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In this paper, we prove strong convergence theorems for finding a common element of the zero point
set of a maximal monotone operator and the fixed point set of a relatively nonexpansive mapping in a
Banach space by using two hybrid methods. Using these results, we obtain new convergence results for
resolvents of maximal monotone operators and relatively nonexpansive mappings in Banach spaces.

1. Introduction

Let E be a real Banach space and let E∗ be the dual space of E. Let A be a maximal
monotone operator from E to E∗. Then we know the problem of finding a point u ∈ E

satisfying
0 ∈ Au.

Such a problem contains numerous problems in physics, optimization and economics. A
well-known method to solve this problem is called the proximal point algorithm: x1 ∈ E

and
xn+1 = Jrnxn, n = 1, 2, . . . ,

where {rn} ⊂ (0,∞) and Jrn are the resolvents of A.

Many researchers have studied this algorithm in a Hilbert space, see, for instance, [2, 3,
5, 10, 12, 16, 20, 22] and in a Banach space, see, for instance, [7, 8].

A mapping S of C into E is called nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.
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We denote by F (S) the set of fixed points of S.

There are some methods for approximation of fixed points of a nonexpansive mapping;
see, for instance, [4, 11, 18, 21, 27]. In particular, in 2003 Nakajo–Takahashi [15] proved
the following strong convergence theorem by using the hybrid method:

Theorem 1.1 (Nakajo and Takahashi [15]). Let C be a nonempty closed convex sub-

set of a Hilbert space H and let T be a nonexpansive mapping of C into itself such that

F (T ) 6= ∅. Suppose x1 = x ∈ C and {xn} is given by



















yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},

un+1 = PCn∩Qn
x, n ∈ N,

where PCn∩Qn
is the metric projection from C onto Cn ∩Qn and {αn} is chosen so that

0 ≤ αn ≤ a < 1. Then, {xn} converges strongly to PF (T )x, where PF (T ) is the metric

projection from C onto F (T ).

Let us call the hybrid method in Theorem 1.1 the normal hybrid method. Very recently,
Takahashi–Takeuchi–Kubota [25] proved the following theorem by using another hybrid
method called the shrinking projection method.

Theorem 1.2 (Takahashi, Takeuchi and Kubota [25]). Let H be a Hilbert space

and let C be a nonempty closed convex subset of H. Let T be a nonexpansive mapping

of C into itself such that F (T ) 6= ∅ and let x0 ∈ H. For C1 = C and u1 = PC1
x0, define

a sequence {un} of C as follows:











yn = αnun + (1− αn)Tun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},

un+1 = PCn+1
x0, n ∈ N,

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then, {un} converges strongly to z0 = PF (T )x0.

In this paper, by using the normal hybrid method and the shrinking projection method,
we study two strong convergence theorems for finding a common element of the zero point
set of a maximal monotone operator and the fixed point set of a relatively nonexpansive
mapping in a Banach space. Using these results, we obtain new convergence results
for resolvents of maximal monotone operators and relatively nonexpansive mappings in
Banach spaces.

2. Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and real
numbers, respectively. Let E be a Banach space and let E∗ be the topological dual of
E. For all x ∈ E and x∗ ∈ E∗, we denote the value of x∗ at x by 〈x, x∗〉. Then, the
duality mapping J on E is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
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for every x ∈ E. By the Hahn-Banach theorem, J(x) is nonempty; see [23] for more
details. We denote the strong convergence and the weak convergence of a sequence {xn}
to x in E by xn → x and xn ⇀ x, respectively. We also denote the weak∗ convergence of
a sequence {x∗

n} to x∗ in E∗ by x∗
n

∗
⇀ x∗. A Banach space E is said to be strictly convex

if ‖x+y‖
2

< 1 for x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y. It is also said to be uniformly

convex if for each ǫ ∈ (0, 2], there exists δ > 0 such that ‖x+y‖
2

≤ 1− δ for x, y ∈ E with
‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ǫ. The space E is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖

t

exists for all x, y ∈ S(E) = {z ∈ E : ‖z‖ = 1}. It is also said to be uniformly smooth
if the limit exists uniformly in x, y ∈ S(E). We know that if E is smooth, strictly
convex and reflexive, then the duality mapping J is single-valued, one-to-one and onto;
see [23, 24] for more details.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty
closed convex subset of E. Throughout this paper, define the function φ by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2, ∀y, x ∈ E.

Following Alber [1], the generalized projection ΠC from E onto C is defined by

ΠC(x) = argmin
y∈C

φ(y, x), ∀x ∈ E.

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 and ΠC is the metric projection of H
onto C. We know the following lemmas for generalized projections.

Lemma 2.1 (Alber [1], Kamimura and Takahashi [6]). Let C be a nonempty

closed convex subset of a smooth, strictly convex and reflexive Banach space E. Then

φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀x ∈ C and y ∈ E.

Lemma 2.2 (Alber [1], Kamimura and Takahashi [6]). Let C be a nonempty

closed convex subset of a smooth, strictly convex, and reflexive Banach space, let x ∈ E

and let z ∈ C. Then

z = ΠCx ⇐⇒ 〈y − z, Jx− Jz〉 ≤ 0, ∀y ∈ C.

Let E be a smooth, strictly convex and reflexive Banach space, and let A be a set-valued
mapping from E to E∗ with graph G(A) = {(x, x∗) : x∗ ∈ Ax}, domain D(A) = {z ∈
E : Az 6= ∅} and range R(A) = ∪{Az : z ∈ D(A)}. We denote a set-valued operator A
from E to E∗ by A ⊂ E × E∗. A is said to be monotone if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ A.

A monotone operator A ⊂ E × E∗ is said to be maximal monotone if its graph is not
properly contained in the graph of any other monotone operator. We know that if A is
a maximal monotone operator, then A−10 = {z ∈ D(A) : 0 ∈ Az} is closed and convex;
see [23, 24] for more details. The following theorem is well-known.
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Theorem 2.3 (Rockafellar [19]). Let E be a smooth, strictly convex and reflexive Ba-

nach space and let A ⊂ E×E∗ be a monotone operator. Then A is maximal if and only

if R(J + rA) = E∗ for all r > 0.

Let E be a smooth, strictly convex and reflexive Banach space, let C be a nonempty
closed convex subset of E and let A ⊂ E × E∗ be a monotone operator satisfying

D(A) ⊂ C ⊂ J−1 (∩r>0R(J + rA)) .

Then we can define the resolvent Jr : C → D(A) of A by

Jrx = {z ∈ D(A) : Jx ∈ Jz + rAz}, ∀x ∈ C.

We know that Jrx consists of one point. For all r > 0, the Yosida approximation
Ar : C → E∗ is defined by Arx = Jx−JJrx

r
for all x ∈ C. We also know the following

lemma; see, for instance, [9].

Lemma 2.4. Let E be a smooth, strictly convex and reflexive Banach space, let C be

a nonempty closed convex subset of E and let A ⊂ E × E∗ be a monotone operator

satisfying

D(A) ⊂ C ⊂ J−1 (∩r>0R(J + rA)) .

Let r > 0 and let Jr and Ar be the resolvent and the Yosida approximation of A, respec-

tively. Then, the following hold:

(1) φ(u, Jrx) + φ(Jrx, x) ≤ φ(u, x) for all x ∈ C and u ∈ A−10;

(2) (Jrx,Arx) ∈ A for all x ∈ C;

(3) F (Jr) = A−10.

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space E, let T be a mapping from C into itself. We denoted by F (T ) the set
of fixed points of T . A point p ∈ C is said to be an asymptotic fixed point of T [17]
if there exists {xn} in C which converges weakly to p and limn→∞ ‖xn − Txn‖ = 0.
We denote the set of all asymptotic fixed points of T by F (T ). Following Matsushita
and Takahashi [13], a mapping T : C → C is said to be relatively nonexpansive if the
following conditions are satisfied:

(1) F (T ) is nonempty;

(2) φ(u, Tx) ≤ φ(u, x), ∀u ∈ F (T ), x ∈ C;

(3) F (T ) = F (T ).

The following lemma is due to Matsushita and Takahashi [13].

Lemma 2.5 (Matsushita and Takahashi [13]). Let C be a nonempty closed convex

subset of a smooth, strictly convex, and reflexive Banach space E, and let T be a relatively

nonexpansive mapping from C into itself. Then F (T ) is closed and convex.

We also know the following lemma.

Lemma 2.6 (Kamimura and Takahashi [6]). Let E be a smooth and uniformly con-

vex Banach space and let {xn} and {yn} be sequences in E such that either {xn} or {yn}
is bounded. If limn φ(xn, yn) = 0, then limn ‖xn − yn‖ = 0.
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3. Convergence theorem by the normal hybrid method

In this section, we prove a strong convergence theorem for finding a common element of
the zero point set of a maximal monotone operator and the fixed point set of a relatively
nonexpansive mapping in a Banach space by using the normal hybrid method.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space, and

let C be a nonempty closed convex subset of E. Let A ⊂ E ×E∗ be a maximal monotone

operator satisfying

D(A) ⊂ C ⊂ J−1 (∩r>0R(J + rA))

and let Jr = (J + rA)−1J for all r > 0. Let S be a relatively nonexpansive mapping from

C into itself such that F (S)∩A−10 6= ∅. Let {xn} be a sequence generated by x0 = x ∈ C

and


















un = J−1(αnJxn + (1− αn)JSJrnxn),

Hn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},

Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wn
x

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1) satisfies

lim infn→∞(1−αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges strongly

to ΠF (S)∩A−10x, where ΠF (S)∩A−10 is the generalized projection of E onto F (S) ∩ A−10.

Proof. We first show that Hn∩Wn is closed and convex. It is obvious that Hn is closed
and Wn is closed and convex. Since

φ(z, un) ≤ φ(z, xn)

⇐⇒ ‖un‖
2 − ‖xn‖

2 − 2〈z, Jun − Jxn〉 ≥ 0,

Hn is convex. So, Hn ∩Wn is a closed convex subset of E for all n ∈ N ∪ {0}.

Let u ∈ F (S) ∩ A−10. Put yn = Jrnxn for all n ∈ N. Since Jrn and S are relatively
nonexpansive, we have

φ(u, un) = φ(u, J−1(αnJxn + (1− αn)JSyn))

= ‖u‖2 − 2〈u, αnJxn + (1− αn)JSyn〉+ ‖αnJxn + (1− αn)JSyn‖
2

≤ ‖u‖2 − 2αn〈u, Jxn〉 − 2(1− αn)〈u, JSyn〉+ αn‖xn‖
2 + (1− αn)‖Syn‖

2

= αnφ(u, xn) + (1− αn)φ(u, Syn)

= αnφ(u, xn) + (1− αn)φ(u, SJrnxn)

≤ φ(u, xn).

Hence, we have u ∈ Hn. This implies that

F (S) ∩ A−10 ⊂ Hn, ∀n ∈ N ∪ {0}.

Next we show by induction that F (S) ∩ A−10 ⊂ Hn ∩ Wn for all n ∈ N ∪ {0}. From
W0 = C, we have

F (S) ∩ A−10 ⊂ H0 ∩W0.
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Suppose that F (S) ∩ A−10 ⊂ Hk ∩Wk for some k ∈ N ∪ {0}. Then there exists xk+1 ∈
Hk ∩Wk such that

xk+1 = ΠHk∩Wk
x.

From the definition of xk+1, we have, for all z ∈ Hk ∩Wk,

〈xk+1 − z, Jx− Jxk+1〉 ≥ 0.

Since F (S) ∩ A−10 ⊂ Hk ∩Wk, we have

〈xk+1 − z, Jx− Jxk+1〉 ≥ 0, ∀z ∈ F (S) ∩ A−10

and hence z ∈ Wk+1. So, we have

F (S) ∩ A−10 ⊂ Wk+1.

Therefore we have
F (S) ∩ A−10 ⊂ Hk+1 ∩Wk+1.

So, we have that F (S) ∩ A−10 ⊂ Hn ∩Wn for all n ∈ N ∪ {0}. This means that {xn} is
well-defined.

From the definition of Wn, we have xn = ΠWn
x. Using xn = ΠWn

x, we have

φ(xn, x) = φ(ΠWn
x, x) ≤ φ(u, x)− φ(u,ΠWn

x) ≤ φ(u, x)

for all u ∈ F (S) ∩ A−10 ⊂ Wn. Then, {φ(xn, x)} is bounded. Therefore, {xn} and
{Jrnxn} = {yn} are bounded.

Since xn+1 = ΠHn∩Wn
x ∈ Hn ∩Wn ⊂ Wn and xn = ΠWn

x, we have

φ(xn, x) ≤ φ(xn+1, x), ∀n ∈ N ∪ {0}.

Thus {φ(xn, x)} is nondecreasing. So, the limit of {φ(xn, x)} exists. From xn = ΠWn
x,

φ(xn+1, xn) = φ(xn+1,ΠWn
x)

≤ φ(xn+1, x)− φ(ΠWn
x, x)

= φ(xn+1, x)− φ(xn, x)

for all n ∈ N ∪ {0}. This means that limn→∞ φ(xn+1, xn) = 0. From xn+1 = ΠHn∩Wn
x ⊂

Hn, we have
φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ∈ N ∪ {0}.

Therefore, we have
lim
n→∞

φ(xn+1, un) = 0.

Since limn→∞ φ(xn+1, xn) = limn→∞ φ(xn+1, un) = 0 and E is uniformly convex and
smooth, we have from Lemma 2.6 that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − un‖ = 0.

So, we have
lim
n→∞

‖xn − un‖ = 0.
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Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

‖Jxn+1 − Jun‖ = lim
n→∞

‖Jxn − Jun‖ = 0. (1)

On the other hand, we have

‖Jxn+1 − Jun‖ = ‖Jxn+1 − (αnJxn + (1− αn)JSyn)‖

= ‖αn(Jxn+1 − Jxn) + (1− αn)(Jxn+1 − JSyn)‖

≥ (1− αn)‖Jxn+1 − JSyn‖ − αn‖Jxn+1 − Jxn‖.

Therefore we have

‖Jxn+1 − JSyn‖ ≤
1

1− αn

(‖Jxn+1 − Jun‖+ αn‖Jxn+1 − Jxn‖)

≤
1

1− αn

(‖Jxn+1 − Jun‖+ ‖Jxn+1 − Jxn‖).

From (1) and lim infn→∞(1− αn) > 0, we have

lim
n→∞

‖Jxn+1 − JSyn‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − Syn‖ = 0.

From
‖xn − Syn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Syn‖,

we have
lim
n→∞

‖xn − Syn‖ = 0.

Using yn = Jrnxn and Lemma 2.4, we have

φ(yn, xn) = φ(Jrnxn, xn) ≤ φ(u, xn)− φ(u, Jrnxn)

= φ(u, xn)− φ(u, yn).

From φ(u, un) ≤ αnφ(u, xn) + (1− αn)φ(u, yn), we have

φ(u, yn) ≥
φ(u, un)− αnφ(u, xn)

1− αn

and

φ(yn, xn) ≤ φ(u, xn)− φ(u, yn)

≤ φ(u, xn)−
φ(u, un)− αnφ(u, xn)

1− αn

=
φ(u, xn)− φ(u, un)

1− αn

.

(2)
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Since

φ(u, xn)− φ(u, un) = ‖xn‖
2 − ‖un‖

2 − 2〈u, Jxn − Jun〉

≤
∣

∣‖xn‖
2 − ‖un‖

2
∣

∣+ 2|〈u, Jxn − Jun〉|

≤ |‖xn‖ − ‖un‖| (‖xn‖+ ‖un‖) + 2‖u‖‖Jxn − Jun‖

≤ ‖xn − un‖ (‖xn‖+ ‖un‖) + 2‖u‖‖Jxn − Jun‖,

and lim infn→∞(1− αn) > 0, we have from (2)

lim
n→∞

φ(yn, xn) = 0.

Since E is uniformly convex and smooth, we have from Lemma 2.6 that

lim
n→∞

‖yn − xn‖ = 0. (3)

From limn→∞ ‖xn − Syn‖ = 0, we have

lim
n→∞

‖yn − Syn‖ = 0.

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀ x.
From limn→∞ ‖xn − yn‖ = 0, we have ynk

⇀ x. Since S is relatively nonexpansive, we

have x ∈ F (S) = F (S). Next, we show x ∈ A−10. Since J is uniformly norm-to-norm
continuous on bounded sets, from (3) we have

lim
n→∞

‖Jxn − Jyn‖ = 0.

From rn ≥ a, we have

lim
n→∞

‖Jxn − Jyn‖

rn
= 0.

Therefore, we have

lim
n→∞

‖Arnxn‖ = lim
n→∞

1

rn
‖Jxn − Jyn‖ = 0.

For (z, z∗) ∈ A, from the monotonicity of A, we have

〈z − yn, z
∗ − Arnxn〉 ≥ 0

for all n ∈ N.

Replacing n by nk and letting k → ∞, we have

〈z − x, z∗〉 ≥ 0.

From the maximality of A, we have x ∈ A−10.

Let w = ΠF (S)∩A−10x. From xn+1 = ΠHn∩Wn
x and w ∈ F (S)∩A−10 ⊂ Hn∩Wn, we have

φ(xn+1, x) ≤ φ(w, x).
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Since the norm is weakly lower semicontinuous, we have

φ(x, x) = ‖x‖2 − 2〈x, Jx〉+ ‖x‖2

≤ lim inf
k→∞

(

‖xnk
‖2 − 2〈xnk

, Jx〉+ ‖x‖2
)

= lim inf
k→∞

φ(xnk
, x)

≤ lim sup
k→∞

φ(xnk
, x)

≤ φ(w, x).

From the definition of ΠF (S)∩A−10, we have x = w. Hence limk→∞ φ(xnk
, x) = φ(w, x).

Therefore we have

0 = lim
k→∞

(φ(xnk
, x)− φ(w, x))

= lim
k→∞

(‖xnk
‖2 − ‖w‖2 − 2〈xnk

− w, Jx〉)

= lim
k→∞

(‖xnk
‖2 − ‖w‖2).

Since E has the Kadec-Klee property, we have that xnk
→ w = ΠF (S)∩A−10x. Therefore,

{xn} converges strongly to ΠF (S)∩A−10x.

As direct consequences of Theorem 3.1, we can obtain the following corollaries.

Corollary 3.2. Let E be a uniformly smooth and uniformly convex Banach space, let

A ⊂ E × E∗ be a maximal monotone operator with A−10 6= ∅ and let Jr = (J + rA)−1J

for all r > 0. Let {xn} be a sequence generated by x0 = x ∈ C and



















un = Jrnxn,

Hn = {z ∈ E : φ(z, un) ≤ φ(z, xn)},

Wn = {z ∈ E : 〈xn − z, Jx− Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wn
x

for every n ∈ N ∪ {0}, where J is the duality mapping on E and {rn} ⊂ [a,∞) for

some a > 0. Then, {xn} converges strongly to ΠA−10x, where ΠA−10 is the generalized

projection of E onto A−10.

Proof. Putting S = I, C = E and αn = 0 in Theorem 3.1, we obtain Corollary 3.2.

Let E be a Banach space and let f : E → (−∞,∞] be a proper lower semicontinuous
convex function. Define the subdifferential of f as follows:

∂f(x) = {x∗ ∈ E∗ : f(y) ≥ 〈y − x, x∗〉+ f(x), ∀y ∈ E}

for each x ∈ E. Then, we know that ∂f is a maximal monotone operator; see [23] for
more details.
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Corollary 3.3 (Matsushita and Takahashi [13]). Let E be a uniformly smooth and

uniformly convex Banach space, let C be a nonempty closed convex subset of E, and let

S be a relatively nonexpansive mapping from C into itself such that F (S) 6= ∅. Let {xn}
be a sequence generated by x0 = x ∈ C and



















un = J−1(αnJxn + (1− αn)JSxn),

Hn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},

Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wn
x

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1) satisfies

lim infn→∞(1 − αn) > 0. Then, {xn} converges strongly to ΠF (S)x, where ΠF (S) is the

generalized projection of E onto F (S).

Proof. Set A = ∂iC in Theorem 3.1, where iC is the indicator function of C, i.e.,

iC =

{

0 x ∈ C,

∞ otherwise.

Then, we have that A is a maximal monotone operator and Jr = ΠC for r > 0, in fact,
for any x ∈ E and r > 0, we have from Lemma 2.2 that

z = Jrx

⇐⇒ Jz + r∂iC(z) ∋ Jx

⇐⇒ Jx− Jz ∈ r∂iC(z)

⇐⇒ iC(y) ≥

〈

y − z,
Jx− Jz

r

〉

+ iC(z), ∀y ∈ E

⇐⇒ 0 ≥ 〈y − z, Jx− Jz〉, ∀y ∈ C

⇐⇒ z = argmin
y∈C

φ(y, x)

⇐⇒ z = ΠCx.

So, from Theorem 3.1, we obtain Corollary 3.3.

4. Convergence theorem by the shrinking projection method

In this section, we prove a strong convergence theorem for finding a common element of
the zero point set of a maximal monotone operator and the fixed point set of a relatively
nonexpansive mapping in a Banach space by using the shrinking projection method.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach space, and

let C be a nonempty closed convex subset of E. Let A ⊂ E ×E∗ be a maximal monotone

operator satisfying

D(A) ⊂ C ⊂ J−1 (∩r>0R(J + rA))

and let Jr = (J + rA)−1J for all r > 0. Let S be a relatively nonexpansive mapping from

C into itself such that F (S)∩A−10 6= ∅. Let {xn} be a sequence generated by x0 = x ∈ C,
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H0 = C and










un = J−1(αnJxn + (1− αn)JSJrnxn),

Hn+1 = {z ∈ Hn : φ(z, un) ≤ φ(z, xn)},

xn+1 = ΠHn+1
x

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1) satisfies

lim infn→∞(1−αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges strongly

to ΠF (S)∩A−10x, where ΠF (S)∩A−10 is the generalized projection of E onto F (S) ∩ A−10.

Proof. Putting yn = Jrnxn for all n ∈ N, we know that Jrn are relatively nonexpansive.

We first show that Hn is closed and convex. It is obvious that Hn is closed. Since

φ(z, un) ≤ φ(z, xn)

⇐⇒ ‖un‖
2 − ‖xn‖

2 − 2〈z, Jun − Jxn〉 ≥ 0,

we also have that Hn is convex. So, Hn is a closed convex subset of E for all n ∈ N∪{0}.

Next we show by induction that A−10 ∩ F (S) ⊂ Hn for all n ∈ N ∪ {0}. From H0 = C,
we have

F (S) ∩ A−10 ⊂ H0.

Suppose that F (S)∩A−10 ⊂ Hk for some k ∈ N∪{0}. Then let u ∈ F (S)∩A−10 ⊂ Hk.
Since Jrk and S are relatively nonexpansive, we have

φ(u, un) = φ(u, J−1(αnJxn + (1− αn)JSyn))

= ‖u‖2 − 2〈u, αnJxn + (1− αn)JSyn〉+ ‖αnJxn + (1− αn)JSyn‖
2

≤ ‖u‖2 − 2αn〈u, Jxn〉 − 2(1− αn)〈u, JSyn〉+ αn‖xn‖
2 + (1− αn)‖Syn‖

2

= αnφ(u, xn) + (1− αn)φ(u, Syn)

= αnφ(u, xn) + (1− αn)φ(u, SJrnxn)

≤ φ(u, xn).

Hence, we have u ∈ Hk+1. So, we have that

F (S) ∩ A−10 ⊂ Hn, ∀n ∈ N ∪ {0}.

This means that {xn} is well-defined.

From the definition of xn and Lemma 2.1, we have

φ(xn, x) = φ(ΠHn
x, x) ≤ φ(u, x)− φ(u,ΠHn

x) ≤ φ(u, x)

for all u ∈ F (S) ∩ A−10 ⊂ Hn. Then, {φ(xn, x)} is bounded. Therefore, {xn} and
{Jrnxn} = {yn} are bounded.

From Hn+1 ⊂ Hn and xn = ΠHn
x, we have

φ(xn, x) ≤ φ(xn+1, x), ∀n ∈ N ∪ {0}.

Thus {φ(xn, x)} is nondecreasing. So, the limit of {φ(xn, x)} exists. Since

φ(xn+1, xn) = φ(xn+1,ΠHn
x)

≤ φ(xn+1, x)− φ(ΠHn
x, x)

= φ(xn+1, x)− φ(xn, x)
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for all n ∈ N, we have limn→∞ φ(xn+1, xn) = 0. From xn+1 = ΠHn+1
x ∈ Hn+1, we also

have
φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ∈ N ∪ {0}.

Therefore, we have
lim
n→∞

φ(xn+1, un) = 0.

Since limn→∞ φ(xn+1, xn) = limn→∞ φ(xn+1, un) = 0 and E is uniformly convex and
smooth, we have from Lemma 2.6 that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − un‖ = 0.

So, we have
lim
n→∞

‖xn − un‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

‖Jxn+1 − Jun‖ = lim
n→∞

‖Jxn − Jun‖ = 0. (4)

On the other hand, we have

‖Jxn+1 − Jun‖ = ‖Jxn+1 − (αnJxn + (1− αn)JSyn)‖

= ‖αn(Jxn+1 − Jxn) + (1− αn)(Jxn+1 − JSyn)‖

≥ (1− αn)‖Jxn+1 − JSyn‖ − αn‖Jxn+1 − Jxn‖.

Therefore we have

‖Jxn+1 − JSyn‖ ≤
1

1− αn

(‖Jxn+1 − Jun‖+ αn‖Jxn+1 − Jxn‖)

≤
1

1− αn

(‖Jxn+1 − Jun‖+ ‖Jxn+1 − Jxn‖).

From (4) and lim infn→∞(1− αn) > 0, we have

lim
n→∞

‖Jxn+1 − JSyn‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − Syn‖ = 0.

From
‖xn − Syn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Syn‖,

we have
lim
n→∞

‖xn − Syn‖ = 0. (5)

Using yn = Jrnxn and Lemma 2.4, we have

φ(yn, xn) = φ(Jrnxn, xn) ≤ φ(u, xn)− φ(u, Jrnxn)

= φ(u, xn)− φ(u, yn).
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From φ(u, un) ≤ αnφ(u, xn) + (1− αn)φ(u, yn), we have

φ(u, yn) ≥
φ(u, un)− αnφ(u, xn)

1− αn

and

φ(yn, xn) ≤ φ(u, xn)− φ(u, yn)

≤ φ(u, xn)−
φ(u, un)− αnφ(u, xn)

1− αn

=
φ(u, xn)− φ(u, un)

1− αn

.

(6)

Since

φ(u, xn)− φ(u, un) = ‖xn‖
2 − ‖un‖

2 − 2〈u, Jxn − Jun〉

≤
∣

∣‖xn‖
2 − ‖un‖

2
∣

∣+ 2|〈u, Jxn − Jun〉|

≤ |‖xn‖ − ‖un‖| (‖xn‖+ ‖un‖) + 2‖u‖‖Jxn − Jun‖

≤ ‖xn − un‖ (‖xn‖+ ‖un‖) + 2‖u‖‖Jxn − Jun‖,

and lim infn→∞(1− αn) > 0, we have from (6) that

lim
n→∞

φ(yn, xn) = 0.

Since E is uniformly convex and smooth, we have from Lemma 2.6

lim
n→∞

‖yn − xn‖ = 0. (7)

From (5) and (7), we have
lim
n→∞

‖yn − Syn‖ = 0.

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀ x.
From limn→∞ ‖xn − yn‖ = 0, we have ynk

⇀ x. Since S is relatively nonexpansive, we

have x ∈ F (S) = F (S). Next, we show x ∈ A−10. Since J is uniformly norm-to-norm
continuous on bounded sets, from (7) we have

lim
n→∞

‖Jxn − Jyn‖ = 0.

From rn ≥ a, we have

lim
n→∞

‖Jxn − Jyn‖

rn
= 0.

Therefore, we have

lim
n→∞

‖Arnxn‖ = lim
n→∞

1

rn
‖Jxn − Jyn‖ = 0.

For (z, z∗) ∈ A, from the monotonicity of A, we have

〈z − yn, z
∗ − Arnxn〉 ≥ 0
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for all n ∈ N.

Replacing n by nk and letting k → ∞, we have

〈z − x, z∗〉 ≥ 0.

From the maximality of A, we have x ∈ A−10.

Let w = ΠF (S)∩A−10x. From xn+1 = ΠHn+1
x and w ∈ F (S) ∩ A−10 ⊂ Hn+1, we have

φ(xn+1, x) ≤ φ(w, x).

Since the norm is weakly lower semicontinuous, we have

φ(x, x) = ‖x‖2 − 2〈x, Jx〉+ ‖x‖2

≤ lim inf
k→∞

(

‖xnk
‖2 − 2〈xnk

, Jx〉+ ‖x‖2
)

= lim inf
k→∞

φ(xnk
, x)

≤ lim sup
k→∞

φ(xnk
, x)

≤ φ(w, x).

From the definition of ΠF (S)∩A−10, we have x = w. Hence limk→∞ φ(xnk
, x) = φ(w, x).

Therefore we have

0 = lim
k→∞

(φ(xnk
, x)− φ(w, x))

= lim
k→∞

(‖xnk
‖2 − ‖w‖2 − 2〈xnk

− w, Jx〉)

= lim
k→∞

(‖xnk
‖2 − ‖w‖2).

Since E has the Kadec-Klee property, we have that xnk
→ w = ΠF (S)∩A−10x. Therefore,

{xn} converges strongly to ΠF (S)∩A−10x.

As direct consequences of Theorem 4.1, we can obtain the following corollaries.

Corollary 4.2. Let E be a uniformly smooth and uniformly convex Banach space. Let

A ⊂ E × E∗ be a maximal monotone operator with A−10 6= ∅ and let Jr = (J + rA)−1J

for all r > 0. Let {xn} be a sequence generated by x0 = x ∈ E, H0 = E and











un = Jrnxn,

Hn+1 = {z ∈ Hn : φ(z, un) ≤ φ(z, xn)},

xn+1 = ΠHn+1
x

for every n ∈ N ∪ {0}, where J is the duality mapping on E and {rn} ⊂ [a,∞) for some

a > 0. Then, {xn} converges strongly to ΠA−10x.

Proof. Putting S = I, C = H0 = E and αn = 0 in Theorem 4.1, we obtain Corollary 4.2.
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Corollary 4.3. Let E be a uniformly smooth and uniformly convex Banach space, let C

be a nonempty closed convex subset of E, and let S be a relatively nonexpansive mapping

from C into itself such that F (S) 6= ∅. Let {xn} be a sequence generated by x0 = x ∈ C

and










un = J−1(αnJxn + (1− αn)JSxn),

Hn+1 = {z ∈ Hn : φ(z, un) ≤ φ(z, xn)},

xn+1 = ΠHn+1
x

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1) satisfies

lim infn→∞(1 − αn) > 0. Then, {xn} converges strongly to ΠF (S)x, where ΠF (S) is the

generalized projection of E onto F (S).

Proof. Set A = ∂iC in Theorem 4.1, where iC is the indicator function of C. So, we
obtain Corollary 4.3.
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