On Two Open Problems in Convex Analysis

C. Zălinescu

University "Al. I. Cuza" Iaşi, Faculty of Mathematics, 700506-Iaşi, Romania, and: Institute of Mathematics Octav Mayer, Iaşi, Romania zalinesc@uaic.ro

Dedicated to Stephen Simons on the occasion of his 70th birthday.

Received: March 5, 2008 Revised manuscript received: October 6, 2008

In his recent book "From Hahn–Banach to Monotonicity" S. Simons formulated several open problems. In this short note we give the answer to Problem 11.6 and a short proof to the answer given by R. I. Bot and R. Csetnek to Problem 11.5.

In his recent book [3] S. Simons formulated the following two open problems (see [3, Problems 11.5, 11.6]); the notation is compatible with that in [5].

Problem 1. Let C be a bounded closed convex subset of a Banach space E, x_0 be an extreme point of C, $y^* \in E^*$ and $\varepsilon > 0$. Then does there always exist $M \ge 0$ such that, for all $u, v \in C$, $M ||u + v - 2x_0|| \ge \langle v - x_0, y^* \rangle - \varepsilon$?

Problem 2. Do there exist a nonzero finite dimensional Banach space E and $f, g \in \mathcal{PC}(E)$ such that the pair (f,g) is totally Fenchel unstable?

The answer to Problem 2 is NO, as seen in Proposition 3 below.

Let *E* be a nonzero Banach space and $f, g \in \mathcal{PC}(E) = \Lambda(E)$, that is, f, g are proper convex functions. One says (see [3]) that (f, g) satisfies *Fenchel duality* if there exists $z^* \in E^*$ such that $f^*(-z^*) + g^*(z^*) = (f+g)^*(0)$; (f, g) is *Fenchel stable* if

$$(f+g)^*(x^*) = \min \{ f^*(y^*) + g^*(z^*) \mid y^* + z^* = x^* \} \quad \forall x^* \in E^*.$$
(1)

As in [3] one says that the pair (f,g) is totally Fenchel unstable if (f,g) satisfies Fenchel duality and

$$y^*, z^* \in E^*$$
 and $f^*(y^*) + g^*(z^*) = (f+g)^*(y^*+z^*) \Rightarrow y^*+z^* = 0.$

Notice that for $f, g \in \Lambda(E)$ one has

(f,g) Fenchel stable $\Rightarrow (f,g)$ satisfies Fenchel duality $\Rightarrow \operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. (2)

The first implication is obvious; just take $x^* = 0$ in (1). If dom $f \cap \text{dom } g = \emptyset$ then $f + g = \infty$ and so $(f + g)^* = -\infty$; because f^*, g^* don't take the value $-\infty$, the pair (f, g) does not satisfy the Fenchel duality. Moreover, if (f, g) is Fenchel stable then (f, g)

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

is not totally Fenchel unstable. Indeed, taking $\overline{x}^* \in X^* \setminus \{0\}$, from (1) we get $\overline{y}^*, \overline{z}^* \in X^*$ with $\overline{y}^* + \overline{z}^* = \overline{x}^* \neq 0$ and $(f + g)^*(\overline{x}^*) = f^*(\overline{y}^*) + g^*(\overline{z}^*)$.

Recall that $\Gamma(E) := \{ f \in \Lambda(E) \mid f \text{ is lower semicontinuous} \}.$

Proposition 3. Let $E \neq \{0\}$ be a finite dimensional normed vector space and $f, g \in \Lambda(E)$. Then the pair (f, g) is not totally Fenchel unstable.

Proof. In the sequel we assume that (f, g) satisfies Fenchel duality because in the contrary case clearly (f, g) is not totally Fenchel unstable; hence, by (2), dom $f \cap \text{dom } g \neq \emptyset$. We have that

$$\inf(f+g) = \inf\overline{f+g} \ge \inf(\overline{f}+\overline{g}) \ge \sup\left\{-f^*(-u^*) - g^*(u^*) \mid u^* \in E^*\right\}, \quad (3)$$

where \overline{k} is the lsc hull of k. Since $\overline{k}^* = k^*$ we get

$$(f+g)^*(0) \le (\overline{f}+\overline{g})^*(0) \le \inf \{f^*(-u^*) + g^*(u^*) \mid u^* \in E^*\}.$$

Since (f,g) satisfies Fenchel duality we get some $\overline{z}^* \in E^*$ such that $(f+g)^*(0) = (\overline{f} + \overline{g})^*(0) = f^*(\overline{z}^*) + g^*(-\overline{z}^*)$. In particular $\inf(f+g) = \inf(\overline{f} + \overline{g})$. Replacing f by $f_0 := f - \overline{z}^*$ and g by $g_0 := f + \overline{z}^*$ if necessary, we may (and do) assume that $\overline{z}^* = 0$. Hence

$$(f+g)^*(0) = (\overline{f} + \overline{g})^*(0) = f^*(0) + g^*(0).$$
(4)

We consider the following 3 cases: (a) $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset$, (b) $0 \notin \operatorname{ri}(\operatorname{dom}(f+g)^*)$, (c) $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\operatorname{dom} g) = \emptyset$ and $0 \in \operatorname{ri}(\operatorname{dom}(f+g)^*)$, where $\operatorname{ri} A$ means the interior of A with respect to the affine hull of A.

Case (a). It is known (see e.g. [4, Th. 16.4] or [5, Th. 2.8.7 (viii)]) that (1) holds, that is, (f, g) is Fenchel stable. As seen above, the pair (f, g) is not totally Fenchel unstable.

Case (b). It is obvious that dom $f^* + \text{dom } g^* \subset \text{dom}(f+g)^*$. Take $-\overline{x}^* \in \text{ri}(\text{dom}(f+g)^*)$ and $\overline{z}^* \in \text{dom } g^*$. Of course, $\overline{x}^* \neq 0$, $\overline{x}^* \notin \text{dom}(f+g)^*$ and $\overline{y}^* := \overline{x}^* - \overline{z}^* \notin \text{dom } f^*$. Hence $f^*(\overline{y}^*) + g^*(\overline{z}^*) = \infty = (f+g)^*(\overline{y}^* + \overline{z}^*)$ and $\overline{y}^* + \overline{z}^* = \overline{x}^* \neq 0$. Therefore, (f,g) is not totally Fenchel unstable.

Recall that if $h \in \Gamma(\mathbb{R}^n)$ and $0 \in \operatorname{ri}(\operatorname{dom} h^*)$ then h attains its infimum.

Case (c). Set $h = \overline{f+g} \in \Gamma(E)$. Since $0 \in \operatorname{ri}(\operatorname{dom} h^*)$, there exists $\overline{x} \in E$ such that

$$f(x) + g(x) \ge \overline{f + g}(x) \ge \overline{f + g}(\overline{x}) = \inf \overline{f + g} = \inf(f + g) = -(f + g)^*(0) \in \mathbb{R}$$

for every $x \in E$. Hence $f^*(0), g^*(0) \in \mathbb{R}$. From (4) we have that $\inf(f+g) = \inf(\overline{f}+\overline{g}) = \inf h$. Therefore,

$$\inf(\overline{f} + \overline{g}) = \inf(f + g) = \overline{f + g}(\overline{x}) \ge \overline{f}(\overline{x}) + \overline{g}(\overline{x})$$

and so $\overline{x} \in \operatorname{dom} \overline{f} \cap \operatorname{dom} \overline{g} \subset \operatorname{cl}(\operatorname{dom} f) \cap \operatorname{cl}(\operatorname{dom} g)$. Since $\operatorname{ri}(\operatorname{dom} \overline{f}) \cap \operatorname{ri}(\operatorname{dom} \overline{g}) = \operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\operatorname{dom} g) = \emptyset$ and $\overline{x} \in \operatorname{dom} \overline{f} \cap \operatorname{dom} \overline{g}$, there exists $\overline{u}^* \in E^* \setminus \{0\}$ such that

 $\langle y, \overline{u}^* \rangle \leq \langle \overline{x}, \overline{u}^* \rangle \leq \langle z, \overline{u}^* \rangle$ for all $y \in \operatorname{dom} \overline{f}, \ z \in \operatorname{dom} \overline{g}$.

In particular $\langle x, \overline{u}^* \rangle = \langle \overline{x}, \overline{u}^* \rangle$ for all $x \in \text{dom } f \cap \text{dom } g$. We have that $f(x) \ge -f^*(0)$ and $g(x) \ge -g^*(0)$ for all $x \in E$. Then

$$f^*(\overline{u}^*) = \sup\left\{ \langle x, \overline{u}^* \rangle - f(x) \mid x \in \mathrm{dom}\, f \right\} \le \langle \overline{x}, \overline{u}^* \rangle + f^*(0),$$

$$(f+g)^*(\overline{u}^*) = \sup \{ \langle x, \overline{u}^* \rangle - f(x) - g(x) \mid x \in \operatorname{dom} f \cap \operatorname{dom} g \} \\ = \sup \{ \langle \overline{x}, \overline{u}^* \rangle - f(x) - g(x) \mid x \in \operatorname{dom} f \cap \operatorname{dom} g \} \\ = \langle \overline{x}, \overline{u}^* \rangle + (f+g)^*(0) = \langle \overline{x}, \overline{u}^* \rangle + f^*(0) + g^*(0),$$

whence

$$f^*(\overline{u}^*) + g^*(0) \le \langle \overline{x}, \overline{u}^* \rangle + f^*(0) + g^*(0) = (f+g)^*(\overline{u}^*).$$

Since clearly $(f+g)^*(y^*+z^*) \leq f^*(y^*)+g^*(z^*)$, we have that $(f+g)^*(\overline{u}^*) = f^*(\overline{u}^*)+g^*(0)$ with $\overline{u}^* \neq 0$, and so the pair (f,g) is not totally Fenchel unstable in this case, too. \Box

As S. Simons informed us, R. I. Boţ and R. Csetnek [1] gave the answer to Problem 1. This answer is formulated in the next proposition in the case $x_0 = 0$ (assumption that we do without loss of generality); we give a short proof of this statement.

Proposition 4. Let C be a bounded closed convex subset of a Banach space E and 0 be an extreme point of C. Then

$$\forall y^* \in E^*, \ \forall \varepsilon > 0, \ \exists M \ge 0, \ \forall u, v \in C: \ M \|u + v\| \ge \langle v, y^* \rangle - \varepsilon \tag{5}$$

if and only if 0 is an extreme point of $cl_{w^*} J(C)$, where $J : E \to E^{**}$ is the canonical injection mapping.

Proof. The conclusion of the proposition is an immediate consequence of Facts 1, 2, 3 below.

Fact 1. Consider $C \subset E$ a convex set with $0 \in C$, where E is a real linear space, and set $f = \iota_C$ and $g := \iota_{-C}$, ι_C representing the indicator function of C. Then 0 is an extreme point of C iff $C \cap (-C) = \{0\}$ iff $f + g = \iota_{\{0\}}$.

Fact 2. Consider $C \subset (E, \|\cdot\|)$ a convex set with $0 \in C$; then $h := f^* \ge 0$, $k := g^* \ge 0$ and (5) is equivalent to $h \Box k = 0$.

The fact that $h, k \ge 0$ is obvious (because $0 \in C$); hence $h \Box k \ge 0$.

If $h\Box k = f^*\Box g^* = 0$ and $y^* \in E^*$, $\varepsilon > 0$, then there exists $v^* \in E^*$ such that $f^*(-v^*) + g^*(-y^* + v^*) \leq \varepsilon$, whence $\langle u, -v^* \rangle + \langle -v, -y^* + v^* \rangle \leq \varepsilon$ for all $u, v \in C$. Hence $\langle v, y^* \rangle - \varepsilon \leq \langle u + v, v^* \rangle \leq M ||u + v||$ for all $u, v \in C$ with $M := ||v^*||$. Therefore (5) holds.

Assume that (5) holds and fix $y^* \in E^*$ and $\varepsilon > 0$. From our hypothesis, there exists $M \ge 0$ such that $M ||u - v|| + f(u) + g(v) + \varepsilon \ge \langle v, -y^* \rangle$ for all $u, v \in E$, that is, $(\phi + \psi)^*(0, -y^*) \le \varepsilon$, where $\phi(u, v) := M ||u - v||$ and $\psi(u, v) := f(u) + g(v)$. Since ϕ is finite, convex and continuous and ψ is proper and convex, $(\phi + \psi)^* = \phi^* \Box \psi^*$ with exact convolution, and so there exists $u^*, v^* \in E^*$ such that $\phi^*(-u^*, v^*) + \psi^*(u^*, y^* - u^*) \le \varepsilon$, that is, there exists $x^* \in E^*$ with $||x^*|| \le M$ (and $u^* = v^* = x^*$) such that $f^*(x^*) + g^*(y^* - x^*) \le \varepsilon$. Hence $(h \Box k)(y^*) \le \varepsilon$. As $y^* \in E^*$ and $\varepsilon > 0$ are arbitrary, we get $h \Box k \le 0$, and so $h \Box k = 0$.

Fact 3. Consider $C \subset (E, \|\cdot\|)$ a bounded convex set with $0 \in C$. Then h, k are finite and norm-continuous convex functions and $h \Box k = 0$ if and only if 0 is an extreme point of $\operatorname{cl}_{w^*} J(C)$ (in E^{**}).

1038 C. Zălinescu / On Two Open Problems in Convex Analysis

The functions h, k are (convex) finite and norm-continuous because C is bounded. Since $h, k \geq 0$, we obtain that $h \Box k$ is finite and continuous (being bounded from below by 0). Therefore, $h \Box k = (h \Box k)^{**} = (h^* + k^*)^*$ for the dual system (X^*, X^{**}) . Moreover, $h^* = \iota_{cl_{w^*}J(C)}$ and $k^* = \iota_{cl_{w^*}(J(-C))}$. Hence, for the dual system (X^*, X^{**}) , and taking into account that $\iota_{cl_{w^*}J(C)}, \iota_{cl_{w^*}(J(-C))}$ are proper w^* -lsc convex functions with proper sum, we have

$$h\Box k = 0 \iff \left(\iota_{\operatorname{cl}_{w^*} J(C)} + \iota_{\operatorname{cl}_{w^*} J(-C)}\right)^* = 0$$

$$\iff \iota_{\operatorname{cl}_{w^*} J(C)} + \iota_{\operatorname{cl}_{w^*} J(-C)} = \iota_{\{0\}}$$

$$\iff [\operatorname{cl}_{w^*} J(C)] \cap [\operatorname{cl}_{w^*} J(-C)] = \{0\}$$

$$\iff [\operatorname{cl}_{w^*} J(C)] \cap [-\operatorname{cl}_{w^*} J(C)] = \{0\}.$$

Hence $h \Box k = 0$ if and only if 0 is an extreme point of $cl_{w^*} J(C)$.

Acknowledgements. R. I. Bot and A. Löhne [2] gave another solution to [3, Problem 11.6].

References

- R. I. Boţ, R. Csetnek: On an open problem regarding totally Fenchel unstable functions, Proc. Amer. Math. Soc. 137 (2009) 1801–1805.
- R. I. Boţ, A. Löhne: On totally Fenchel unstable functions in finite dimensional spaces, Math. Program., to appear.
- [3] S. Simons: From Hahn–Banach to Monotonicity, Springer, Berlin (2008).
- [4] R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton (1970).
- [5] C. Zălinescu: Convex Analysis in General Vector Spaces, World Scientific, Singapore (2002).