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1. Introduction

Proximity control for bundle methods has been known for a long time, but its use is too
often restricted to convex optimization, where its full strength cannot be gauged. As
we shall demonstrate, as soon as the management of the proximity control parameter
follows the lines of a trust region strategy, many nonconvex and nonsmooth locally
Lipschitz functions can be optimized. In contrast, in the convex case, the proximity
control parameter can usually be frozen, which suggests that under convexity the full
picture is not seen, and something of the essence is missing to understand this mechanism.
The method we discuss here will be developed in the context of a specific application,
because that is where the motivation of our work arises from, but we will indicate in
which way the method can be generalized to much larger classes of functions.

The application we have in mind is optimizing the H∞-norm, which is structurally of
the form

f(x) = sup
ω∈[0,∞]

λ1 (F (x, ω)) , (1)

where F : Rn × [0,∞] → Sm is an operator with values in the space Sm of m × m
symmetric or Hermitian matrices, equipped with the scalar product X • Y = Tr(XY ),
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and where λ1 denotes the maximum eigenvalue function on S
m. We assume that F is

jointly continuous in the variable (x, ω) and of class C2 in the variable x, so that F ′′(x, ω)
is still jointly continuous. Here derivatives always refer to the variable x. Our exposition
will show how these hypotheses can easily be relaxed. The program we wish to solve is

min
x∈Rn

f(x), (2)

where f has the form (1).

The approach presented here was originally developed in the context of eigenvalue opti-
mization, and [9] gives an overview of the history. The bases for the present extension
to the semi-infinite case were laid in [3, 5, 2, 47, 12, 6, 7]. Our method is inspired
by Helmberg and Rendl’s spectral bundle method [28], where large semidefinite pro-
grams arising as relaxations of quadratic integer programming problems are developed.
Helmberg and Rendl optimize a convex eigenvalue function of the form λ1(A(x)), where
A : Rn → Sm is affine. This method has also antecedents in classical bundling, like
Lemaréchal [37, 38, 39, 40] or Kiwiel [34, 35, 33]. Extensions of the convex case to
include bound constraints are given in [26].

Optimization of the H∞-norm is an important application in feedback control synthesis,
which has been pioneered by E. Polak and co-workers. See for instance [41, 42, 45] and
the references given there. Our own approach to optimizing the H∞ norm is developed
in [5, 2, 6]. A version for maximum eigenvalue functions is presented in [9].

The structure of the paper is as follows. After some preparation in Sections 2 and 3, the
core of the algorithm is explained in Section 5. The algorithm is presented in Section 7.
Convergence proofs for the inner and outer loop follow in Sections 8 and 9. Numerical
experiments in H∞-synthesis are presented in Section 10.

2. Preparation

Observe that our objective function has the form

f(x) = max
ω∈[0,∞]

f(x, ω), (3)

where each f(x, ω) = λ1 (F (x, ω)) is a composite maximum eigenvalue function. Recall
that the maximum eigenvalue function λ1 : Sm → R is the support function of the
compact convex set

C = {Z ∈ S
m : Z � 0, Tr(Z) = 1},

where � 0 means positive semidefinite. In other words,

f(x) = max
ω∈[0,∞]

max
Z∈C

Z • F (x, ω). (4)

Due to compactness of C and [0,∞], the suprema in (4) are attained. This suggests
introducing an approximation of f in a neighbourhood of x, which is

φ(y, x) = max
ω∈[0,∞]

λ1 (F (x, ω) + F ′(x, ω)(y − x)) (5)

= max
ω∈[0,∞]

max
Z∈C

Z • (F (x, ω) + F ′(x, ω)(y − x))
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where the derivative F ′(x, ω) refers to the variable x. As (5) uses a Taylor expansion of
the operator F in a neighbourhood of x, we expect φ(y, x) to be a good model of f for
y near x. This is confirmed by the following

Lemma 2.1. Let B ⊂ R
n be a bounded set. Then there exists a constant L > 0 such

that

|f(y) − φ(y, x)| ≤ L‖y − x‖2

for all x, y ∈ B.

Proof. By Weil’s theorem we have

λm(E) ≤ λ1(A+ E) − λ1(A) ≤ λ1(E)

for all matrices A,E ∈ Sm. We apply this with A = F (y, ω) and A + E = F (x, ω) +
F ′(x, ω)(y − x). Now observe that by hypothesis on F there exists L > 0 such that

sup
z∈B

sup
ω∈[0,∞]

‖F ′′(z, ω)‖ ≤ L.

This proves E = O(‖y−x‖2), uniformly over x, y ∈ B and uniformly over ω ∈ [0,∞].

The following is a specific property of the H∞-norm, which can be exploited algorithmi-
cally. A proof can be found in [13] or [12].

Lemma 2.2. The set Ω(x) = {ω ∈ [0,∞] : f(x) = f(x, ω)} is either finite, or Ω(x) =
[0,∞].

We call Ω(x) the set of active frequencies. A system where Ω(x) = [0,∞] is called
all-pass. This is rarely encountered in practice.

For later use let us mention a different way to represent the convex model φ(y, x). We
introduce the notations

α(ω, Z) = Z • F (x, ω) ∈ R, g(ω, Z) = F ′(x, ω)⋆Z ∈ R
n.

and we let
G = co {(α(ω, Z), g(ω, Z)) : ω ∈ [0,∞], Z ∈ C} ,

where co(X) is the convex hull of X. Then we have the following equivalent representa-
tion of the model:

φ(y, x) = max{α + g⊤(y − x) : (α, g) ∈ G}. (6)

3. Tangent program

Suppose x is the current iterate of our algorithm to be designed. In order to generate
trial steps away from x, we will recursively construct approximations φk(y, x) of φ(y, x)
of increasing quality. Using the form (6) we will choose suitable subsets Gk of the set G
and define

φk(y, x) = max{α + g⊤(y − x) : (α, g) ∈ Gk}. (7)



644 P. Apkarian, D. Noll, O. Prot / A Proximity Control Algorithm to Minimize ...

Clearly φk ≤ φ, and a suitable strategy will assure that the φk get closer to the model
φ as k increases. Once the model Gk is formed, a new trial step yk+1 is generated by
solving the tangent program

min
y∈Rn

φk(y, x) + δk

2
‖y − x‖2, (8)

where δk > 0 is the proximity control parameter, which will be adjusted anew at each
step k. Here we make the implicit assumption that solving (8) is much easier than solving
the original problem.

Suppose the solution of (8) is yk+1. Following standard terminology in nonsmooth op-
timization, yk+1 will be called a serious step if it is accepted to become the new iterate
x+. On the other hand, if yk+1 is not satisfactory and has to be rejected, it is called a
null step. In that case, a new model Gk+1 is built, using information from the previous
Gk, and integrating information provided by yk+1. The proximity parameter is updated,
δk → δk+1, and the tangent program is solved again. In other words, the construction of
the Gk in (7) is recursive.

In order to guarantee convergence of our method, we have isolated three basic properties
of the sets Gk. The most basic one is that φk(x, x) = φ(x, x) = f(x), and this is covered
by the following:

Lemma 3.1. Let ω0 ∈ Ω(x) be any of the active frequencies at x. Choose a normalized

eigenvector e0 associated with the maximum eigenvalue f(x) = λ1(F (x, ω0)) of F (x, ω0),
and let Z0 := e0e

⊤
0 ∈ C. If (α(ω0, Z0), g(ω0, Z0)) ∈ Gk, then φk(x, x) = φ(x, x) = f(x). �

A second more sophisticated property of our model φk(·, x) is that it is improved at each
step by adding suitable affine support functions of φ(·, x), referred to as cutting planes.
Suppose a trial step yk+1 away from x is computed via (8), based on the current model
φk(·, x) with approximation Gk and proximity control parameter δk. If yk+1 fails because
the progress in the function value is not satisfactory (null step), we add an affine support
function of φ(·, x) to the next model φk+1(·, x). This will assure that the bad step yk+1

will be cut away at the next iteration k + 1, hopefully paving the way for something
better to come. What we have in mind is made precise by the following:

Lemma 3.2. Let ωk+1 ∈ [0,∞] and Zk+1 ∈ C be where the maximum (5) for the solution

yk+1 of (8) is attained, that is,

φ(yk+1, x) = Zk+1 •
(
F (x, ωk+1) + F ′(x, ωk+1)(y

k+1 − x)
)
.

If (α(ωk+1, Zk+1), g(ωk+1, Zk+1)) ∈ Gk+1, then we have φk+1(y
k+1, x) = φ(yk+1, x).

We need yet another support function to improve the model, and this is usually called the
aggregation element. The idea is as follows. As we keep updating our approximation and
Gk, we expect our model φk(·, x) to get closer to f . The easiest way to assure this would
seem to let the sequence increase: Gk ⊂ Gk+1, so that previous attempts (null steps) are
perfectly memorized. However, this would quickly lead to overload. To avoid this, we
drive φk toward φ in a more sophisticated way by a clever use of the information obtained
from the null steps. As we have seen, adding a cutting plane avoids the last unsuccessful
step yk+1. This could be considered a reality check, where φk is matched with φ. What
is further needed is relating φk+1 to its past, φk, and this is what aggregation is about.
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According to the definition of yk+1 as minimum of the tangent program (8) we have
0 ∈ ∂φk(y

k+1, x) + δk(y
k+1 − x). The way φk is built in (7) shows that this may be

written as

0 =
r∑

i=1

τ ∗i g
∗
i + δk(y

k+1 − x) (9)

for certain τ ∗i ≥ 0 summing up to 1, and (α∗
i , g

∗
i ) ∈ Gk. We let

α∗ =
r∑

i=1

τ ∗i α
∗
i , g∗ =

r∑

i=1

τ ∗i g
∗
i , (10)

and keep (α∗, g∗) ∈ Gk+1. Notice that this pair belongs indeed to G by convexity, and
because Gk ⊂ G.

Altogether, we have now isolated three properties, which our approximations Gk have to
satisfy:

(G1) Gk contains at least one pair (α(ω0, Z0), g(ω0, Z0)), where ω0 ∈ Ω(x) is an active
frequency, Z0 = e0e

⊤
0 for a normalized eigenvector e0 of F (x, ω0) associated with

λ1 (F (x, ω0)).

(G2) For every null step yk+1, Gk+1 contains a pair (α(ωk+1, Zk+1), g(ωk+1, Zk+1)), where
ωk+1, Zk+1 satisfy φ(yk+1, x) = Zk+1 • [F (x, ωk+1) + F ′(x, ωk+1)(y

k+1 − x)].

(G3) If δk(x−yk+1) ∈ ∂φk(y
k+1, x) for a null step yk+1, then Gk+1 contains the aggregate

pair (α∗, g∗) satisfying (9) and (10).

As we shall see, these properties guarantee a weak form of convergence of our method.
Practical considerations, however, require richer sets Gk which in general are no longer
finitely generated. The way these are built is explained in the next section. To conclude,
we state the consequences of the three axioms in the following

Lemma 3.3. Axioms (G1)– (G3) guarantee that φk(x, x) = φ(x, x) = f(x), that

φk+1(y
k+1, x) = φ(yk+1, x), that φk+1(y

k+1, x) ≥ φk(y
k+1, x), and that relation (9) is

satisfied.

4. Solving the tangent program

Our numerical experience shows that it is useful to generate approximations Gk larger
than what is required by the minimal axioms (G1)–(G3). More precisely, we will keep
the procedures in (G2) and (G3), but improve on (G1).

Consider the case where the set Ω(x) of active frequencies is finite. We let Ωk be a finite
extension of Ω(x), enriched along the lines discussed in [5]. For every ω ∈ Ωk, we allow
all sets Zω ∈ C of the form

Zω = QωYωQ
⊤
ω , Yω � 0, Tr(Yω) = 1, (11)

where the columns of Qω are an orthonormal basis of some invariant subspace of F (x, ω),
containing the eigenspace associated with the maximum eigenvalue. This assures axiom
(G1), because ω0 ∈ Ωk at all times, and because e0 belongs to the span of the columns of
Qω0

. Similarly, to force (G2), for every null step yk+1 we simply have to keep ωk+1 ∈ Ωk+1
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and let the normalized eigenvector ek+1 of F (x, ωk+1) +F ′(x, ωk+1)(y
k+1 − x) associated

with λ1 be in the span of the columns of Qωk+1
. Then

Gk = {(α(ω, Zω), g(ω, Zω)) : ω ∈ Ωk, Yω � 0,Tr(Yω) = 1} ∪ {(α∗, g∗)}, (12)

where (α∗, g∗) is the aggregate from the previous sweep k − 1. Notice that co(Gk) 6⊂
co(Gk+1) in general, because the active frequencies change at each step.

Let us now pass to the more practical aspect on how setting up and solving the tangent
program (8) at each step. Writing the tangent program in the form

min
y∈Rn

max
(α,g)∈co(Gk)

α + g⊤(y − x) +
δk
2
‖y − x‖2

we can use Fenchel duality to swap the min and max operators. The then inner infimum
over y is unconstrained and can be computed explicitely, which leads to y = x − δ−1

k g.
Substituting this back gives the following form of the dual program

max
(α,g)∈co(Gk)

α− 1
2δk

‖g‖2.

This abstract program takes the following more concrete form if we use the sets Gk in
(12):

maximize
∑

ω∈Ωk

Yω •Q⊤
ωF (x, ω)Qω + τα∗ − 1

2δk

∥∥∥∥∥
∑

ω∈Ωk

F ′(x, ω)⋆
[
QωYωQ

⊤
ω

]
+ τg∗

∥∥∥∥∥

2

subject to τ ≥ 0, Yω � 0

τ +
∑

ω∈Ωk

Tr(Yω) = 1

The reader will recognize this as a semidefinite program. The return formula takes the
explicit form

yk+1 = x− 1

δk

(
∑

ω∈Ωk

F ′(x, ω)⋆
[
QωY

∗
ωQ

⊤
ω )
]
+ τ ∗g∗

)
, (13)

where (Y ∗, τ ∗) is the dual optimal solution.

Finally, if we assume that the multiplicity of each maximum eigenvalue is 1, we may
further simplify the dual program. This is most often the case in practice. Indeed, in
this case the matrices Zω = eωyωe

⊤
ω are of rank 1, so in particular yω = 1 is scalar. In

other words, we have a finite set of αω = e⊤ωF (x, ω)eω and gω = F ′(x, ω)⋆eωe
⊤
ω , ω ∈ Ωk,

to which we add the aggregate element (α∗, g∗), and where ωk required for the last
cutting plane is included in Ωk to assure (G2). Arranging this finite set into a sequence
r = 1, . . . , Rk, we can write φk as

φk(y, x) = max
r=1,...,Rk

αr + g⊤r (y − x),

where Rk = |Ωk| + 1.
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Solving the tangent program at stage k can now be obtain by convex duality. We have
the primal form of (8):

min
y∈Rn

max
r=1,...,Rk

αr + g⊤r (y − x) + δk

2
‖y − x‖2.

Standard convex duality shows that the concave dual of this is

maximize

Rk∑

r=1

τrαr −
1

2δk

∥∥∥∥∥

Rk∑

r=1

τrgr

∥∥∥∥∥

2

subject to

Rk∑

r=1

τr = 1

0 ≤ τr ≤ 1, r = 1, . . . , Rk

with unknown variable τ . This is the concave form of a convex quadratic program. The
return formula to recover the solution of the primal from the solution of the dual is

yk+1 = x− 1

δk

Rk∑

r=1

τ ∗r gr,

where τ ∗ is the optimal solution of the dual.

5. Management of the proximity parameter

At the core of our method is the management of the proximity control parameter δk
in (8). In order to decide whether the solution yk+1 of (8) can be accepted as the new
iterate x+, we compute the control parameter

ρk =
f(x) − f(yk+1)

f(x) − φk(yk+1, x)
,

which relates our current model φk(·, x) to the truth f . If φk(·, x) is a good model of f ,
we expect ρk ≈ 1. But we accept yk+1 already when ρk ≥ γ, (serious step), where the
reader might for instance imagine γ = .25. We say that the agreement between f and
φk is good when ρk ≥ Γ, where Γ = .75 makes sense, and we call it bad when ρk < γ.
So we accept steps which are not bad. Notice that bad includes in particular those cases
where ρk < 0. As the denominator in ρk is always > 0, ρk < 0 corresponds to those cases
where yk+1 is not even a descent step for f .

The question is what we should do when yk+1 is bad (null step). Here we compute a
second control quotient

ρ̃k =
f(x) − φ(yk+1, x)

f(x) − φk(yk+1, x)

which compares the models φ and φk. Introduce a similar parameter γ̃ ∈ (0, 1), where
γ < γ̃, but typically only slightly. We say that agreement between φ and φk is bad if
ρ̃k < γ̃, and not bad otherwise. Our decision is now as follows. If ρk < γ and also
ρ̃k < γ̃, then we keep the proximity control parameter unchanged and rely on cutting
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planes and aggregation, being reluctant to increase δk prematurely. Instead we rely on
driving φk closer to φ, hoping that this will also bring it closer to f . On the other hand,
when ρk < γ, but ρ̃k ≥ γ̃, then we are in the more delicate situation where φk is already
reasonably close to φ, yet our trial steps do not work because φ itself is too far from f .
Here it will not suffice to drive φk even closer to φ. We also need to bring φ(·, x) closer
to f . This could only be achieved by tightening proximity control, that is, by increasing
δk. This is what is done in step 7 of the algorithm. Notice however that even here we
continue driving φk toward φ via cutting planes and aggregation, so this process is never
stopped.

Finally, if a serious step is accepted with ρk > Γ, we can take confidence in our model,
and this is where we relax proximity control by reducing δk for the next sweep. This is
arranged in step 4 of the algorithm. It may therefore happen that by a succession of such
successful steps δk approaches 0. This in indeed the ideal case, which in a trust region
context corresponds to the case where the trust region constraint becomes inactive.

Even though this is well-known, it is useful to compare the proximity control model (8)
to the trust region approach

minimize φk(y, x)
subject to ‖y − x‖ ≤ tk

(14)

where tk is the trust region radius. Indeed, following [30, II, Prop. 2.2.3, p. 291] solutions
of (8) and (14) are in one-to-one correspondence in the sense that if yk+1 solves (14) such
that the constraint is active with Lagrange multiplier λk > 0, then yk+1 solves (8) with
δk = λk. Conversely, if yk+1 solves (8) with proximity parameter δk, then it solves (14)
with tk = ‖yk+1 − x‖. It is now clear that increasing δk corresponds to decreasing tk,
and conversely.

6. Recycling subgradients

Apart from the management of the proximity control parameter there is yet another im-
portant difference between convex and nonconvex programs. Namely, in convex bundling
the working model φk(·, x) is not thrown away if a serious step x→ x+ is taken. Indeed,
affine support functions or aggregates of f which have been found during the inner loop
at x are still useful at x+, because they remain affine minorants of f . This is no longer
the case if f is non-convex. In order to recycle some of the information from iteration x
to the next step x+, we have to exploit the specific structure of our objective (2). Indeed,
let m(y) = α + g⊤(y − x) be one of the planes which contribute to the working model
φk(·, x) at x. Then either α = α(ω, Z) and g = g(ω, Z), or α = α∗, g = g∗ in case of an
aggregate. In the first case we have g = F ′(x, ω)∗Z for some Z ∈ C. If we put

g+ = F ′(x+, ω)∗Z, α+ = Z • F (x+, ω),

then the plane m+(y) = α++g+⊤(y−x+) is the recycled version of m(·) at the new point
x+. For aggregate planes this is more complicated, even though principally possible, as
we need to de-aggregate what was aggregated previously.

7. The algorithm

In this section we present our algorithm.
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Proximity control algorithm for minx∈Rn maxω∈[0,∞] f(x, ω)

Parameters 0 < γ < γ̃ < Γ < 1.

0. Initialize outer loop. Choose initial x such that f(x) <∞.

1. Outer loop. Stop at the current x if 0 ∈ ∂f(x). Otherwise compute Ω(x) and
continue with inner loop.

2. Initialize inner loop. Choose initial approximation G1, which contains at least
(α(ω0, Z0), g(ω0, Z0)), where ω0 ∈ Ω(x) and e0 is normalized eigenvector associated
with λ1(F (x, ω0)). Possibly enrich G1 as in (12) via finite extension Ω1 ⊃ Ω(x).
Initialize δ1 > 0. If old memory element for δ is available, use it to initialize δ1. Put
inner loop counter k = 1.

3. Trial step. At inner loop counter k for given Gk and proximity parameter δk, solve
tangent program

min
y∈Rn

φk(y, x) +
δk
2
‖y − x‖2.

The solution is yk+1.

4. Test of progress. Check whether

ρk =
f(x) − f(yk+1)

f(x) − φk(yk+1, x)
≥ γ.

If this is the case, accept trial step yk+1 as the new iterate x+ (serious step). Compute
new memory element:

δ+ =






δk
2

if ρk > Γ

δk otherwise

and go back to step 1. If ρk < γ continue with step 5 (null step).

5. Cutting plane. Select a frequency ωk+1 where φ(yk+1, x) is active and pick a
normalized eigenvector ek+1 associated with the maximum eigenvalue of F (x, ωk+1)+
F ′(x, ωk+1)(y

k+1 − x). Assure Ωk+1 ⊃ Ω(x)∪ {ω0, ωk+1} and that ek+1 is among the
columns of Qωk+1

, e0 among the columns of Qω0
. Possibly enrich Gk+1 as in (12) by

adding more frequencies to Ωk+1.

6. Aggregation. Compute aggregate pair (α∗, g∗) via (9), (10) based on yk+1, and
keep (α∗, g∗) ∈ Gk+1.

7. Proximity control. Compute control parameter

ρ̃k =
f(x) − φ(yk+1, x)

f(x) − φk(yk+1, x)
.

Update proximity parameter δk as

δk+1 =

{
δk, if ρ̃k < γ̃

2δk if ρ̃k ≥ γ̃.

Increase inner loop counter k and go back to step 3.
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8. Finiteness of inner loop

We have to show that the inner loop terminates after a finite number of updates k with
a new iterate yk+1 = x+. This will be proved in the next two Lemmas.

Lemma 8.1. Suppose the inner loop creates an infinite sequence yk+1 of null steps with

ρk < γ. Then there must be an instant k0 such that the control parameter ρ̃k satisfies

ρ̃k < γ̃ for all k ≥ k0.

Proof. Indeed, by assumption none of the trial steps yk+1 passes the acceptance test
in step 4, so ρk < γ at all times k. Suppose now that ρ̃k ≥ γ̃ for an infinity of times
k. Then according to step 7 the proximity parameter δk is increased infinitely often,
meaning δk → ∞.

Using the fact that yk+1 is the optimal solution of the tangent program gives 0 ∈
∂φk(y

k+1, x) + δk(y
k+1 − x). By convexity of φk we have

−δk(yk+1 − x)⊤(x− yk+1) ≤ φk(x, x) − φk(y
k+1, x).

Using φk(x, x) = f(x), assured by keeping ω0 ∈ Ωk and Z0 ∈ Ck at all times (Lemma
3.1), we deduce

δk‖yk+1 − x‖2

f(x) − φk(yk+1, x)
≤ 1. (15)

Now we expand

ρ̃k = ρk +
f(yk+1) − φ(yk+1, x)

f(x) − φk(yk+1, x)

≤ ρk +
L‖yk+1 − x‖2

f(x) − φk(yk+1, x)
(using Lemma 2.1)

≤ ρk +
L

δk
(using (15)).

Since L/δk → 0, we have lim sup ρ̃k ≤ lim sup ρk ≤ γ < γ̃, which contradicts ρ̃k ≥ γ̃ for
infinitely many k.

So far we know that if the inner loop turns forever, this implies that ρk < γ and ρ̃k < γ̃
from some counter k0 onwards. We show that this cannot happen, by proving the
following

Lemma 8.2. Suppose ρk < γ and ρ̃k < γ̃ for all k ≥ k0. Then 0 ∈ ∂f(x).

Proof. 1) Step 7 of the algorithm tells us that we are in the case where the proximity
parameter is no longer increased, and remains therefore constant. Let us say δ := δk for
all k ≥ k0.

2) For later use, let us introduce the function

ψk(y, x) = φk(y, x) + δ
2
‖y − x‖2.
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As we have seen already, the necessary optimality condition for the tangent program
imply

δ‖yk+1 − x‖2 ≤ f(x) − φk(y
k+1, x).

Now remember that in step 6 of the algorithm, and according to axiom (G3), we have
kept the aggregate pair (α∗, g∗) ∈ Gk+1. By its definition (9), (10) we have

φk(y
k+1, x) = α∗ + g∗⊤(yk+1 − x).

Defining a new function

ψ∗
k(y, x) := α∗ + g∗⊤(y − x) + δ

2
‖y − x‖2

we therefore have

ψ∗
k(y

k+1, x) = ψk(y
k+1, x) and ψ∗

k(y, x) ≤ ψk+1(y, x), (16)

the latter because (α∗, g∗) ∈ Gk+1, so that this pair contributes to the new models φk+1,
ψk+1. Notice that ψ∗

k is a quadratic function. Expanding it at yk+1 gives

ψ∗
k(y, x) = ψ∗

k(y
k+1, x) + ∇ψ∗

k(y
k+1, x)(y − yk+1) + δ

2
(y − yk+1)⊤(y − yk+1),

where ∇ψ∗
k(y, x) = g∗ + δ(y − x) and ∇2ψ∗

k(y, x) = δI. We now prove the formula

ψ∗
k(y, x) = ψ∗

k(y
k+1, x) + δ

2
‖y − yk+1‖2. (17)

Indeed, we have but to show that the first-order term in the above Taylor expansion
vanishes at yk+1. But this term is

∇ψ∗
k(y

k+1, x)⊤(y − yk+1)

=
[
g∗ + δ(yk+1 − x)

]⊤
(y − yk+1)

= g∗⊤(y − yk+1) + δ(yk+1 − x)⊤(y − yk+1)

= δ(x− yk+1)⊤(y − yk+1) + δ(yk+1 − x)⊤(y − yk+1) (using (9), (10))

= 0,

and so formula (17) is established. Therefore

ψk(y
k+1, x) ≤ ψ∗

k(y
k+1, x) + δ

2
‖yk+2 − yk+1‖2 (using (16) left)

= ψ∗
k(y

k+2, x) (using (17))

≤ ψk+1(y
k+2, x) (using (16) right)

≤ ψk+1(x, x) (yk+2 is minimizer of ψk+1)

= f(x).

This proves that the sequence ψk(y
k+1, x) is monotonically increasing and bounded above

by f(x), so it converges to some limit ψ∗ ≤ f(x). Since the term δ
2
‖yk+2 − yk+1‖2 is

squeezed in between two terms with the same limit ψ∗, we deduce δ
2
‖yk+2 − yk+1‖2 → 0.

Since the sequence yk is bounded, namely,

‖yk+1‖ ≤ ‖x‖ + δ−1
1 max

ω∈[0,∞]
‖F ′(x, ω)⋆‖
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by formula (13), we deduce using a geometric argument that

‖yk+2 − x‖2 − ‖yk+1 − x‖2 → 0. (18)

Recalling the relation φk(y, x) = ψk(y, x) − δ
2
‖y − x‖2, we finally obtain

φk+1(y
k+2, x) − φk(y

k+1, x)

= ψk+1(y
k+2, x) − ψk(y

k+1, x) − δ
2
‖yk+2 − x‖2 + δ

2
‖yk+1 − x‖2 → 0, (19)

which converges to 0 due to convergence of ψk(y
k+1, x) proved above, and property (18).

3) Let ek+1 be the normalized eigenvector associated with the maximum eigenvalue of
F (x, ωk+1) + F ′(x, ωk+1)(y

k+1 − x), which we pick in step 5 of the algorithm. Then
gk = F ′(x, ωk+1)

∗ek+1e
⊤
k+1 is a subgradient of φk+1(·, x) at yk+1. That means

g⊤k (y − yk+1) ≤ φk+1(y, x) − φk+1(y
k+1, x).

Using φk+1(y
k+1, x) = φ(yk+1, x) from Lemma 3.3 therefore implies

φ(yk+1, x) + g⊤k (y − yk+1) ≤ φk+1(y, x). (20)

Now observe that

0 ≤ φ(yk+1, x) − φk(y
k+1, x)

= φ(yk+1, x) + g⊤k (yk+2 − yk+1) − φk(y
k+1, x) − g⊤k (yk+2 − yk+1)

≤ φk+1(y
k+2, x) − φk(y

k+1, x) + ‖gk‖‖yk+2 − yk+1‖ (using (20))

and this term tends to 0 because of (19), boundedness of gk, and because yk+1−yk+2 → 0.
We conclude that

φ(yk+1, x) − φk(y
k+1, x) → 0. (21)

4) We now show that φk(y
k+1, x) → f(x), and therefore also φ(yk+1, x) → f(x). Suppose

on the contrary that η := f(x) − lim supφk(y
k+1, x) > 0. Choose 0 < θ < (1 − γ̃)η. It

follows from (21) that there exists k1 ≥ k0 such that

φ(yk+1, x) − θ ≤ φk(y
k+1, x)

for all k ≥ k1. Using ρ̃k < γ̃ for all k ≥ k1 gives

γ̃(φk(y
k+1, x) − f(x)) ≤ φ(yk+1, x) − f(x)

≤ φk(y
k+1, x) + θ − f(x).

Passing to the limit implies γ̃η ≥ η− θ, contradicting the choice of θ. This proves η = 0.

5) Having shown φ(yk+1, x) → f(x), we now argue that we must have yk+1 → x. This
follows from the definition of yk+1, because

ψk(y
k+1, x) = φk(y

k+1, x) + δ
2
‖yk+1 − x‖2 ≤ ψk(x, x) = f(x).
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Since φk(y
k+1, x) → f(x) by part 4), we have indeed yk+1 → x. To finish the proof,

observe that 0 ∈ ∂ψk(y
k+1, x) implies

δ(x− yk+1)⊤(y − yk+1) ≤ φk(y, x) − φk(y
k+1, x)

≤ φ(y, x) − φk(y
k+1, x)

for every y. Passing to the limit implies

0 ≤ φ(y, x) − φ(x, x),

because the left hand side converges to 0 in vue of yk+1 → x. By convexity, 0 ∈ ∂φ(x, x).
Since ∂φ(x, x) = ∂f(x), we are done.

9. Convergence of outer loop

All that remains to do now is piece things together and prove global convergence of our
method. We have the following

Theorem 9.1. Suppose x1 ∈ Rn is such that {x ∈ Rn : f(x) ≤ f(x1)} is compact.

Then every accumulation point of the sequence xj of serious iterates generated by our

algorithm is a critical point of f .

Proof. Let xj be the sequence of serious steps. We have to show that 0 ∈ ∂f(x̄) for
every accumulation point x̄ of xj . Suppose at the jth stage of the outer loop the inner
loop accepts a serious step at k = kj. Then xj+1 = ykj+1. By the definition of yk+1 as
minimizer of the tangent program (8) this means

δkj

(
xj − xj+1

)
∈ ∂φkj

(xj+1, xj).

By convexity this can be re-written as

δkj

(
xj − xj+1

)⊤ (
xj − xj+1

)
≤ φkj

(xj , xj) − φkj
(xj+1, xj) = f(xj) − φkj

(xj+1, xj),

the equality φkj
(xj , xj) = f(xj) being true by Lemma 3.1. Since xj+1 = ykj+1 was

accepted in step 4 of the algorithm, we have

f(xj) − φkj
(xj+1, xj) ≤ γ−1

(
f(xj) − f(xj+1

)
.

Altogether
δkj

‖xj − xj+1‖2 ≤ γ−1
(
f(xj) − f(xj+1)

)
.

Summing over j = 1, . . . , J − 1 gives

J−1∑

j=1

δkj
‖xj − xj+1‖2 ≤ γ−1

J−1∑

j=1

f(xj) − f(xj+1) = γ−1
(
f(x1) − f(xJ)

)
.

By hypothesis, f is bounded below on the set of iterates, because the algorithm is of
descent type on the serious steps. Since the f(xJ) are bounded by hypothesis, this
implies convergence of the series

∞∑

j=1

δkj
‖xj − xj+1‖2 <∞.
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In particular δkj
‖xj − xj+1‖2 → 0. We now claim that gj = δkj

(xj − xj+1) → 0.

Suppose on the contrary that there exists an infinite subsequence j ∈ N of N where
gj = δkj

‖xj − xj+1‖ ≥ η > 0. Due to summability of δkj
‖xj − xj+1‖2 we must have

xj − xj+1 → 0 in that case. That in turn is only possible when δkj
→ ∞. We now

construct another infinite subsequence N ′ of N such that δkj
→ ∞, j ∈ N ′, and such

that the doubling rule to increase δk in step 7 of the inner loop of the algorithm was
applied at least once before xj+1 = ykj+1 was accepted. To construct N ′, we associate
with every j ∈ N the last j′ ≤ j where the δ-parameter was doubled while the inner
loop was turning, and we let N ′ consists of all these j′, j ∈ N . It is possible that j′ = j,
but in general we can only assure that

2δkj′−1
≤ δkj′

and δkj′
≥ δkj′+1

≥ · · · ≥ δkj
,

so that N ′ is not necessarily a subset of N . What counts is that N ′ is infinite, that
δkj

→ ∞, (j ∈ N ′), and that the doubling rule was applied for each j ∈ N ′.

Let us say that at outer loop counter j ∈ N ′ it was applied for the last time in the inner
loop at δkj−νj

for some νj ≥ 1. That is, we have δkj−νj+1 = 2δkj−νj
, while the δ parameter

was frozen during the remaining steps before acceptance in the inner loop, i.e.,

δkj
= δkj−1 = · · · = δkj−νj+1 = 2δkj−νj

. (22)

Recall from step 7 of the algorithm that we have ρk < γ and ρ̃k ≥ γ̃ for those k where
the step was not accepted and the doubling rule was applied. That is,

ρkj−νj
=

f(xj) − f(ykj−νj+1)

f(xj) − φkj−νj
(ykj−νj+1, xj)

< γ

and

ρ̃kj−νj
=

f(xj) − φ(ykj−νj+1, xj)

f(xj) − φkj−νj
(ykj−νj+1, xj)

≥ γ̃.

By (22) we now have

1
2
δkj

(
xj − ykj−νj+1

)
∈ ∂φkj−νj

(ykj−νj+1, xj).

Using φkj−νj
(xj , xj) = f(xj) and the subgradient inequality for φkj−νj

(·, xj) at ykj−νj+1

gives

1
2
δkj

(
xj − ykj−νj+1

)⊤ (
xj − ykj−νj+1

)
≤ φkj−νj

(xj , xj) − φkj−νj
(ykj−νj+1, xj)

= f(xj) − φkj−νj
(ykj−νj+1, xj).

This could also be written as

δkj
‖xj − ykj−νj+1‖2

f(xj) − φkj−νj
(ykj−νj+1, xj)

≤ 2. (23)

Substituting (23) into the expression ρ̃kj−νj
gives

ρ̃kj−νj
= ρkj−νj

+
f(ykj−νj+1) − φ(ykj−νj+1, xj)

f(xj) − φkj−νj
(ykj−νj+1, xj)

≤ ρkj−νj
+

L‖xj − ykj−νj+1‖2

f(xj) − φkj−νj
(ykj−νj+1, xj)

(using Lemma 2.1)

≤ ρkj−νj
+

2L

δkj

(using (23)).
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Since ρkj−νj
< γ and L/2δkj

→ 0, (j ∈ N ′), we have lim supj∈N ′ ρ̃kj−νj
≤ lim supj∈N ′ ρkj−νj

≤ γ, contradicting ρ̃kj−νj
≥ γ̃ > γ for all j ∈ N ′. This proves our claim gj → 0 as j → ∞.

Let x̄ be an accumulation point of the sequence xj of serious iterates. We have to prove
0 ∈ ∂f(x̄). Pick a convergent subsequence xj → x̄, j ∈ N . Observe that the sequence
xj+1 is also bounded, so passing to a subsequence of N if necessary, we may assume
xj+1 → x̃, j ∈ N . In general it could happen that x̃ 6= x̄. Only when δkj

, j ∈ N , are

bounded away from 0 can we conclude that xj+1 − xj → 0.

Now as gj = δkj
(xj − xj+1) is a subgradient of φkj

(·, xj) at ykj+1 = xj+1 we have

g⊤j h ≤ φkj
(xj+1 + h, xj) − φkj

(xj+1, xj)

≤ φ(xj+1 + h, xj) − φkj
(xj+1, xj) (using φkj

≤ φ)

for every test vector h. Now we use the fact that ykj+1 = xj+1 was accepted in step 4 of
the algorithm. That means

γ−1
(
f(xj) − f(xj+1)

)
≥ f(xj) − φkj

(xj+1, xj).

Combining these two estimates gives

g⊤j h ≤ φ(xj+1 + h, xj) − f(xj) + f(xj) − φkj
(xj+1, xj)

≤ φ(xj+1 + h, xj) − f(xj) + γ−1
(
f(xj) − f(xj+1)

)
.

Passing to the limit (using gj → 0, xj+1 → x̃, xj → x̄, f(x̄) = φ(x̄, x̄), and f(xj) −
f(xj+1) → 0 in the order named) shows

0 ≤ φ(x̃+ h, x̄) − φ(x̄, x̄)

for every h. This being true for every h, we can fix h′ and choose h = x̄− x̃+ h′, which
then gives

0 ≤ φ(x̄+ h′, x̄) − φ(x̄, x̄).

As this is true for every h′, we have 0 ∈ ∂φ(·, x̄)(x̄), and hence also 0 ∈ ∂f(x̄).

10. Numerical Experiments

H∞ feedback controller synthesis was one of the motivating application for the devel-
oppement of the proximity control bundle algorithm presented in Section 7. We consider
a linear time invariant dynamical system in the standard LFT form




ẋ
z
y



 =




A B1 B2

C1 D11 D12

C2 D21 D22



 ·




x
w
u



 ,

where x ∈ Rnx is the state, y ∈ Rny the output, u ∈ Rnu the command input and
w ∈ Rnw , z ∈ Rnz the performance channel. To cancel direct transmission from input
u to output y, the assumption D22 = 0 is made. This is no loss of generality (see [49],
chapter 17).
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Let K be a static feedback controller, then the closed loop state space data and transfer
function T (K, ·) read {

ẋ = A(K)x+B(K)w

z = C(K)x+D(K)w,
(24)

T (K, jω) = C(K)(jωI − A(K))−1B(K) +D(K), (25)

where
A(K) = A +B2KC2, B(K) = B1 +B2KD21,
C(K) = C1 +D12KC2, D(K) = D11 +D12KD21.

(26)

Dynamic controllers can be addressed in the same way by prior augmention of the plant
(26), see e.g. [5].

In H∞ synthesis we compute K to minimize the H∞ norm of the transfer function
T (K, ·), that is,

‖T (K, ·)‖∞ := sup
ω∈[0,∞]

σ1(T (K, jω)),

see e.g. [49]. The standard approach to H∞ synthesis in the literature uses the Kalman-
Yakubovitch-Popov Lemma and leads to a bilinear matrix inequality (BMI) [15]. Here
we use a different and much more direct approach based on our proximity control al-
gorithm. The advantage of this is that Lyapunov variables can be avoided, which is
beneficial because they are a source of numerical trouble. Not only does their number
grow quadratically with the system order, they may also cause strong disparity between
the optimization variables [9]. The price to be paid for avoiding them is that a difficult
semi-infinite and non-smooth program has to be solved. To synthesize a dynamic con-
troller K of order nk ∈ N, nk ≤ nx, the objective f : R(nk+nu)×(nk+ny) → R+ is defined
as

f(K) := max
ω∈[0,∞]

λ1(T (K, jω)AT (K, jω)) = ‖T (K, ·)‖2
∞ , (27)

which is nonsmooth and non-convex with two sources of non-smoothness, the infinite
max operator, and the maximum eigenvalue function.

10.1. Computing the objective

Computation of the function value and the subgradients in (27) presents the main dif-
ficulty. Fortunately this can be done in an efficient way using the bisection algorithm
[14, 44, 49] based on Hamiltonian calculus. The objective f has the following nice prop-
erty: either f(K,ω) has the same constant value for all ω ∈ [0,∞], or the number of
frequencies ω where the maximum is attained is finite, see [12, 13] and Lemma 2.2. In
the sequel we call

Ω(K) := {ω ∈ [0,∞] : σ1(T (K, jω)) = ‖T (K, ·)‖∞}

the set of active frequencies. Now consider the matrix transfer function G defined by

G(jω) :=

[
(jωI − A(K))−1B(K)

I

]A
M

[
(jωI −A(K))−1B(K)

I

]
, (28)
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with M =

[
M11 M12

M21 M22

]
, and the associated Hamiltonian

H :=

[
A(K) − B(K)M−1

22 M21 −B(K)M−1
22 B

⊤(K)
−M11 +M12M

−1
22 M21 −A⊤(K) +M12M

−1
22 B

⊤(K)

]
.

Theorem 10.1. Assume that A(K) has no imaginary eigenvalues and M22 ≺ 0, then

G(jω) is singular iff jω is an eigenvalue of H .

This result is the key element to compute the H∞ norm by computing eigenvalues of H

[44]. Let γ ≥ 0 satisfy the inequality σ1(D) < γ ≤ ‖T (K, ·)‖∞, and consider the matrix

M =

[
C(K)⊤C(K) C(K)⊤D(K)
D(K)⊤C(K) D(K)⊤D(K) − γ2I

]
.

Then G(jω) = T (K, jω)AT (K, jω) − γ2I. Using Theorem 10.1, the frequencies ω ∈
[−∞,∞] satisfying

σ1(T (K, jω)) = γ

can now be computed by finding the purely imaginary eigenvalues jω of the Hamiltonian
H . The bisection algorithm of [14] to compute the H∞ norm is based on this property.
The set of active frequencies Ω(K), needed for the computation of the subgradients of f
is also determined by this algorithm.

10.2. Convex model

A convex local model φ of f at the stability center K ∈ R(nk+nu)×(nk+ny) is defined as

φ(K+, K) = max
ω∈[0,∞]

λ1(T2(K,K
+, jω)),

where

T2(K, Y, jω) := T (K, jω)AT (K, jω) + (T ′(K, jω)(Y −K))AT (K, jω)

+T (K, jω)AT ′(K, jω)(Y −K),

T ′(K, ·) being the derivative of transfer function (25) with respect to controller K. See
[5] for a complete description of T ′(K, ·).
We need to explain how to compute φ(·, K) at a given K+. Notice that φ can not be
written directly as an H∞ norm of a transfer function, because λ1(T2(K,K

+, jω)) can
be negative. In order to use the H∞ norm computation algorithm, some additional work
is needed.

Lemma 10.2. Let k ∈ N and denote

Mk =

[
Ik Ik
Ik 0

]
∈ S

2k.

Then Mk = P⊤
k ∆kPk, where

∆k =

[
r1Ik 0
0 r2Ik

]
, Pk =

[
κ1Ik κ2Ik
−κ2Ik κ1Ik

]
,

with r1 = 1−
√

5
2
, r2 = 1+

√
5

2
, κ1 = cosα, κ2 = sinα, α = arctan

(
1+

√
5

2

)
.
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Proof. Starting with matrix Mk+1, we apply the following sequence of row/column
transpositions: row k/2 ↔ k − 1, column k/2 ↔ 1k − 1, row k/2 ↔ k/2 + 1, and finally
column k/2 ↔ k/2 + 1. The matrix obtained is

[
Mk 0
0 M1

]
.

Repeating this process with the submatrices Mk, Mk−1, and so on, we finally obtain a
block diagonal matrix, where each of the k+ 1 blocks equals M1. Hence Mk has the two
eigenvalues of M1, each with multiplicity k + 1.

Eigenvectors of Mk can now be obtained from those of M1.
[
κ1Ik κ2Ik
−κ2Ik κ1Ik

] [
Ik Ik
Ik 0

] [
κ1Ik κ2Ik
−κ2Ik κ1Ik

]⊤
=

[
κ2

1 + 2κ1κ2Ik κ2
1 − κ2

2 − 2κ1κ2Ik
κ2

1 − κ2
2 − 2κ1κ2Ik κ2

2 − 2κ1κ2Ik

]
.

Using κ2
1 − κ2

2 − 2κ1κ2 = 0, and κ1 = cosα, κ2 = sinα, we deduce

1 − tan2 α− tanα = 0, hence tanα ∈
{

1 −
√

5

2
,
1 +

√
5

2

}
.

Choosing α = arctan
(

1+
√

5
2

)
gives the desired result, while the other case corresponds

to a diagonal matrix with eigenvalues in decreasing order.

Writing the transfer function T2(K, Y, ·) in the factorized form

T2(K, Y, jω) =

[
T (K, jω)

T ′(K, jω)(Y −K)

]A [
I I
I 0

] [
T (K, jω)

T ′(K, jω)(Y −K)

]
,

Lemma 10.2 leads to

T2(K, Y, jω) = T3(K, Y, jω)A [−I 0
0 I

]
T3(K, Y, jω), (29)

where T3(K, Y, ·) is the transfer function defined by

T3(K, Y, jω) =

[√−r1I 0
0

√
r2I

]
Pk

[
T (K, jω)

T ′(K, jω)(Y −K)

]
.

We denote A3, B3, C3, D3 the state space data of transfer function T3(K, Y, ·) and let
γ ∈ R such that

λ1(D
⊤
3 ΣD3) < γ ≤ max

ω∈[0,∞]
λ1(T2(K, Y, jω)).

Define

G3(jω) =

[
(jωI − A3)

−1B3

I

]A
M3

[
(jωI − A3)

−1B3

I

]
,

with

M3 =

[
C⊤

3 ΣC3 C⊤
3 ΣD3

D⊤
3 ΣC3 D⊤

3 ΣD3 − γI,

]
, and Σ :=

[
−I 0
0 I

]
.

Then with Theorem 10.1, the frequencies ω where λ1(T3(K, Y, jω)) = γ can be computed
from the eigenvalues of the associated Hamiltonian matrix. In consequence, the bisection
algorithm of [14] can be generalized to compute the values of φ and also its subgradients.
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Remark 10.3. The fact that φ cannot be directly expressed as an H∞ norm appears
more clearly in factorisation (29), due to multiplication with the non-positive matrix Σ.

10.3. Alternative convex model

The above construction shows that function values and subgradients of φ can be com-
puted using a bisection method similar to the one used to compute the H∞ norm. How-
ever, the transfer function T3(K, Y, ·) is formed by the parallel connection between T (K, ·)
and T ′(K, ·), so its number of states equals the sum of the number of states of T (K, ·)
and T ′(K, ·). Since T (K, ·) has nx states, T ′(K, ·) has 2 × nx states, being the serial
connection of two transfer functions with nx states [5]. Hence, T3(K, Y, ·) has 3 × nx

states, the associated Hamiltonian matrix is then 3 times larger than that of the transfer
function T (K, ·).
For a n × n matrix, the number of floating point operation to compute eigenvalues is
O(n3), as described in the LAPACK benchmark [1]. To compute φ, the computational
cost for eigenvalue identification of the Hamiltonian matrix is then 27 times the cost of
the computation for the transfer function T (K, ·). In other words, φ(Y,K) is 27 times
more expensive than f(Y ), because the cost for the factorization above is approximately
the same as the cost of the factorization needed to compute f . The use of φ is therefore
convenient only for small to medium order systems. When the system order is large,
another convex model with lower computational cost has to be used.

A natural idea is to use a simplified version of φ by performing the frequency maximiza-
tion over an adequatly chosen subset of frequencies. We explain in which way this can
be arranged, so that the arguments in the proof of Theorem 9.1 remain valid.

Consider the model

φ̃(Y,K) := max
ω∈Ω(K)∪Ω(Y )

λ1(T2(K, Y, jω)),

where Ω(K) is the set of active frequencies of f at K, Ω(Y ) active frequencies of f at

Y . At least in the case where Ω(K) ∪ Ω(Y ) is finite, φ̃ can be computed efficiently.

Unfortunately, φ̃ is not suited as a model for f , because it lacks continuity used at the
very end of the proof of Theorem 9.1. Namely, when Ki → K and Yi → Y , it may
happen that lim supi→∞ Ω(Ki)∪Ω(Yi) 6⊃ Ω(K)∪Ω(Y ), because it is well-known that the
number of active peaks and also the eigenvalue multiplicity at each peak may increase
brusquely as we pass to the limit.

Assuming in the following that all Ω(K), Ω(Y ) encountered by our algorithm are finite,
we can arrange a different but still practical way to define a model, which has the
desired semi-continuity property. Let us use the following notation. For any set Ω with
Ω(K) ∪ Ω(Y ) ⊂ Ω ⊂ [0,∞] define

φΩ(Y,K) = sup
ω∈Ω

λ1 (T2(K, Y, jω)) .

Then φ = φ[0,∞] and φ̃ = φΩ(K)∪Ω(Y ). The first Ω is too large (CPU), the second too
small (lack of continuity). We need something intermediate, which we call Ω(K, Y ), and
which will have a weak form of continuity. We will then put

φ̄(Y,K) := φΩ(Y,K)(Y,K) = sup
ω∈Ω(Y,K)

λ1 (T2(K, Y, jω)) .
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Then φ̄(·, K) = φΩ(Y,K)(·, K) ≥ φΩ(K)∪Ω(Y )(·, K) = φ̃(·, K), and therefore φ̄(K,K) =

φ̃(K,K) = f(K). What we need to ascertain when defining Ω(Y,K) is that Ω(K) ∪
Ω(Y ) ⊂ lim supi→∞ Ω(Yi, Ki) for Ki → K, Yi → Y . Then the argument at the end of
the proof of Theorem 9.1 remains valid.

This can be arranged in the following way. Let f(K) > 0 and, fixing 0 < θ < 1, choose
a tolerance level θf(K) < f(K). Now let Ωe(K) be an extended set of frequencies
which contains the peaks ω ∈ Ω(K), but also an additional sample of frequencies ω
in the range θf(K) ≤ λ1 (K,K, jω)) ≤ f(K). Ωe(K) could be a gridding of the set
{ω : θf(K) ≤ λ1 (K,K, jω)) ≤ f(K)}, which is a finite union of open intervals. The
gridding should be arranged to depend continuously on K, and such that it contains
all local maxima of the curve ω 7→ λ1 (T2(K, Y, jω)) in that frequency range. The
idea is that as Ki → K, some of these secondary peaks Ωe(Ki) will become peaks at
K, so that Ω(K) ⊂ lim supi→∞ Ωe(Ki). Put differently, knowledge of the secondary
peaks in the band θf(Ki) < f(Ki) for i sufficiently large allows to anticipate the peaks
at K. Now use a similar construction for Y letting Ωe(Y ) be a gridding of the set
{ω : θ supω∈Ω(Y ) λ1 (T2(K, Y, jω)) ≤ λ1 (T2(K, Y, jω)) ≤ supω∈Ω(Y ) λ1 (T2(K, Y, jω))}.
Finally put Ω(Y,K) = Ωe(Y ) ∪ Ωe(K). Notice that ways to estimate secondary peaks
have been discussed in [12]. Numerical experience shows that these secondary peaks
need not be computed with a very high accuracy. It suffices that the accuracy increases
as these local maxima get closer to the global maximum of the frequency plot, and this
is usually easy to arrange.

In order to guarantee convergence of our algorithmic scheme when φ̄ is used instead of φ,
we need to ascertain that the estimate of Lemma 2.1 remains valid. But this is guaranteed
at all trial points Y visited during the iteration simply by having Ω(Y ) ⊂ Ω(K, Y ). The
uniformity of the constant L follows from Weyl’s theorem used in the proof of Lemma
2.1.

10.4. Implementation and initialisation

We have implemented the proximity control bundle algorithm (PC) for H∞ output feed-
back controller synthesis in Matlab. Both the ideal model φ and its approximation
φ̄ = φΩ(Y,K) have been used to compare performance. For comparison we have included
two software tools for H∞ synthesis. The first is the linesearch method (LS) described
in [5], where descent direction are derived from enhanced subgradient information. The
second one is HIFOO from [16], based on the gradient sampling method of [17].

The same stopping criteria have been used for LS and PC. The algorithm is stopped if
descent of objective and steplength are too small, i.e.

f(K) − f(K+) < ε(|f(K)| + 1) and
∥∥K −K+

∥∥ < ε(‖K‖ + 1),

where ε > 0 is a tolerance parameter, fixed to 1e− 5 in all numerical tests. Stopping in
HIFOO is rather different. We have therefore fixed the numerical tolerance for its stopping
criterion to the same value ε.

LS allows to compute a criticality measure θ, deduced from its tangent program [2].
This criticality measure has been used a posteriori to measure criticality of synthesized
controllers in the static synthesis case.
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There is also another stopping criterion for PC used to avoid entering the inner loop at
near optimal points K, where it may perform a large number of trial steps, only to end
with a serious step with negligeable progress. This stopping criterion is based on the
tangent program. The algorithm is halted if

f(K) − φ̄(K+, K) < ε2,

where number ε2 is chosen small to stop only when the algorithm is stuck in null steps.
In our test we have set ε2 = 0.01 × ε.

plant nx nz nw ny nu γ̄∞
AC2 5 5 3 3 3 0.111495
HE4 8 12 8 6 4 22.838570
AC18 10 5 3 2 2 5.394531
HE6 20 16 6 6 4 2.388637
HE7 20 16 9 6 4 2.611759
JE1 30 8 30 5 3 3.882812
AC14 40 11 4 4 3 100
BDT2 82 4 2 4 4 0.234014

Table 10.1: State dimensions of the models used in numerical experiments. Performance
γ̄∞ of the full-order H∞ controller is shown on the right and gives a lower bound for the
tests in Tables 10.2 and 10.3.

For H∞ synthesis models from the COMPLeiB library [36] have been used: four aircraft
models (AC2, AC10, AC14, and AC18), three helicopter models (HE4, HE6, and HE7),
one jet engine mode (JE1), and one distillation column model (BDT2). State dimensions
of these plants are given in Table 10.1 and range from small to large. The optimal
full-order H∞ performance γ̄∞ has been computed for each plant using the MATLAB
hinfric solver to give a strict lower bound for the locally optimal gains computed by
the algorithms.

For static H∞ synthesis the four methods have been compared. To allow a fair compari-
son, the same initial stabilizing controller has been used to start each algorithms. Notice
however that HIFOO uses a random multistart strategy, so in each run three new initial
points are generated from random perturbations of K0. Then the best result of these
four runs is chosen. In contrast, LS and PC perform only one run not using any random
perturbations. For dynamic synthesis we only compare the proximal bundle method
with model φ̄ to HIFOO.

Finding an initial stabilizing controller is sometimes intricate. Here we use software
based on spectral abscissa optimization developped in [10].

10.5. Results

Results for static H∞ synthesis are displayed in Table 10.2. The final performance γ∞,
CPU time T, and criticality measure |θ| are given for each of the four methods. For LS
and PC the number of outer steps it and mean time by iteration CPU are given. CPU in

and it in are respectively the mean inner iteration, CPU time for PC algorithm, and
total number of inner iterations. As can be seen on this Table, the use of model φ is
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plant, method γ∞ it it in CPU CPU in T |θ|
HE4, LS 34.25801 46 - 1.53e-2 - 0.70 8.8e-3
HE4, PC-φ̄ 23.58456 154 1078 1.02e-2 2.20e-2 25.28 5.7e-3
HE4, PC-φ 23.02933 128 1297 1.43e-2 4.94e-2 65.93 1.9e-3
HE4, HIFOO 22.83907 - - - - 36.67 3.7e-3
HE6, LS 462.52976 289 - 1.91e-2 - 5.52 4.3e-2
HE6, PC-φ̄ 192.35793 548 692 1.14e-2 2.09e-2 20.02 1.2
HE6, PC-φ 192.35718 599 1165 1.48e-2 8.39e-2 106.71 2.7e-4
HE6, HIFOO 192.35881 - - - - 128.78 1.1e-3
AC2, LS 0.11149 57 - 1.24e-2 - 0.71 7.2e-7
AC2, PC-φ̄ 0.11149 147 43 6.20e-3 1.16e-2 1.41 1.3e-4
AC2, PC-φ 0.11149 143 43 6.53e-3 4.48e-2 2.86 1.4e-4
AC2, HIFOO 0.11149 - - - - 0.74 1.7e-6
AC14, LS 104.93211 51 - 5.10e-2 - 2.60 6.3e-4
AC14, PC-φ̄ 102.64676 73 325 2.84e-2 4.12e-2 15.45 1.9e-3
AC14, PC-φ 102.55853 72 227 2.68e-2 2.73e-1 64.00 5.7e-4
AC14, HIFOO 106.36521 - - - - 291.92 2.6
AC18, LS 10.71487 30 - 1.90e-2 - 0.57 6.2-02
AC18, PC-φ̄ 10.70115 68 296 1.00e-2 1.84e-2 6.11 3.8e-2
AC18, PC-φ 10.71141 45 224 1.07e-2 5.41e-2 12.58 3.7e-2
AC18, HIFOO 27.23054 - - - - 13.32 3.8e-4
BDT2, LS 0.82903 70 - 2.72e-1 - 19.04 8.8e-5
BDT2, PC-φ̄ 0.67307 811 1393 8.93e-2 1.01e-1 214.18 7.5e-5
BDT2, PC-φ 0.67301 769 1361 8.98e-2 1.73 2430.00 8.9e-5
BDT2, HIFOO 0.82050 - - - - 1154.26 1.1e-3

Table 10.2: Static H∞ synthesis. Four methods have been compared on 6 plants. The
columns show final objective value γ∞, number of iterations it, number of inner itera-
tions it in, mean iteration time CPU, mean inner iteration time CPU in, total synthesis
time T, and criticality measure |θ|. All cpu’s are in seconds.

much more costly to compute than φ̄ = φΩ(Y,K). For small sized system this difference
is slight, but becomes important for larger plants like BDT2.

Results of PC bundle method with model φ and φ̄ are very close except for the HE4,
where the use of the true model φ leads to a better result. It seems that PC needs fewer
outer and inner iterations often with better quality if the model φ is used. This is not
the case for HE6 and can be explained by the fact that here the algorithm gets stuck at
some ill-conditioned point, where subgradient information is not trustworthy, leading to
many inner iterations with only a small progress in f . In general, the global computation
time for PC with model φ is much larger than with the approximate model φ̄, while it
is still faster than HIFOO for half of the experiments.

Controller synthesis with LS is very fast and gives good results on AC2 and AC18.
However on most examples LS stops earlier than for the other methods, leading to
controllers with slightly worse H∞ performance. This behavior can be explained by the
fact that LS is not suited to handle situation where the first singular values of transfer
function coalesce. This is explained in [5], where for numerical simplifications the authors
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Figure 10.1: HE4 singular value plot of LS method synthesized controller. Selected
frequencies ω ∈ Ωe(K) above the threshold θγ < γ are shown.

made the assumption that the maximal singular value is simple. As can be seen in Figure
10.1, this assumption is not true for the controller synthesized with LS. Coalescence of
singular values also occurs for HE6, AC14 and AC18, indicating that it may not be a
rare phenomenon.

HIFOO performed similar to PC on HE4, HE6 and AC2, while in all other examples the
best results were obtained with PC. Moreover, HIFOO was much slower than PC-φ̄ for all
examples, except for AC2.

Table 10.3 shows results for dynamic controller synthesis of order 0 < nk ≤ nx. Perfor-
mance and CPU were compared between PC-φ̄ and HIFOO for each model. Results are
encouraging, PC-φ̄ is fast and computes controllers which outperform HIFOO for most
examples. Only BDT2 caused trouble, as the PC algorithm got stuck in the inner loop.

plant nk γ∞ PC-φ̄ γ∞ HIFOO T PC-φ̄ T HIFOO

HE6 1 187.42768 187.42745 22.25 102.50
HE6 2 16.44215 19.93352 46.50 168.80
HE6 3 10.03032 10.07088 106.61 175.25
HE7 6 2.87754 10.21527 106.90 403.21
AC10 2 7.63791 10.49584 1165.19 215.59
JE1 5 5.67469 33.67678 252.06 591.40
BDT2 6 5.08779 4.97796 3732.23 3150.41

Table 10.3: Dynamic H∞ synthesis. For each of the 7 models, PC-φ̄ and HIFOO are
compared. γ∞ is the objective value reached by the method, T the total synthesis CPU
in seconds.
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Conclusion

We have presented a proximity control bundle algorithm to optimize the H∞-norm or
other nonsmooth criteria which are infinite maxima of maximum eigenvalue functions
[4, 8]. Global convergence of the algorithm was proved. The method was tested on
examples in feedback control design and shown to have good performance compared to
the linesearch method of [5] and HIFOO [16].
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tion, Proc. IIASA Workshop 1977, C. Lemaréchal, R. Mifflin (eds.), IIASA Proc. Ser. 3,
Pergamon Press, Oxford (1978) 79–102.
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[40] C. Lemaréchal, A. Nemirovskii, Y. Nesterov: New variants of bundle methods, Math.
Program., Ser. B 69 (1995) 111–147.

[41] D. Mayne, E. Polak: Algorithms for the design of control systems subject to singular value
inequalities, Math. Program. Study 18 (1982) 112–134.

[42] D. Mayne, E. Polak, A. Sangiovanni: Computer aided design via optimization, Automatica
18(2) (1982) 147–154.

[43] D. Noll, P. Apkarian: Spectral bundle method for nonconvex maximum eigenvalue func-
tions: first-order methods, Math. Program., Ser. B 104 (2005) 701–727.

[44] P. A. Parrilo: On the numerical solution of LMIs derived from the KYP lemma. in: Proc.
IEEE Conf. Decision and Control 3 (Phoenix, Arizona, 1999) 2334–2338.

[45] E. Polak: On the mathematical foundations of nondifferentiable optimization in engineer-
ing design, SIAM Rev. 29 (1987) 21–89.

[46] E. Polak: Optimization: Algorithms and Consistent Approximations, Applied Mathemat-
ical Sciences 124, Springer, New York (1997).

[47] J.-B. Thevenet, D. Noll, P. Apkarian: Nonlinear spectral SDP method for BMI-constrained
problems: applications to control design, in: Informatics in Control, Automation and
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