k)
0 (z) + g

(k)
0 (yk)

≥ − k−1||z − yk||+ g
(k)
0 (yk)− g

(k)
0 (z)

and
g(k)(z)− g(k)(yk) ≥ λ−1

k

(

g
(k)
0 (yk)− g

(k)
0 (z)

)

− λ−1
k k−1||yk − z||. (69)

By (50) and the definition of U(k−1) there exists a convex function hk : X → R1 ∪ {∞}
such that

dom
(

g(k)
)

∩Bo(0,M0) = dom(f) ∩Bo(0,M0) = dom(hk) ∩B
o(0,M0), (70)

|f(x)− hk(x)| ≤ 1/k for all x ∈ dom(f) ∩Bo(0,M0), (71)
∣

∣

(

hk − g(k)
)

(z1)−
(

hk − g(k)
)

(z2)
∣

∣

≤ ||z1 − z2||/k for all z1, z2 ∈ dom(f) ∩Bo(0,M0),
(72)

∣

∣hk(z)− g(k)(z)
∣

∣ ≤ 1/k for all z ∈ dom(f) ∩Bo(0,M0). (73)

It follows from (68), (66), (70), (67), (72) and (65) that for each z ∈ B(yk, rk) ∩

dom
(

g
(k)
0

)

∩ dom(f),

hk(z)− hk(yk) = g(k)(z)− g(k)(yk) +
((

hk − g(k)
)

(z)−
(

hk − g(k)
)

(yk)
)

≥ g(k)(z)− g(k)(yk)− ||z − yk||/k

≥ − ||z − yk||/k + λ−1
k

(

g
(k)
0 (yk)− g

(k)
0 (z)

)

− λ−1
k k−1||yk − z||.

Combined with (66) and (68) this implies that for each z ∈ B(yk, rk) ∩ dom(f),

0 ≤ hk(z)− hk(yk) + ||z − yk||
(

1/k + (λkk)
−1
)

+ λ−1
k

(

g
(k)
0 (z)− g

(k)
0 (yk)

)

≤ hk(z)− hk(yk) + ||z − yk||
(

1/k + (λkk)
−1
)

+ λ−1
k M1h(z, yk).

Combined with (70), (66) and (68) this implies that for all z ∈ B(yk, rk),

hk(yk) ≤ hk(z) + ||z − yk||
(

1/k + (λkk)
−1
)

+ λ−1
k M1h(z, yk). (74)
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It follows from (A2), (65), (64), (50) and (7) that the function

z → hk(z) + λ−1
k M1h(z, yk) +

(

λ−1
k k−1 + k−1

)

||z − yk||, z ∈ Bo(0,M0)

is convex. Combined with (A1), (7), (64), (65), (50) and (67) this implies that (74) is
true for all z ∈ B0(0,M0).

By (65) and (52) for all z ∈ B0(0,M0)

lim
k→∞

(

k−1 + λ−1
k k−1

)

||z − yk|| = 0. (75)

In view of (52), (65), (A3), (64), (50) and (7) for all z ∈ X0

lim
k→∞

λ−1
k M1h(z, yk) = 0. (76)

By (75), (76), (71), (74) which holds for all z ∈ X0 ∩ dom(f), (65), (67), (70), (73), (60)
and (51),

f(z) = lim
k→∞

[

hk(z) + λ−1
k M1h(z, yk) +

(

λ−1
k k−1 + k−1

)

||z − yk||
]

≥ lim sup
k→∞

hk(yk) = lim sup
k→∞

g(k)(yk) ≥ lim
k→∞

ck = c̄.

Since θ ∈ X0 ∩ dom(f) (see (45)) we conclude that f(θ) ≥ c̄. This contradicts (45). The
contradiction we have reached proves that there exists Λ0 ≥ 1 such that the property
(P2) holds. This completes the proof of Theorem 4.1.
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