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We study a sufficient condition under which a maximal monotone operator T : X ⇉ X
∗ admits a unique

maximal monotone extension to the bidual T̃ : X∗∗
⇉ X

∗. We will prove that for non-linear operators
this condition is equivalent to uniqueness of the extension. The central tool in our approach is the
S-function defined and studied by Burachik and Svaiter in 2000 [9](submission date: July 2000). For a
generic operator, this function is the supremum of all convex lower semicontinuous functions which are
majorized by the duality product in the graph of the operator.

We also prove in this work that if the graph of a maximal monotone operator is convex, then this graph
is an affine linear subspace.
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1. Introduction

Let X be a real Banach space. We use the notation X∗ for the topological dual of X
and πX×X∗ , 〈·, ·〉X×X∗ for the duality product

πX×X∗(x, x∗) = 〈x, x∗〉X×X∗ = x∗(x).

Whenever the underlying domain of the duality product is clear, we will use the notations
π and 〈·, ·〉. In X ×X∗ we shall use the strong topology.

A point-to-set operator T : X ⇉ X∗ (respectively T : X∗∗
⇉ X∗) is a relation on X to

X∗ (respectively on X∗∗ to X∗):

T ⊂ X ×X∗ (respectively T ⊂ X∗∗ ×X∗),

and r ∈ T (q) means (q, r) ∈ T . An operator T : X ⇉ X∗, or T : X∗∗
⇉ X∗, is monotone

if
〈q − q′, r − r′〉 ≥ 0, ∀(q, r), (q′, r′) ∈ T.

∗Partially supported by Brazilian CNPq scholarship 140525/2005-0.
†Partially supported by CNPq grants 300755/2005-8, 475647/2006-8 and by PRONEX-Optimization.

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



410 M. Marques Alves, B. F. Svaiter / Maximal Monotone Operators with a Unique ...

An operator T : X ⇉ X∗ is maximal monotone (in X × X∗) if it is monotone and
maximal (whit respect to the inclusion) in the family of monotone operators of X in X∗.
An operator T : X∗∗

⇉ X∗ is maximal monotone (in X∗∗ × X∗) if it is monotone and
maximal (with respect to the inclusion) in the family of monotone operators of X∗∗ in
X∗.

The canonical injection of X into X∗∗ allows one to identity X with a subset of X∗∗.
Therefore, any maximal monotone operator T : X ⇉ X∗ is also a monotone operator
T : X∗∗

⇉ X∗ and admits one (or more) maximal monotone extension in X∗∗ ×X∗. In
general this maximal monotone extension will not be unique. We are concerned with the
problem:

Under which conditions a maximal monotone operator T : X ⇉ X∗ has a
unique extension to the bidual, X∗∗

⇉ X∗?

The problem of unicity of maximal extension of a generic monotone operator was studied
in details by Mart́ınez-Legaz and Svaiter in [22]. That paper will be an important
reference for the present work.

The specific problem above mentioned, of uniqueness of extension of amaximal monotone
operator to the bidual, has been previously addressed by Gossez [14, 15, 16, 17]. He
found a condition under which uniqueness of the extension is guaranteed [17]. Latter
the condition NI, was studied in [25]. This condition guarantees the uniqueness of the
extension to the bidual and encompasses Gossez type D class. An open question is
whether condition NI implies the Brøndsted-Rockafellar property.

Now we will discuss the Brøndsted-Rockafellar property. Let T ⊂ X ×X∗ be maximal
monotone. Burachik, Iusem and Svaiter [5] defined the T ε enlargement of T for ε ≥ 0,
as T ε : X ⇉ X∗

T ε(x) = {x∗ ∈ X∗ | 〈x− y, x∗ − y∗〉 ≥ −ε ∀(y, y∗) ∈ T}. (1)

It is trivial to verify that T ⊂ T ε. The T ε enlargement is a generalization of the ε-
subdifferential. As the ε-subdifferential, the T ε has also practical uses [26, 27, 12, 18,
19, 20]. Brøndsted and Rockafellar proved that the ε-subdifferential may be seen as
an approximation of the exact subdifferential at a nearby point. This property, may be
extended to the context of maximal monotone operators. A maximal monotone operator
has the Brøndsted-Rockafellar property if, for any ε, λ > 0,

x∗ ∈ T ε(x) ⇒ ∀λ > 0, ∃(x̄, x̄∗) ∈ T, ‖x− x̄‖ ≤ λ, ‖x̄∗ − x∗‖ ≤ ε/λ.

Torralba [30] and Burachik and Svaiter [6] proved independently that in a reflexive
Banach space, all maximal monotone operators satisfy this property. The operator T
satisfies the restricted Brøndsted-Rockafellar property [21] if

x∗ ∈ T ε(x), ε̃ > ε ⇒ ∀λ > 0, ∃(x̄, x̄∗) ∈ T,

‖x− x̄‖ < λ, ‖x̄∗ − x∗‖ < ε̃/λ.
(2)

In a recent work [21] the authors defined a general class of maximal monotone operators
in non-reflexive Banach spaces which satisfies the above property.

In this paper we will prove that operators type NI satisfies the restricted Brøndsted-
Rockafellar property and we will study the properties of Fitzpatrick families of these
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operators. We will also prove that, for non-linear operators, the condition NI is equivalent
to the unicity of maximal monotone extension to the bidual. For proving this equivalence
we will show that if T ⊂ X ×X∗ is maximal monotone and convex then T is an affine
subspace of X ×X∗.

As we will study the relation of condition NI with general properties of Fitzpatrick
family (defined below), the main properties of this families, systematically studied in the
series [28, 9, 29, 10, 21] will also be used. Since this field has been the subject of intense
research, to clarify previous issues, we will include submission date of some works where
these properties were obtained.

Given a maximal monotone operator T : X ⇉ X∗, Fitzpatrick defined [13] the family
FT as those convex, lower semicontinuous functions in X×X∗ which are bounded below
by the duality product and coincides with it at T :

FT =



h ∈ R̄

X×X∗

∣∣∣∣∣∣

h is convex and lower semicontinuous
〈x, x∗〉 ≤ h(x, x∗), ∀(x, x∗) ∈ X ×X∗

(x, x∗) ∈ T ⇒ h(x, x∗) = 〈x, x∗〉



 . (3)

Fitzpatrick found an explicit formula for the minimal element of FT , from now on the
Fitzpatrick function of T :

ϕT (x, x
∗) = sup

(y,y∗)∈T

〈x, y∗〉+ 〈y, x∗〉 − 〈y∗, y〉. (4)

Note that in the above definition, T may be a generic subset of X ×X∗.

The conjugate of a function f : X → R̄ is defined as f ∗ : X∗ → R̄,

f ∗(x∗) = sup
x∈X

〈x, x∗〉 − f(x),

and the convex closure of f is cl conv f : X → R̄, the largest convex lower semicontinuous
function majorized by f :

cl conv f(x) := sup{h(x) | h convex, lower semicontinuous, h ≤ f}.

The effective domain of f : X → R̄ is

ed(f) = {x ∈ X | f(x) < ∞} .

The indicator function of A ⊂ X is δA,X : X → R̄,

δA,X(x) =

{
0 x ∈ A

∞ otherwise.

Whenever the set X is implicitly defined, we use the notation δA.

Definition 1.1 ([9, Eq. 35], [8, Eq. 29]).
The S-function (original notation Λ

ST ) associated with a maximal monotone operator
T : X ⇉ X∗ is ST : X ×X∗ → R̄

ST = cl conv (π + δT ) . (5)
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The S-function will be central to this article. Hence, a discussion of it origin is appro-
priate: This function was defined in Burachik Svaiter paper [9], which was submitted for
publication in July 2000, and was published online in 2001 [8] at IMPA preprint server
http://www.preprint.impa.br . Some authors [3, 31, 4] attribute the S-function to [23]
although [23] was submitted after the publication of [9]. Moreover, the content of [9],
and specifically the S-function, was presented on Erice workshop on July 2001, by R. S.
Burachik [7]. A list of the talks of this congress, which includes [24], is available on the
www1.

In [9, 8] it is proved that the S-function is the supremum of the family of Fitzpatrick
function. The epigraphical structure of the S-function was previously studied in [28]
(submission date: September 1999). This function will be central for the new character-
ization of the class NI and for proving the main result of this work.

The S-function and Fitzpatrick function are still well defined for arbitrary sets (or op-
erators) T ⊂ X ×X∗:

ST : X ×X∗ → R̄, ST = cl conv(π + δT ), (6)

ϕT : X ×X∗ → R̄, ϕT (x, x
∗) = sup

(y,y∗)∈T

〈x, y∗〉+ 〈y, x∗〉 − 〈y∗, y〉. (7)

Mart́ınez-Legaz and Svaiter also studied in [22] generic properties of S (with the no-
tation σT ) and ϕT for arbitrary sets and its relation with monotonicity and maximal
monotonicity.

First let us recall the definition of operators of type NI:

Definition 1.2 ([25]). Let X be a real Banach space. A maximal monotone operator
T : X ⇉ X∗ is of type NI if

inf
(y,y∗)∈T

〈y∗ − x∗, y − x∗∗〉 ≤ 0, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

Now we use the S-function to give a new characterization of operators the type NI.

Proposition 1.3. Let X be a real Banach space and T : X ⇉ X∗ be maximal monotone.
Then T is of type NI if, and only if,

(ST )
∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

To simplify the notation, define

Λ : X∗∗ ×X∗ → X∗ ×X∗∗, Λ(x∗∗, x∗) = (x∗, x∗∗).

Note that Λ(X ×X∗) = X∗ ×X. We will prove three main results in this paper:

Theorem 1.4. Let X be a generic Banach space and T : X ⇉ X∗ a maximal monotone
operator of type NI, which is equivalent to

(ST )
∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗. (8)

Then

1http://www.polyu.edu.hk/∼ama/events/conference/EriceItaly-OCA2001/Abstract.html
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1. T admits a unique maximal monotone extension T̃ : X∗∗
⇉ X∗,

2. (ST )
∗ = ϕΛT̃

3. for all h ∈ FT ,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗; h∗ ∈ FΛ T̃ .

4. T satisfies the restricted Brøndsted-Rockafellar property.

Item 1 on the above theorem was proved in [25]. The last statement of the above theorem
is a particular case of a more general result proved in [21]. In that paper, it is proved
that if a convex lower semicontinuous function in X × X∗ and its conjugate majorizes
the duality product in X ×X∗ and X∗ ×X∗∗, respectively, then this function is in the
Fitzpatrick family of a maximal monotone operator and this maximal monotone operator
satisfies the restricted Brøndsted-Rockafellar condition. This result, in a reflexive Banach
space was previously obtained in [10].

A natural question is whether the converse of Item 1 of Theorem 1.4 holds. To give a
partial answer to this question, first recall that a linear (affine) subspace of a real linear
space Z is a set A ⊂ Z such that there exists V , subspace of Z, and a point z0 such that

A = V + {z0} = {z + z0 | z ∈ V }.

We will need an auxiliary result, which is the second main result of this paper. It states
that a convex maximal monotone operator is “essentially� linear:

Lemma 1.5. If T : X ⇉ X∗ is maximal monotone and convex, then T is affine linear.

This lemma generalizes a result of Burachik and Iusem [11, Lemma 2.14], which states
that if a point-to-point maximal monotone operator is convex and its domain has a non-
empty interior, then the operator is affine. Burachik and Iusem also proved that under
these assumptions, the operator is defined in the whole space. After the submission
of the first version of this work, Bauschke, Wang and Yao published, in the arXiv.org
preprint server, a preprint [1] with the same result of Lemma 1.5.

The partial converse of Theorem 1.4 is the third main result of this paper.

Theorem 1.6. Suppose that T : X ⇉ X∗ is maximal monotone and has a unique
maximal monotone extension to X∗∗ ×X∗. Then either

(ST )
∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗, (9)

that is, T is of type NI, or T is affine linear and T = ed(ϕT ).

According to the above theorems, for non-linear maximal monotone operators, condition
(8) is equivalent to unicity of maximal monotone extension to the bidual.

2. Convexity and maximal monotonicity

In this section we will prove Lemma 1.5.

Proof of Lemma 1.5. Take an arbitrary (x0, x
∗
0) ∈ T and define

T0 = T − {(x0, x
∗
0)} .
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Note that T0 is maximal monotone and convex. So, it suffices to prove that T0 is a linear
subspace of X ×X∗. Take an arbitrary (x, x∗) ∈ T0. First we claim that

t(x, x∗) ∈ T0, ∀t ≥ 0. (10)

For 0 ≤ t ≤ 1 the above inclusion holds because (0, 0) ∈ T0 and T0 is convex. For the
case t ≥ 1 let (y, y∗) ∈ T . Then, t−1(y, y∗) ∈ T0 and so

〈x− t−1y, x∗ − t−1y∗〉 ≥ 0.

Multiplying this inequality by t we conclude that 〈tx− y, tx∗ − y∗〉 ≥ 0. As (y, y∗) is a
generic element of T0, which is maximal monotone, we conclude that t(x, x∗) ∈ T0 and
the claim (10) holds.

We have just proved that T0 is a convex cone. Now take an arbitrary pair

(x, x∗), (y, y∗) ∈ T0.

Then

(x+ y, x∗ + y∗) = 2

[
1

2
(x, x∗) +

1

2
(y, y∗)

]
∈ T0. (11)

As (0, 0) ∈ T0, we have

〈y − (−x), y∗ − (−x∗)〉 = 〈(y + x)− 0, (y∗ + x∗)− 0〉 ≥ 0.

Since T0 is maximal monotone, we conclude that −(x, x∗) ∈ T0. Therefore, using
again (10) we conclude that T0 is closed under scalar multiplication. To end the proof,
combine this result with (11) to conclude that T0 is a linear subspace.

3. Preliminary results

As mentioned before, Fitzpatrick proved that the family FT is non-empty by producing
its smallest element ϕT . Fitzpatrick also proved that any function in this family fully
characterizes the maximal monotone operator which defines the family:

Theorem 3.1 ([13]). Let T : X ⇉ X∗ be maximal monotone. Then, for any h ∈ FT ,

h(x, x∗) = 〈x, x∗〉 ⇐⇒ (x, x∗) ∈ T, ∀(x, x∗) ∈ X ×X∗.

Moreover, ϕT is the smallest function of FT .

In [9](submission date: July 2000), Burachik and Svaiter proved

Theorem 3.2 ([9, Eqns. 32, 37, 39]). Let T : X ⇉ X∗ be maximal monotone and
ST be the S-function associated with T , as defined in (5). Then, ST ∈ FT and

ϕT ≤ h ≤ ST , ∀h ∈ FT .

Moreover, ϕT and ST are related as follows:

ϕT (x, x
∗) = (ST )

∗(x∗, x), ∀(x, x∗) ∈ X ×X∗.
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Define, for h : X ×X∗ → R̄,

J h : X ×X∗ → R̄, J h(x, x∗) = h∗(x∗, x). (12)

According to the above theorem, JST = ϕT ∈ FT . So, it is natural to ask whether J
maps FT into itself. Burachik and Svaiter also proved that this happens in fact:

Theorem 3.3 ([9, Theorem 5.3]). Suppose that T is maximal monotone. Then

J h ∈ FT , ∀h ∈ FT ,

that is, if h ∈ FT , and

g : X ×X∗ → R̄, g(x, x∗) = h∗(x∗, x),

then g ∈ FT .

In a reflexive Banach space JϕT = ST .

It is interesting to note that J is an order-reversing mapping of FT into itself. This fact
suggests that this mapping may have fixed points in FT . Svaiter proved [29](submission
date: July 2002) that if T is maximal monotone, then J has always has a fixed point in
FT .

Mart́ınez-Legaz and Svaiter [22] observed that for a generic T ⊂ X ×X∗

ϕT (x, x
∗) = (π + δT )

∗(x∗, x) = (ST )
∗(x∗, x), ∀(x, x∗) ∈ X ×X∗, (13)

Therefore, also for an arbitrary T , one has JST = ϕT .

It will be useful to define a relation µ which characterizes monotonicity and study mono-
tonicity in the framework of this relation and the classical notion of polarity [2]. Recall
that a relation in a set V is a subset of V × V .

Definition 3.4 ([22]). The monotone relation in X ×X∗, notation µ, is

µ = {((x, x∗), (y, y∗)) ∈ (X ×X∗)2 | 〈x− y, x∗ − y∗〉 ≥ 0} .

Two points (x, x∗), (y, y∗) ∈ X × X∗ are monotone related or in monotone relation if
(x, x∗) µ (y, y∗), that is,

〈x− y, x∗ − y∗〉 ≥ 0.

Given A ⊂ X ×X∗, the monotone polar (in X ×X∗) of A is the set Aµ,

Aµ = {(x, x∗) ∈ X ×X∗ | (x, x∗) µ (y, y∗), ∀(y, y∗) ∈ A},

= {(x, x∗) ∈ X ×X∗ | 〈x− y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ A}.
(14)

We shall need some results of Mart́ınez-Legaz and Svaiter which are scattered along [22]
and which we expound in the next two theorems:

Theorem 3.5 ([22, Eq. 22, Prop. 2, Prop. 21]). Let A ⊂ X ×X∗. Then

Aµ = {(x, x∗) ∈ X ×X∗ | ϕT (x, x
∗) ≤ 〈x, x∗〉}, (15)

and the following conditions are equivalent
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1. A is monotone,

2. ϕA ≤ (π + δA).

3. A ⊂ Aµ.

Moreover, A is maximal monotone if and only if A = Aµ.

Note in the above theorem and in the definition of Fitzpatrick’s family, the convenience
of defining as in [22, Eq. 12 and below], for h : X ×X∗ → R̄:

b(h) := {(x, x∗) ∈ X ×X∗ | h(x, x∗) ≤ 〈x, x∗〉},

L(h) := {(x, x∗) ∈ X ×X∗ | h(x, x∗) = 〈x, x∗〉}.
(16)

Theorem 3.6 ([22, Prop. 36, Lemma 38]). Suppose that A ⊂ X×X∗ is monotone.
Then the following conditions are equivalent

1. A has a unique maximal monotone extension (in X ×X∗),

2. Aµ is monotone

3. Aµ is maximal monotone,

and if any of these conditions holds, then Aµ is the unique maximal monotone extension
of A.

Moreover, still assuming only A monotone,

ϕA ≥ π ⇐⇒ b(ϕA) = L(ϕA) (17)

and if these conditions hold, then A has a unique maximal monotone extension, Aµ.

4. Proof of Theorems 1.4 and 1.6

From now on, T : X ⇉ X∗ is a maximal monotone operator. The inverse of T is
T−1 : X∗

⇉ X,

T−1 = {(x∗, x) ∈ X∗ ×X | (x, x∗) ∈ T}. (18)

Note that T−1 ⊂ X∗×X ⊂ X∗×X∗∗. Fitzpatrick function of T−1, regarded as a subset
of X∗ ×X∗∗ is, according to (7)

ϕT−1,X∗×X∗∗(x∗, x∗∗) = sup
(y∗,y∗∗)∈T−1

〈x∗, y∗∗〉+ 〈y∗, x∗∗〉 − 〈y∗, y∗∗〉

= sup
(y∗,y)∈T−1

〈x∗, y〉+ 〈y∗, x∗∗〉 − 〈y∗, y〉

= (π + δT )
∗ (x∗, x∗∗).

where the last x∗ is identified with its image under the canonical injection of X∗ into
X∗∗∗. Using the above equations, (6) and the fact that conjugation is invariant under
the convex-closure operation we obtain

ϕT−1,X∗×X∗∗ = (π + δT )
∗ = (ST )

∗, (19)

where π = πX×X∗ and δT = δT,X×X∗ .
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We will use the notation (T−1)
µ,X∗×X∗∗

for denoting the monotone polar of T−1 in X∗ ×
X∗∗. Combing the above equation with Theorem 3.5 we obtain a simple expression for
this monotone polar:

(
T−1

)µ,X∗×X∗∗

= {(x∗, x∗∗) ∈ X∗ ×X∗∗ | (ST )
∗(x∗, x∗∗) ≤ 〈x∗, x∗∗〉}. (20)

Proof of Theorem 1.4. Combining assumption (8) and (19) we have

ϕT−1,X∗×X∗∗(x∗, x∗∗) = (ST )
∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

Therefore, using Theorem 3.6 and Theorem 3.5 for A = T−1 ⊂ X∗ × X∗∗ we conclude
that (T−1)

µ,X∗×X∗∗

, the monotone polar of T−1 in X∗ × X∗∗, is the unique maximal
monotone extension of T−1 to X∗ ×X∗∗ and

(
T−1

)µ,X∗×X∗∗

= {(x∗, x∗∗) ∈ X∗ ×X∗∗ | (ST )
∗(x∗, x∗∗) = 〈x∗, x∗∗〉}. (21)

Using the above result and again (8), we conclude that

(ST )
∗ ∈ F

(T−1)µ,X
∗
×X∗∗ .

Now, define

T̃ = {(x∗∗, x∗) ∈ X∗∗ ×X∗ | (x∗, x∗∗) ∈
(
T−1

)µ,X∗×X∗∗

}. (22)

Note that ΛT = T−1 and Λ T̃ = (T−1)
µ,X∗×X∗∗

. Therefore

(ST )
∗ ∈ FΛ T̃ . (23)

Moreover, as Λ is a bijection which preserves the duality product, we conclude that T̃ is
the unique maximal monotone extension of T in X∗∗ ×X∗. It proves Item 1.

Since T ⊂ T̃ ,

ϕΛT̃ (x
∗, x∗∗) = sup

(y∗,y∗∗)∈ΛT̃

〈x∗, y∗∗〉+ 〈y∗, x∗∗〉 − 〈y∗, y∗∗〉

= sup
(y∗∗,y∗)∈T̃

〈x∗, y∗∗〉+ 〈y∗, x∗∗〉 − 〈y∗, y∗∗〉

≥ sup
(y,y∗)∈T

〈y, x∗〉+ 〈y∗, x∗∗〉 − 〈y, y∗〉 = (π + δT )
∗(x∗, x∗∗).

Combining the above equation with the second equality in (19) we conclude that ϕΛT̃ ≥
(ST )

∗. Using also the fact that ϕΛT̃ is minimal in FΛ T̃ and (23) we obtain ϕΛT̃ = (ST )
∗.

It proves Item 2.

By Theorem 3.2, ϕT (x, x
∗) = (ST )

∗(x∗, x). Therefore,

(ϕT )
∗(x∗, x∗∗) = sup

(y,y∗)∈X×X∗

〈y, x∗〉+ 〈y∗, x∗∗〉 − ϕT (y, y
∗)

= sup
(y,y∗)∈X×X∗

〈y, x∗〉+ 〈y∗, x∗∗〉 − (ST )
∗(y∗, y)

≤ sup
(y∗∗,y∗)∈X∗∗×X∗

〈y∗∗, x∗〉+ 〈y∗, x∗∗〉 − (ST )
∗(y∗, y∗∗)

= (ST )
∗∗(x∗∗, x∗).
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Take h ∈ FT . By Theorem 3.2 one has ϕT ≤ h ≤ sT . Using also the fact that
conjugation reverts the order, the above equation and assumption (8) we conclude that,
for any (x∗, x∗∗),

〈x∗, x∗∗〉 ≤ S∗
T (x

∗, x∗∗) ≤ h∗(x∗, x∗∗) ≤ ϕ∗
T (x

∗, x∗∗) ≤ (ST )
∗∗(x∗∗, x∗). (24)

Define g : X∗ ×X∗∗ as g = X∗×X∗∗ (ST )
∗, that is,

g(x∗, x∗∗) = ((ST )
∗)∗(x∗∗, x∗).

Using (23) and Theorem 3.3 we conclude that g ∈ FΛT̃ . Therefore, using again the

maximal monotonicity of ΛT̃ in X∗ ×X∗∗, we have

g(x∗, x∗∗) = (ST )
∗∗(x∗∗, x∗) = 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ ΛT̃ .

Combining the above equations with (24) we conclude that h∗ majorizes the duality

product in X∗ ×X∗∗ and coincides with it in ΛT̃ . As h∗ is also convex and closed, we
have h∗ ∈ FΛ T̃ . It proves Item 3.

The fact that T satisfies the restricted Brøndsted-Rockafellar property follows from the
assumption on ST and [21, Theorem 4.2].

Proof of Theorem 1.6. Suppose there exists only one T̃ ⊂ X∗∗ ×X∗ maximal mono-
tone extension of T to X∗∗×X∗. If T is not of type NI, there exists (x∗

0, x
∗∗
0 ) ∈ X∗×X∗∗

such that
S∗
T (x

∗
0, x

∗∗
0 ) < 〈x∗

0, x
∗∗
0 〉. (25)

As Λ is a bijection that preserves the duality product and ΛT = T−1, we conclude
that ΛT̃ is the unique maximal monotone extension of T−1 to X∗ × X∗∗. Using now
Theorem 3.6, Theorem 3.5 and (19) we obtain

ΛT̃ =
(
T−1

)µ,X∗×X∗∗

= {(x∗, x∗∗) ∈ X∗ ×X∗∗ |ϕT−1,X∗×X∗∗(x∗, x∗∗) ≤ 〈x∗, x∗∗〉}

= {(x∗, x∗∗) ∈ X∗ ×X∗∗ | S∗
T (x

∗, x∗∗) ≤ 〈x∗, x∗∗〉}. (26)

Suppose that
(ST )

∗(x∗, x∗∗) < ∞. (27)

Define, for t ∈ R,

p(t) := (x∗
0, x

∗∗
0 ) + t(x∗ − x∗

0, x
∗∗ − x∗∗

0 ) = (1− t)(x∗
0, x

∗∗
0 ) + t(x∗, x∗∗).

As (ST )
∗ is convex, we have the inequality

(ST )
∗(p(t))− πX∗×X∗∗(p(t))

≤ (1− t)(ST )
∗(x∗

0, x
∗∗
0 ) + t(ST )

∗(x∗, x∗∗)− πX∗×X∗∗(p(t)), ∀t ∈ [0, 1] .

As the duality product is continuous, the limit of the right hand side of this inequality,
for t → 0+ is (ST )

∗(x∗
0, x

∗∗
0 ) − 〈x∗

0, x
∗∗
0 〉 < 0. Combining this fact with (26) we conclude

that for t ≥ 0 and small enough,

(x∗
0, x

∗∗
0 ) + t(x∗ − x∗

0, x
∗∗ − x∗∗

0 ) ∈ ΛT̃ .
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Altogether, we proved that

(ST )
∗(x∗, x∗∗) < ∞ ⇒ ∃t̄ > 0, ∀t ∈ [0, t̄]

(x∗
0, x

∗∗
0 ) + t(x∗ − x∗

0, x
∗∗ − x∗∗

0 ) ∈ ΛT̃ .
(28)

Now, suppose that

(ST )
∗(x∗

1, x
∗∗
1 ) < ∞, S∗

T (x
∗
2, x

∗∗
2 ) < ∞.

Then, using (28), we conclude that there exists t > 0 such that

(x∗
0, x

∗∗
0 ) + t(x∗

1 − x∗
0, x

∗∗
1 − x∗∗

0 ) ∈ ΛT̃ , (x∗
0, x

∗∗
0 ) + t(x∗

2 − x∗
0, x

∗∗
2 − x∗∗

0 ) ∈ ΛT̃ .

As ΛT̃ is (maximal) monotone, the above points are monotone related (in the sense of
Definition 3.4) and

t2〈x∗
1 − x∗

2, x
∗∗
1 − x∗∗

2 〉 ≥ 0.

Hence, 〈x∗
1 − x∗

2, x
∗∗
1 − x∗∗

2 〉 ≥ 0. Therefore the set

W := {(x∗, x∗∗) ∈ X∗ ×X∗∗ | (ST )
∗(x∗, x∗∗) < ∞},

is monotone. By (26), ΛT̃ ⊂ W . Hence W = ΛT̃ and

T̃ = {(x∗∗, x∗) ∈ X∗∗ ×X∗ | (ST )
∗(x∗, x∗∗) < ∞} .

As (ST )
∗ is convex, W is also convex. Therefore, ΛT̃ is convex and maximal monotone.

Now, using Lemma 1.5 we conclude that ΛT̃ is affine. This also implies that T̃ is affine
linear. As

T = T̃ ∩X ×X∗,

we conclude that T is affine and

T = {(x, x∗) | (ST )
∗(x∗, x) < ∞}

= {(x, x∗) | ϕT (x, x
∗) < ∞}

where the last equality follow form Theorem 3.2.
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