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In this paper, we show that separable convex functions enjoy ǫ-subdifferential sum formula as well as the
Fenchel duality without a regularity assumption, and establish that for convex programs with separable
convex constraints a new partially asymptotic Lagrange multiplier conditions hold without a constraint
qualification. Examples are given to illustrate the results.

1. Introduction

Consider the convex program

inf{f(x) : gi(x) ≤ 0, i = 1, 2, · · · , n}, (1)

where f and gi (i = 1, . . . , n) are real-valued convex functions, defined on R
m. It is known

that certain technical condition on the constraints, known as constraint qualification,
guarantees that the convex program enjoys the Lagrange multiplier condition,

(∃λ ∈ R
n
+) 0 ∈ ∂f(a) +

n
∑

i=1

∂(λigi)(a), λigi(a) = 0,

which is necessary and sufficient for optimality at a. In the absence of a constraint
qualification, it has recently been shown that the following limiting Lagrange multiplier
condition holds (see Jeyakumar et al. [8] and also Thibault [15]):

u∗ + v∗k → 0, λi
kgi(a) → 0, ǫk → 0,
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for some sequences {ǫk} ⊂ R+ and {λk} ⊂ R
n
+, and for some u∗ ∈ ∂f(a) and v∗k ∈

∂ǫk(
∑n

i=1 λ
i
kgi)(a). For related results see [9].

The purpose of this paper is to show that separable convex functions enjoy the ǫ-
subdifferential sum formula as well as the Fenchel duality without a regularity assump-
tion, and to establish that for convex programs with separable convex constraints the
following strengthened form of the limiting Lagrange multiplier conditions holds:

0 ∈ ∂f(a) +
n
∑

i=1

∂ǫk(λ
i
kgi)(a), λi

kgi(a) → 0, ǫk → 0,

for some sequences {ǫk} ⊂ R+ and {λk} ⊂ R
n
+. Our method of proof makes use of

the fact, established recently by Tseng in [16], that there is no duality gap between (1)
and its Lagrangian dual whenever the functions f and gi are separable convex functions.
Numerical examples are discussed to illustrate our results.

The class of convex programming problems with separable constraints is an extension of
the standard convex quadratic programming problems (i.e., convex quadratic problems
with linear constraints) and it often arises in important application areas. For instance,
many classes of network optimization problems and integer programming problems can
be cast as convex programming problems with separable constraints. For recent work
on separable convex programming and convex programming problems with separable
constraints, see [2, 10, 14, 16] and the reference therein.

The outline of the paper is as follows. Section 2 provides definitions and some basic
results on conjugate functions, convex sets and functions. In Section 3, we present an
ǫ-subdifferential sum formula as well as the Fenchel duality result for separable functions.
Finally, in Section 4, we establish a new form of subgradient optimality conditions for
convex programming with separable inequality constraint.

2. Preliminaries on Conjugate and Convex Functions

Throughout this paper, Rm denotes Euclidean space with dimensionm. The correspond-
ing inner product in R

m is defined by 〈x, y〉 = xTy for any x, y ∈ R
m. We use B(x; ǫ)

(resp. B(x; ǫ)) to denote the open (resp. closed) ball with center x and radius ǫ. For a
set A in R

m, the interior (resp. relative interior, closure, convex hull, affine hull) of A is
denoted by intA (resp. riA, A, coA, affA). The recession cone of A, denoted by A∞, is
defined by A∞ = {d : a+ td ∈ A for all t ≥ 0 and for all a ∈ A}. The indicator function
δA : Rm → R ∪ {+∞} is defined by

δA(x) :=

{

0, if x ∈ A,

+∞, otherwise.
(2)

For a convex function f on R
m, the effective domain and the epigraph are respectively

defined by domf := {x ∈ R
m : f(x) < +∞} and epif := {(x, r) ∈ R

m × R : f(x) ≤
r}. We say f is proper if f(x) > −∞ for all x ∈ X and domf 6= ∅. Moreover, if
lim infx′→x f(x

′) ≥ f(x) for all x ∈ R
m, we say f is a lower semicontinuous function. The

(convex) subdifferential of f at x ∈ R
m is defined by

∂f(x) =

{

{x∗ ∈ R
m : 〈x∗, y − x〉 ≤ f(y)− f(x) ∀ y ∈ R

m}, if x ∈ domf,

∅, otherwise.
(3)
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More generally, the ǫ-subdifferential of f at x ∈ R
m is defined by

∂ǫf(x) =

{

{x∗ ∈ R
m : 〈x∗, y − x〉 ≤ f(y)− f(x) + ǫ ∀ y ∈ R

m}, if x ∈ domf,

∅, otherwise.
(4)

The normal cone of a convex set A at the point a ∈ A, denoted by NA(a), is defined by

NA(a) = ∂δA(a) = {x∗ ∈ R
m : 〈x∗, x− a〉 ≤ 0 for all x ∈ A}

Let f be a proper convex function and let x ∈ domf be such that ∂f(x) 6= ∅. Then, one
has (cf. [1, Proposition 2.5.4])

(∂f(x))∞ = Ndomf (x).

Let A be a closed convex subset of Rm. We denote Γ(A) to be the proper lower semi-
continuous convex functions on A. We also define Γs(A) as follows:

Γs(A) = {f ∈ Γ(A) : ∂f(a) 6= ∅ for all a ∈ A ∩ domf}.

It can be verify that Γs(A) is a vector space (under the addition and scalar multiplication)
which contains the following two important classes of convex functions: (1) f ∈ Γ(A)
satisfying f(x) > inf f ⇒ x ∈ ri domf ; (2) f = δC for some closed convex set C where δ is
the indicator function. As usual, for any f ∈ Γ(Rm), its conjugate function f ∗ ∈ Γ(Rm)
(cf. [13]) is defined by f ∗(x∗) = supx∈Rm{〈x∗, x〉−f(x)} for all x∗ ∈ R

m. The definition of
f ∗ entails that 〈x∗, x〉 ≤ f ∗(x∗)+f(x) (Young’s inequality) for any x ∈ R

m and x∗ ∈ R
m.

Moreover, for any ǫ ≥ 0 and x ∈ domf

x∗ ∈ ∂ǫf(x) ⇔ f ∗(x∗) + f(x) ≤ 〈x∗, x〉+ ǫ ⇔ (x∗, ǫ+ 〈x∗, x〉 − f(x)) ∈ epif ∗. (5)

In particular, we have the following Young’s equality

x∗ ∈ ∂f(x) ⇔ 〈x∗, x〉 = f ∗(x∗) + f(x).

It is well known that (cf. [13]) for any proper lower semicontinuous convex functions
f1, f2,

f1 ≤ f2 ⇔ f ∗
1 ≥ f ∗

2 ⇔ epif ∗
1 ⊆ epif ∗

2 . (6)

Let fi (1 ≤ i ≤ n) be proper lower semicontinuous convex functions on R
m. The infimal

convolution of fi, denoted f1� . . .�fn, is defined by

(f1� . . .�fn)(x) = inf

{

n
∑

i=1

fi(xi) :
n
∑

i=1

xi = x

}

for all x ∈ R
m.

It is well known (see [13]) that if
⋂n

i=1 domfi 6= ∅, then (f1� . . .�fn)
∗ =

∑n
i=1 f

∗
i .

Moreover we also have

(

n
∑

i=1

fi

)∗

= cl (f ∗
1� . . .�f ∗

n) and epi

(

n
∑

i=1

fi

)∗

=
n
∑

i=1

epif ∗
i . (7)
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The lower semicontinuous hull in the first equation and the closure in the second equation
are superfluous (see [13] for detail) if there exists i0 ∈ {1, . . . , n} such that

domfi0 ∩
(

⋂

i6=i0

int domfi

)

6= ∅. (8)

Finally, a function f : Rm → R ∪ {+∞} is called a separable function on R
m if

f(x) =
m
∑

l=1

gl(xl) ∀ x = (x1, . . . , xm) ∈ R
m (9)

for some proper lower semicontinuous function gl on R (1 ≤ l ≤ m). Clearly, an affine
function f is, in particular, separable and convex.

Lemma 2.1 (see [5]). Let f be a proper lower semicontinuous function on R
m. Then

for each x ∈ domf ,

epif ∗ =
⋃

ǫ≥0

{(x∗, ǫ+ 〈x∗, x〉 − f(x)) : x∗ ∈ ∂ǫf(x)}.

Lemma 2.2 (cf. [8]). Let I be an arbitrary index set and let fi (i ∈ I) be proper
lower semicontinuous functions on R

m. Suppose that there exists x0 ∈ R
m such that

supi∈I fi(x0) < ∞. Then

epi

(

sup
i∈I

fi

)∗

= co
⋃

i∈I

epif ∗
i ,

where supi∈I fi : R
m → R ∪ {+∞} is defined by (supi∈I fi)(x) = supi∈I fi(x) for all

x ∈ R
m.

3. Separable Convex Functions and ǫ-subdifferential formulas

In this section, we establish ǫ-subdifferential sum formulas as well as some Fenchel duality
results for separable convex functions. To do this , we recall the following results which
is essentially due to [4, 5]. For related results, see [11, 12]. We state it in a version that
is convenient to us.

Theorem 3.1. Let n ∈ N and let fi ∈ Γ(Rm) (1 ≤ i ≤ n) with
⋂n

i=1 domfi 6= ∅. Let
f =

∑n
i=1fi. Then the following statements are equivalent:

(i) (ǫ-sum rule)

∂ǫf(x) =
⋃

{

n
∑

i=1

∂ǫifi(x) :
n
∑

i=1

ǫi = ǫ, ǫi ≥ 0 (i ∈ I)

}

∀ ǫ ≥ 0 and x ∈ domf ; (10)

(ii) epif ∗ =
n
∑

i=1

epif ∗
i ;

(iii) (Stable Fenchel duality) For any x∗ ∈ R
m we have

inf
x∈Rm

{f(x)− 〈x∗, x〉} = max

{

−
n
∑

i=1

f ∗
i (x

∗
i ) :

n
∑

i=1

x∗
i = x∗

}

.
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(iv) The infimal convolution is exact for f1, . . . , fn in the sense that

(

n
∑

i=1

fi

)∗

(x∗) = (f ∗
1� . . .�f ∗

n)(x
∗) for all x∗ ∈ R

m.

Moreover, if one of the statements (i)–(iv) holds, then the following assertion holds

(v) (Fenchel duality)

inf
x∈X

f(x) = max

{

−
n
∑

i=1

f ∗
i (x

∗
i ) :

n
∑

i=1

x∗
i = 0

}

.

Lemma 3.2. Let n ∈ N and fi ∈ Γs(R) (1 ≤ i ≤ n) with
⋂n

i=1 domfi 6= ∅. Then we
have

∑n
i=1 epif

∗
i is closed and hence

epi

(

n
∑

i=1

fi

)∗

=
n
∑

i=1

epif ∗
i .

Proof. Since
⋂n

i=1 domfi 6= ∅, it follows that ∑n
i=1 fi is a proper lower semicontinuous

convex function on R. By induction, we only need to consider the case when n = 2.
Note that domfi (i = 1, 2) are closed convex subsets of R. Without loss of generality,
we may assume that domfi = [ai, bi] for some ai, bi ∈ R (i = 1, 2) with bi > ai. Let x ∈
[a0, b0]∩[a1, b1] (this is possible since domf1∩domf2 6= ∅). Denote [a, b] := [a0, b0]∩[a1, b1].
If a < b, it follows that int(domf1 ∩ domf2) 6= ∅ and hence the conclusion follows
(

see (8)
)

. Therefore, we assume without loss of generality that a = b. In this case,
domf1 ∩ domf2 = {x} for some x ∈ R. We may further assume that b0 = a1 = x. Next,
we claim that

∂f1(x) + ∂f2(x) = R. (11)

Granting this, it follows that for any ǫ ≥ 0

∂ǫ(f1 + f2)(x) ⊆ R = ∂f1(x) + ∂f2(x) ⊆
⋃

{∂ǫ0f1(x) + ∂ǫ1f2(x) : ǫ0 + ǫ1 = ǫ}

Note that ∂ǫ(f1 + f2)(x) = ∅ for any x 6= x (since dom(f1 + f2) = {x}). It follows from
(i) ⇔ (iii) of Theorem 3.1 that the conclusion holds.

We now establish (11). Since proper lower semicontinuous function on R is continuous on
the closure of its domain (cf. [13]), we have f1 is continuous on [a0, x] and f2 is continuous
on [x, b1]. This together with a0 < x, x < b1 and ∂fi(x) 6= ∅ (by fi ∈ Γs(R

m)) (i = 1, 2)
implies that

(∂f1(x))∞ = Ndomf1(x) = Ndomf1
(x) = N[a0, x](x) = R+

and
(∂f2(x))∞ = Ndomf2(x) = Ndomf2

(x) = N[x, b1](x) = R−.

Thus, one has ∂f1(x) = [a∗0,+∞) and ∂f2(x) = (−∞, a∗1] for some a∗i ∈ R (i = 1, 2).
Therefore, (11) holds and this finishes the proof.

The following example shows that our assumption “each fi ∈ Γs(R)� cannot be dropped.
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Example 3.3. Consider f1(x) = δ(−∞,−1](x) and f2(x) = δ[−1,1](x)−
√
1− x2. It is clear

that ∂f2(−1) = ∅ but ∂(f1 + f2)(−1) = R. Thus the sum rule fails. Therefore, from
Theorem 3.1 (i) ⇔ (ii), we see that epif ∗

1 + epif ∗
2 is not closed.

Theorem 3.4. Let n,m ∈ N and fi ∈ Γs(R
m) (1 ≤ i ≤ n) be separable convex functions

on R
m with

⋂n
i=1 domfi 6= ∅. Then we have

epi

(

n
∑

i=1

fi

)∗

=
n
∑

i=1

epif ∗
i .

Proof. Define f : Rm → R ∪ {+∞} by

f(x) =
n
∑

i=1

fi(x) ∀x ∈ R
m.

Since
⋂n

i=1 domfi 6= ∅, it follows that f is a proper lower semicontinuous convex function
on R

m. In view of the second relation of (7), it suffices to show that

gphf ∗ ⊆
n
∑

i=1

epif ∗
i ,

where gphf ∗ := {(x∗, r) : r = f ∗(x∗)}. To do this, let (x∗, f∗(x∗)) ∈ gphf ∗. Since fi (1 ≤
i ≤ n) are separable convex functions Rm, we may assume that for each i ∈ {1, . . . , n}

fi(x) =
m
∑

l=1

gil(xl) ∀x = (x1, . . . , xm) ∈ R
m, (12)

for some proper lower semicontinuous convex function gil (1 ≤ l ≤ m) on R and hence

f(x) =
n
∑

i=1

m
∑

l=1

gil(xl) =
m
∑

l=1

n
∑

i=1

gil(xl) ∀x = (x1, . . . , xm) ∈ R
m.

Note that each gil ∈ Γs(R) (l ∈ {1, . . . ,m}, i ∈ {0, . . . , n}) since fi ∈ Γs(R
m). For each

l ∈ {1, . . . ,m}, let gl : R → R ∪ {+∞} be defined by gl(x) =
∑n

i=1 g
i
l(x). Then we have

f(x) =
m
∑

l=1

gl(xl) ∀x = (x1, . . . , xm) ∈ R
m.

It follows that for any x∗ = (x∗
1, . . . , x

∗
m) ∈ R

m,

f ∗(x∗) = sup
x∈Rm

{〈x∗, x〉 − f(x)} = sup
x=(x1,...,xm)∈Rm

{

m
∑

l=1

(〈x∗
l , xl〉 − gl(xl))

}

=
m
∑

l=1

sup
xl∈R

{〈x∗
l , xl〉 − gl(xl)} =

m
∑

l=1

g∗l (x
∗
l ). (13)
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On the other hand, for each l ∈ {1, . . . ,m} (by the preceding Lemma)

(x∗
l , g

∗
l (x

∗
l )) ∈ epig∗l = epi

(

n
∑

i=1

gil

)∗

=
n
∑

i=1

epi(gil)
∗.

Hence, for each l ∈ {1, . . . ,m} there exists (xi∗
l , r

i
l) ∈ epi(gil)

∗ such that

(x∗
l , g

∗
l (x

∗
l )) =

n
∑

i=1

(xi∗
l , r

i
l). (14)

This together with (13) implies that

f ∗(x∗) =
m
∑

l=1

g∗l (x
∗
l ) =

m
∑

l=1

n
∑

i=1

ril =
n
∑

i=1

m
∑

l=1

ril =
n
∑

i=1

si,

where si :=
∑m

l=1 r
i
l . Note from (xi

l, r
i
l) ∈ epi(gil)

∗ and (12) that

si =
m
∑

l=1

ril ≥
m
∑

l=1

(gil)
∗(xi∗

l )

=
m
∑

l=1

sup
xi∈R

{〈xi∗
l , xi〉 − gil(xi)}

= sup
(x1,...,xm)∈Rm

{〈(xi∗
1 , . . . , x

i∗
m), (x1, . . . , xm)〉 − fi(x1, . . . , xm)}

= f ∗
i (x

i∗
1 , . . . , x

i∗
m).

It now follows from (14) that (x∗, f∗(x∗)) ∈∑n
i=1 epif

∗
i . This completes the proof.

The following example shows that our assumption, “each fi is separable�, cannot be
dropped.

Example 3.5. Consider I = {1, 2}, X = R
2. Let C1, C2 be closed convex subsets of

X defined by C1 = B((0, 1), 1) and C2 = {(x1, x2) ∈ R
2 : x2 ≤ 0}. Let f1 = δC1

,
f2 = δC2

. Then f := f1 + f2 = δ{0} and hence infx∈X f(x) = 0. Moreover, for any
x∗ := (x∗

1, x
∗
2) ∈ R

m, we have

f ∗
1 (x

∗) = σC1
(x∗) = ‖(x∗

1, x
∗
2)‖+ x∗

2 and f ∗
2 (x

∗) = σC2
(x∗) = δ{0}×[0,∞)(x

∗). (15)

Noting that (f1 + f2)
∗ = σ{0} ≡ 0, we have (1, 0, 0) ∈ epif ∗. We claim that (1, 0, 0) /∈

(epif ∗
1+epif ∗

2 ). To see this, we proceed by contradiction. Suppose there exist (a∗1, a
∗
2, r) ∈

epif ∗
1 and (b∗1, b

∗
2, s) ∈ epif ∗

2 such that

(a∗1, a
∗
2, r) + (b∗1, b

∗
2, s) = (1, 0, 0).

Note that b∗1 = 0 and r, s, b∗2 are all nonnegative (see (15)). It follows that a∗1 = 1 and
r = s = 0. This together with (a∗1, a

∗
2, r) ∈ epif ∗

1 implies that
√

1 + (a∗2)
2 + a∗2 ≤ 0.

However this is impossible and hence (1, 0, 0) ∈ epif ∗\(epif ∗
1 + epif ∗

2 ). In particular, we
have epif ∗ 6= (epif ∗

1 + epif ∗
2 ). This together with Theorem 3.1 (ii) ⇔ (iii) implies that

the stable Fenchel duality fails in this case.
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Using the preceding Theorem, the following corollary follows directly from the implica-
tion (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) in Theorem 3.1.

Corollary 3.6. Let n,m ∈ N and fi ∈ Γs(R
m) (1 ≤ i ≤ n) be separable convex functions

on R
m with

⋂n
i=1 domfi 6= ∅. Let f :=

∑n
i=1 fi. Then the following statements hold.

(1) For each ǫ ≥ 0 and for each x ∈ domf,

∂ǫf(x) =
⋃

{

n
∑

i=1

∂ǫifi(x) :
n
∑

i=1

ǫi = ǫ, ǫi ≥ 0 (i ∈ I)

}

.

(2) The infimal convolution is exact for f1, . . . , fn in the sense that

(

n
∑

i=1

fi

)∗

(x∗) = (f ∗
1� . . .�f ∗

n)(x
∗) for all x∗ ∈ R

m.

(3) The following stable Fenchel duality holds: for any x∗ ∈ R
m one has

inf
x∈Rm

{f(x)− 〈x∗, x〉} = max

{

−
n
∑

i=1

f ∗
i (x

∗
i ) :

n
∑

i=1

x∗
i = x∗

}

.

4. Convex Programs with Separable Constraints

In this section, we establish ǫ-subgradient optimality conditions for convex programming
problems with separable inequality constraints without a constraint qualification.

Consider the following primal convex programming problem (P ):

(P ) v(P ) = inf{f(x) : gi(x) ≤ 0 for all 1 ≤ i ≤ n},

where f and gi (i = 1, . . . , n) are continuous convex functions on R
m. Its dual problem

can be written as follows:

(D) v(D) = sup
(λ1,...,λn)∈Rn

+

inf
x∈Rm

{

f(x) +
n
∑

i=1

λigi(x)

}

= sup
λ∈Rn

+

inf
x∈Rm

{f(x) + 〈λ, g〉(x)}

where g(x) = (g1(x), . . . , gn(x)) and 〈λ, g〉 : R
m → R is defined by 〈λ, g〉(x) =

∑n
i=1 λigi(x) (λ ∈ R

n). It is easy to see that v(P ) ≥ v(D), i.e., the weak duality
always holds. We say the zero duality gap holds if v(P ) = v(D). Define the feasible
set C by C := domf ∩ [u ≤ 0]) where [u ≤ 0] := {x : u(x) ≤ 0} and u = max1≤i≤n gi.
Throughout this section, we always assume C 6= ∅. We say x is a feasible point of P if
x ∈ C. Moreover, we say x is a solution of (P ) if x is feasible and f(x) = v(P ).

Recently, Tseng [16] established the following zero duality gap result for a separable
convex programming problem, which will be used to derive subgradient conditions char-
acterizing optimality.
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Lemma 4.1 (cf. [16]). Let f and gi (1 ≤ i ≤ n) be proper lower semicontinuous sepa-
rable convex functions with domf ⊆ ⋂n

i=1 domgi. Let u := max1≤i≤n gi with domf
⋂

[u ≤
0] 6= ∅. Then

inf
x∈[u≤0]

f(x) = sup
λi≥0,1≤i≤n

inf
x∈Rm

{

f(x) +
n
∑

i=1

λigi(x)

}

.

Using Lemma 4.1, we are now able to represent the normal cone, N[u≤0](x) at x in
terms of ǫ-subgradients, which allows us to derive optimality conditions characterizing
optimality without a constraint qualification.

Theorem 4.2. Let gi (1 ≤ i ≤ n) be continuous separable convex functions on R
m and

let g := (g1, . . . , gn). Let u := max1≤i≤n gi with [u ≤ 0] 6= ∅. Then, for each x ∈ [u ≤ 0],

N[u≤0](x) =
⋂

ǫ>0

⋃

λ∈Rn
+

(〈λ,g〉)(x)∈[−ǫ,0]

∂ǫ(〈λ, g〉)(x).

Proof. For each x ∈ [u ≤ 0], the inclusion

N[u≤0](x) ⊇
⋂

ǫ>0

⋃

λ∈Rn
+

(〈λ,g〉)(x)∈[−ǫ,0]

∂ǫ(〈λ, g〉)(x) (16)

always holds. To show the reverse inclusion, let x ∈ [u ≤ 0] and let x∗ ∈ N[u≤0](x). Then
x solves the following minimization problem

(P ) min 〈−x∗, z〉
s.t. z ∈ [u ≤ 0].

Its dual problem is (D) supλ∈Rn
+
infz∈Rm{〈−x∗, z〉+ (〈λ, g〉)(z)}. Since 〈−x∗, ·〉 is affine,

[u ≤ 0] 6= ∅ and each gi is continuous on R
m, it follows from Lemma 4.1 that

〈−x∗, x〉 = inf
z∈[u≤0]

〈−x∗, z〉 = sup
λ∈Rn

+

inf
z∈Rm

{〈−x∗, z〉+ (〈λ, g〉)(z)}.

Then, for each ǫ > 0, there exists λǫ ∈ R
n
+ such that

〈−x∗, z〉+ 〈λǫ, g(z)〉 ≥ 〈−x∗, x〉 − ǫ/2 for all z ∈ R
m. (17)

Letting z = x and noting that x ∈ [u ≤ 0], λǫ ∈ R
n
+, one has (〈λ, g〉)(x) ∈ [−ǫ/2, 0].

This together with (17) implies that for each z ∈ R
m 〈x∗, z − x〉 ≤ (〈λǫ, g〉)(z) + ǫ/2 ≤

(〈λǫ, g〉)(z)− (〈λǫ, g〉)(x) + ǫ. That is to say, x∗ ∈ ∂ǫ(〈λǫ, g〉)(x). Therefore, one has

x∗ ∈
⋂

ǫ>0

⋃

λ∈Rn
+

(〈λ,g〉)(x)∈[−ǫ,0]

∂ǫ(〈λ, g〉)(x).

This completes the proof.

The characterization of optimality now follows from the preceding Lemma.
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Theorem 4.3. Let f be a continuous convex function on R
m. Let gi (1 ≤ i ≤ n) be

continuous convex separable functions on R
m. Let a be a feasible point of (P ). Then, a

is a solution of (P ) if and only if there exist sequences {ǫk} ⊂ R+ and {λk} ⊂ R
n
+ such

that ǫk → 0 and λi
kgi(a) → 0, (i = 1, . . . , n), as k → ∞, and

∀k, 0 ∈ ∂f(a) +
n
∑

i=1

∂ǫk(λ
i
kgi)(a).

Proof. [(1 ) ⇒ (2 ).] Since a is a solution of the problem (P ), a ∈ [u ≤ 0] and for all
x ∈ [u ≤ 0]

f(a) + δ[u≤0](a) ≤ f(x) + δ[u≤0](x).

So, 0 ∈ ∂(f+δ[u≤0])(a). Since f is continuous on R
m, it follows from the standard convex

sum rule that

0 ∈ ∂f(a) +N[u≤0](a).

It now follows from the preceding Lemma that

0 ∈ ∂f(a) +
⋂

ǫ>0

⋃

λ∈Rn
+

(〈λ,g〉)(a)∈[−ǫ,0]

∂ǫ(〈λ, g〉)(a).

Let {ǫk} be a sequence satisfying ǫk > 0 and ǫk → 0. Then, for each k ∈ N, there exists
λk = (λ1

k, . . . , λ
n
k) ∈ R

n
+ such that

n
∑

i=1

λi
kgi(a) = (〈λk, g〉)(a) ∈ [−ǫk, 0]

and

0 ∈ ∂f(a) + ∂ǫk(〈λk, g〉)(a) = ∂f(a) +
n
∑

i=1

∂ ǫk

n

(λi
kgi)(a),

where the last equality follows from Corollary 3.6 (1). Note that λi
kgi(a) ≤ 0 (since

λi
k ≥ 0 and a is a solution). Thus statement (2) follows.

[(2 ) ⇒ (1 )] Note from Corollary 3.6 (1) that

n
∑

i=1

∂ǫk(λ
i
kgi)(a) = ∂nǫk

(

n
∑

i=1

λi
kgi

)

(a).

This direction follows directly from the definitions of convexity and ǫ-subdifferentials.

We now present two examples. The first example illustrates the case where a con-
vex program with separable constraints satisfies our ǫ-subgradient optimality conditions
whereas the standard Lagrange multiplier rule fails. The second example shows that the
assumption, “gi is separable�, in the preceding theorem cannot be dropped.
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Example 4.4. Let m = n = 2 and let f(x1, x2) = x1 and g(x1, x2) = (g1(x1, x2),
g2(x1, x2)) where g1(x1, x2) = x2 and g2(x1, x2) = x2

1 − x2. It is clear that f is a real-
valued convex function and gi (i = 1, 2) are real-valued convex separable functions. Let
a0 := (0, 0) and let ǫk = 1/4k and λk = (λ1

k, λ
2
k) = (k, k). It is clear that ǫk → 0

and λk ∈ R
2
+ and (〈λk, g〉)(a0) = 0. Since, for all ǫ ≥ 0, µ > 0, ∂ǫf(a0) = (1, 0),

∂ǫ(µg1)(a0) = (0, µ) and

∂ǫ(µg2)(a0) = [−2
√
µǫ, 2

√
µǫ]× {−µ}. (18)

Thus, one has ∂f(a0) = (1, 0), ∂ǫk(λ
1
kg1)(a0) = (0, k) and ∂ǫk(λ

2
kg2)(a0) = [−1, 1]×{−k}.

Therefore, one has

(0, 0) = (1, 0) + (0, k) + (−1,−k) ∈ ∂f(a0) + ∂ǫk(λ
1
kg1)(a0) + ∂ǫk(λ

2
kg2)(a0).

Thus, from the preceding Theorem, a0 is a minimizer of the corresponding problem (P ).
Moreover, we note that the standard Lagrange multiplier rule fails at a0. Indeed, since
∂f(a0) = (1, 0), ∂g1(a0) = (0, 1) and ∂g2(a0) = (0,−1). We see that there do not exist
λ1, λ2 ≥ 0 such that 0 ∈ ∂f(a0) + λ1∂g1(a0) + λ2∂g2(a0).

Example 4.5. Let m = 2, n = 1. Let f(x1, x2) = 2x2 and g1(x1, x2) =
√

x2
1 + x2

2 − x1.
It is clear that g1 is not separable. It is clear that a0 = (0, 0) is the unique feasible point
and hence is the unique solution of the corresponding problem (P ). Note that ‖ · ‖ is
sublinear and hence ∂ǫ‖ · ‖

(

(0, 0)
)

= ∂‖ · ‖
(

(0, 0)
)

= B((0, 0); 1). Thus, for all λ ≥ 0, one
has

∂ǫ(λg1)
(

(0, 0)
)

:=

{

λ
(

∂ǫ/λ‖ · ‖
(

(0, 0)
)

+ (−1, 0)
)

= λB((−1, 0); 1), if λ > 0,

(0, 0) if λ = 0.
(19)

Thus for any ǫ, λ ≥ 0, one has

∂f(a0) + ∂ǫ(λg1)(a0) ⊆ (0, 2) + λB((−1, 0); 1).

Since (0, 0) /∈ (0, 2) + λB((−1, 0); 1) for all λ ≥ 0. It follows that the ǫ-subgradient
optimality condition fails in this case.
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