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A normal decomposition (ND) system is an algebraic structure connected with a decomposition state-
ment for vectors of a linear space and with a variational inequality related to the decomposition. E.g.,
the Singular Value Decomposition for complex matrices and the trace inequality of von Neumann pro-
vide an example of an ND system. In this paper, we study morphisms and homomorphisms of ND
systems. Applications to singular values of matrices are given.
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1. Preliminaries and motivation

Let V be a finite-dimensional real linear space with inner product (-,-), and let G be
a closed subgroup of the orthogonal group O(V') acting on V. The group majorization
w.r.t. G, abbreviated as G-majorization and written as =, is the G-invariant preordering
on V defined by

y ¢ x iff y € conv G,

where z,y € V and Cg(z) = conv Gz stands for the convex hull of the set Gz = {gx :
g € G}. We write y =¢ z if y = gz for some g € G.
It is known that

y ¢z iff m(z,y) <m(z,z) for z €V,

where m(z,v) = max,eq(z, gv) for z € V is the support function of Cg(v) for v € V [24,
Section 13].

The group majorization <g on V' is called a group induced cone (GIC) ordering if there
exists a nonempty closed convex cone D C V such that

(A1) V=GD,ie.,V = UgeG gD = ,cp Gz,

(A2) (z,gy) < (z,y) for z,y € Dand g € G

(see [7, 8, 25]). Indeed GIC orderings cover many orderings of practical interest [7, 8].
If (A1) and (A2) are met, we say that the structure (V, G, D) is an Eaton system (for

short, E-system) [26, 27]. In this event, the support function m(-,-) on D x D reduces
to the inner product (-, -).
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Each E-system (V, G, D) induces the normal map (), : V — D defined by
{z;} =DNGx forzeV (1)

[18, p. 14]. Following Lewis [14, 15], we call the triple (V, G, (+),) a normal decomposition
(ND) system. Conversely, each ND system induces E-system (V, G, D) with D = V| (see
[14, Theorem 2.4], [15, p. 817]).

For later use, we record here two basic equivalences. Namely, for z,y € V/,
y2¢ux iffy ¢ (2)
Furthermore, if x € D and y € V, then
y =gz iff (z,9y) < (z,2) for z€ D and g € G. (3)

Before presenting two basic examples of E-systems, we now give motivation and summary
of the paper. Given two E-systems & = (V, G, D) and F = (W, H, E), we are interested
in linear operators K : V' — W such that

KDCFE and Kz =<y Kz forxelV. (4)

We call them morphisms of £ and F. Throughout the paper Kz means K(z)), that is
the operation (-); has a higher priority than linear operators.

A nonlinear analog of (4) for real (nonnegative) functions has been studied by Iwasa [12]
in the context of convolution inequalities with applications in statistics.

In matrix theory, the inequality in (4) can be interpreted in terms of eigenvalues and
singular values of matrices via the E-systems demonstrated in Examples 1.1 and 1.2.

In the present paper we consider two problems. Firstly, in Section 2 we find conditions
implying (4). The key idea of our method is using the dual operator K* of K. In Theo-
rem 2.1 we show that K is a morphism if and only if K* is so. By employing some easily
checkable classes of morphisms K*, we get some morphisms K (see Theorem 2.2). Sec-
ondly, in Section 3 we study conditions under which a morphism preserves the structure
of E-system (see Theorem 3.5). Such operators are called homomorphisms.

In order to illustrate the above-mentioned notions, we now present two examples related
to the eigenvalues of Hermitian matrices and to the singular values of complex matrices.
We use the following notation. Let z;) > 29y > ... > 2, denote the entries of z =
(21,22,...,2,)7 € R™ in nonincreasing order, where (-)7 stands for the transpose. For
x,y € R" if Z;Zl Y < 23:1 zpy), 1 = 1,...,n, then we write y <,, * and say that y is
weakly magjorized by x [17, p. 10]. If, in addition, >, y; = >0 | 7, we write y < z
and say that y is majorized by x [17, p. 7]. The orderings < and <,, on R" are called
majorization and weak majorization, respectively. It is known that < is GIC ordering
induced by the group of n x n permutation matrices [7, p. 16]. Likewise, the group of
n X n generalized permutation matrices induces <,, on R’ [7, p. 16].

By M, (C) we denote the space of n x n complex matrices. The symbols H,, and D, (R)
stand for the spaces of n x n Hermitian matrices and real diagonal matrices, respectively.
By U,, and O,, we mean the groups of n X n unitary and orthogonal matrices, respectively.
We denote by diag z the diagonal matrix with the entries of a vector z € R" on the main
diagonal.
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Example 1.1 (Cf. [7, p. 17], [14, pp. 943-944]). Take V = H,, with inner product
defined by
(X,Y) =Retr XY for X,Y € H,,

and let GG be the group of operators
X —-UXU* for X € H,,

with U running over the unitary group U,. Here U* means the conjugate transpose of
U. It is known that (V,G, D) is an E-system for

D ={diag(z1,...,2,) €D, 121 > ... > 2, }.

In fact, (A1) is the Spectral Theorem, and (A2) is the trace inequality of von Neumann
(cf. [7, p. 17]).

Furthermore
X| =diag\(X) for X € H,, (5)

where A\(X) stands for the vector of eigenvalues of a matrix X € H,, arranged in nonin-
creasing order. In addition,

Y =6 X iff A(Y) < A(X) for X,V € H, (6)

(see (2) and [7, p. 17]). So, =¢ on D, (R) may be identified with the classical majorization
< on R".

Example 1.2 (Cf. [7, pp. 17-18], [14, pp. 944-945]). Let V be the space M, (C)
with real inner product given by

(X,Y) =Retr XY™ for X,Y € M, (C),
where (+)* denotes conjugate transpose. Let G be the group of all linear operators
X — U, XUy for X € M,(C),
where U; and U, vary over the unitary group U,. Take
D = {diag(z1,...,2,) €Dy 1 29 > ... > 2z, > 0}.

Here (A1) is the Singular Values Decomposition Theorem [17, p. 498], and (A2) is the
trace inequality of von Neumann [17, p. 514]. Therefore (V, G, D) is an E-system.

In addition,
X, =diags(X) for X € M,,(C), (7)

where s(X) stands for the vector of singular values of a matrix X € M, (C) (i.e., eigen-
values of (X*X)'/?) arranged in nonincreasing order. Moreover,

Y <¢ X iff s(Y) <, s(X) for X, Y € M,,(C) (8)

(see (2) and [7, pp. 17-18]).

It is well known that

s(Ao X) <, s(A)os(X) for A, X € M,(C), 9)



620 M. Niezgoda / Morphisms of Normal Decomposition Systems

where o stands for the Hadamard (entrywise) product of matrices and of vectors in R"
(see [13, p. 168]). Define K : M, (C) — M, (C) by

KX =AoX for X € M,(C),

where A is a diagonal matrix with decreasingly ordered positive diagonal entries. Let
(W,H,E) = (V,G, D). Then KD C E and inequality (9) is of form (4).

A similar result is the following inequality for the conventional product:
s(AX) <, s(A) o s(X) for A, X € M, (C) (10)
(see [13, p. 168]). Taking
KX =AX for X € M,(C),

with A as above, we conclude from (10) that (4) is satisfied.

2. Morphisms of E-systems

Unless otherwise stated, throughout this section V' and W are finite-dimensional real
inner product spaces, and G and H are closed subgroups of the orthogonal groups O(V)
and O(W), respectively. These assumptions will not be repeated in our theorems, corol-
laries, etc.

In this section we introduce morphisms of Eaton systems and study their properties. We
begin with a motivation for studying such a class of operators between two E-systems.

Assume £ = (V,G, D) and F = (W, H, E) are E-systems, and (V, G, (-),) and (W, H, (+),)
are related ND systems. In [23] the author characterized linear maps K : V. — W
preserving the normal maps of £ and F in the sense that

(Kz), = Kz forzeV. (11)

A direct consequence of (11) is the inclusion KD C E.

Following Lewis [14, p. 931], we say that the ND systems (V, G, (-),) and (W, H, (+),) are
isomorphic if there exist an inner product space isomorphism K : V' — W and a group
isomorphism ¢ : G — H such that

(Kz), = Kz, and Kgz=¢(9)Kz forz €V and g € G (12)

(cf. [23, Theorem 3.1, Theorem 3.9]).
We say that the linear operator K is an &, F-morphism if

KDCFE and (Kz) =g Kz forxelV. (13)

This definition can be restated in other forms. By (A1) applied to &£, the inequality in
(13) can be equivalently rewritten in the form

Kgr 2y Kz forx € D and g € G. (14)
It is not hard to verify by a convexity argument that (14) is equivalent to

y ¢ x implies Ky <y Kz forx € Dandy eV, (15)
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which can be restated as
y =¢ « implies Ky <y Kz| for z,y € V. (16)

Clearly, (15) asserts that
KCgq(z) C Cy(Kzx) for x € D, (17)

which is equivalent to
KCG(JT) - CH(KQJL) for x € V. (18)

An important subclass of £, F-morphisms are simple morphisms formed by linear op-
erators K : V — W satisfying the following requirement:

KDCFE and Kr=y Kz forxzelV, (19)
or equivalently,
KDCFE and Kgr=py Kz forxe D and g € G. (20)
The second part of (20) is equivalent to the condition:
for x € D and g € G there exists h € H such that Kgr = hKz (21)
(cf. (12)). To see the difference between (11) and (19), consult [23, Theorem 3.1]. The
set of all simple morphisms of E-systems £ and F is denoted by SMor (€, F).
If G and H are finite, then condition (21) says that the linear operator K : V. — W
preserves the group majorizations <4 and <p in the sense that for z,y € V,
y =g x implies Ky <y Kz (22)

(see [20, Theorems 2.1 and 2.2], [18, Theorem 3.1]). For V=W =R" and G = H =
the group of n x n permutation matrices, such operators have been studied extensively
in [2, 6]. For the matrix group majorizations described in Examples 1.1 and 1.2, a

characterization of linear operators satisfying (21) is given in a paper by Li and Pierce
[16].

Hereinafter K* : W — V is the dual operator of K defined by

(Kz,y) = (z, K*y) forz €V andy € W.

The set of £, F-morphisms, denoted by Mor (€, F), is a closed convex cone:

(1) K € Mor (€,F) and t > 0 imply tK € Mor (€, F),
(2) Ky, Ky € Mor (€, F) implies Ky + Ky € Mor (€, F),
(3) K; € Mor (&, F),i=1,2,..., implies lim K; € Mor (&, F).

In addition, Mor & = Mor (€, ) is a selfadjoint semigroup:
(4) idy € Mor &,

(5) Ky, Ky € Mor& implies KyK; € Mor €&,

(6) K € Mor & implies K* € Mor €.
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The proof of properties (1)—(5) is straightforward by using (3) and (13)—(16). Property
(6) follows from Theorem 2.1 which says that

K is an £, F-morphism iff K* is an F, £-morphism.

In addition, this result induces some special classes of morphisms (see Theorem 2.2).

Theorem 2.1. Assume & = (V,G,D) and F = (W, H, E) are E-systems, and K : V —
W is a linear operator. The following two conditions are equivalent:

KDCE and Kgx <y Kx forx e D and g€ G. (23)
K*ECD and K*hz=<qgK*z forz€ E and h € H. (24)

Proof. By duality, it is enough to prove (23) = (24). By using (3) and KD C E, we
rewrite the inequality of (23) in the form

(z2,hKgx) < (2,Kz) forxe D, geG,z€ Eand he H. (25)
Substituting h = idy, (the identity operator on W) into (25), we get
(K*z,x —gx) >0 forze D, geGandz € E. (26)
The set {x — gz :x € D,g € G} is a generator of the cone
dual D ={v eV :(v,z) >0 for z € D}
(see [19, Lemma 3.2]). Therefore (26) means
K"z € dual (dual D) = D.

Thus we obtain the inclusion K*E C D.
On the other hand, (25) is equivalent to

(¢"K*h*z,z) < (K*z,x) forzxeD,geG,z€ Fand he H. (27)

Remind that G* = G and H* = H, since G and H are groups consisting of orthogonal
operators. It now follows from (3) that (27) gives the inequality of (24). This completes
the proof of (24). O

Combining Theorem 2.1 and (13)—(18), one sees that

K € Mor (£, F) implies K*K € Mor (£) and KK* € Mor (F).

Assume that F = (W, H, E) is an E-system. If the triple Fy = (Wy, Hy, Ey) is an E-
system, where Wy is a subspace of W, Ey C Wy is a closed convex subcone of E, and
Hy is a closed subgroup of H such that HyW, C Wy, then F is called a subsystem of F
(cf. [14, pp. 933, 937]).

In the next theorem we show how to construct morphisms for given subsystem in F.
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Theorem 2.2. Assume & = (V,G,D) and F = (W, H, E) are E-systems, and K : V —
W is a linear operator. Suppose that Fo = (Wo, Ho, Eo) is a subsystem of F such that
KV Cc W.

If K* € Mor (Fy, &), i.e., K*Ey C D and
K*hoz =g K*z  for z € Ey and hg € Hy, (28)
then K € Mor (€, Fy), i.e., KD C Ey and

Kgr 2y, Kx  forxe D and g € G. (29)

In particular, if K* € SMor (Fo, &), i.e., K*Ey C D and
for z € Ey and hg € Hy there exists g € G such that K*hgz = gK*z, (30)

then K € Mor (&, Fy).
E.g., if € = F and the restriction of K* to Wy is the identity, then (29) holds.

Proof. Define Ky : V — Wy by Kox = Kx for x € V. The restriction of K* : W — V
to Wy is K. Applying Theorem 2.1 to Ky, Fy and <p, in place of K, F and <y,
respectively, we get (29) from (28).

To see the next part of Theorem 2.2, observe that (30) implies (28). In consequence,
(29) holds.

If, in addition, the restriction of K* to W, is the identity, then (30) holds trivially for
g = hg, because £ = F and Hy C H = G. n

3. Homomorphisms of E-systems

Group induced cone orderings, Eaton systems and normal decomposition systems play
a unifying role in many problems of statistics, probability, matrix theory, Lie theory,
convex analysis and optimization [7, 8, 9, 10, 14, 15, 18, 21, 22, 26, 27]. In this section,
our aim is to provide some sufficient conditions for a triple Fy = (Wy, Hy, Ey) to be an
E-system. That is, we intend to present conditions guaranteeing the validity of axioms
(A1) and (A2) for Fy.

Unless otherwise stated, throughout this section, Wy is a finite-dimensional real inner
product space, Hy is a closed subgroup of the orthogonal group O(Wj), and Ej is a
closed convex cone included in Wj.

The first theorem shows a relationship between our problem and morphisms. Also, it

gives a motivatation for introducing some special classes of morphisms after the proof of
Theorem 3.1.

We denote |Jw|| = (w,w)'/? for w € W,.
Theorem 3.1. The following three statements are mutually equivalent:

(i)  Aziom (A1) is satisfied for Fo = (Wo, Ho, Ep).
(i) For any w € Wy there exists e € Ey such that w <p, e and ||w|| = ||e]|.
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(@ii) There exist a triple £ = (V,G, D) (not necessarily E-system) and a linear operator
K 'V — Wy such that the following conditions (31), (32) and (33) are satisfied.

Wy =KV, Ey =KD and Hy is a closed subgroup of O(Wy). (31)

ForzeV andx € D, z 2¢ x implies Kz <y, K. (32)

For w € Wy there exist x € D and z € V' such that (33)

z2 2¢x, w=Kz and |Jw| = || Kz||.
Proof. (i) = (ii). Fix any w € Wy. By (A1) for Fy, we have w = how, for some hy € Hy
and w; € Ey. Taking e = w, we get e € Ey, w <, e and ||w|| = ||how|| = ||w,]| = ||e]|,
as required.

(17) = (i4i). In order to see (7i7), it is sufficient to put € = Fo, ie., V. =Wy, G = Hy
and D = Ej, and K = the identity on Wj.

(i7i) = (i). Take any w € Wy. By (33), we obtain w = Kz for some z € D and
z € Cg(x) such that ||w| = ||Kx||. Denote e = K.

On the other hand, we get Kz <y, Kz from (32). Therefore w <y, e. Hence w €
Ch,(e) = conv Hpe. In other words, w = Y. | a;h;e for some positive integer m, h; € Hy
and positive reals a; summing to one. Without lost of generality, it can be assumed that
there are not equal vectors among h;e, ¢ = 1,...,m. In fact, if h;;e = h;,e for some
Q1,09 € {1,...,m} with iy # i, then we can write ah;, e in place of oy h; e + a;,hie,
where o = «;, + a;,. So, the sum Z?; a;h;e can be rewritten in form of a sum of
the same type but with different vectors among h;e and with some smaller number of
summands.

It now follows that

m m m
lell = llwl = 1Y ashiell <Y allhuel =Y aillell = el
=1 i=1 =1

where || - || = (-,-)//2. This is the equality case of the triangle inequality. So, all the
vectors h;e are equal. This is a contradiction, unless m = 1. Thus we obtain w = hye.

We have shown that W, C Uho € Ho hoEy. The reverse inclusion holds by HoW, C Wj.
Thus (A1) is proved for Fy. O

In the remainder of this section, we study axioms (Al) and (A2) for systems Fy =
(W, Hy, Ey) of form (31), where K : V — W) is a linear operator and £ = (V, G, D) is a
triple (not necessarily E-system). According to the last theorem, it is sufficient to focus
on operators satisfying (32)—(33).

In the literature (see e.g., [5, 16]), if <1 and <5 are orderings on V' and W), respectively,
then a linear operator K : V' — W) is said to be a preserver (resp., strong preserver) if

for z € Vand x € V, 2z <y x implies (resp., if and only if) Kz <y Kzx. (34)

In our considerations we need directional monotonicity in sense of (32) (cf. [12, Defini-
tion 2.3]). According to (13) and (15), we say that K is an &, Fo-morphism if (32) is
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met. (Here we do not assume that £ and Fy are E-systems.) In contrary to (34), (32)
distinguishes directions in D from other directions in V. It is clear that (32) means

KCq(z) C Cpy(Kx)) forx eV (35)

(see (18)).
A related condition is of Schur-Horn-Kostant type:

KGrx = Cygy(Kz)) forx e V. (36)
The case K is the orthoprojector from V onto W, C V, has been studied in [27, Section 6].
See also [28] for an interpretation of (36) in Lie theory.

In light of Theorem 3.1, it is useful to work with some special morphisms. We introduce
radial morphisms as follows. An £, Fo-morphism K is said to be &, Fo-radial morphism
if (33) holds. It is readily seen that simple morphisms are radial morphisms, but not
vice versa (see (19)—(20)).

We say that an £, Fo-morphism K is an £, Fo-homomorphism if

for e € Ey and w € W)y, w =g, e implies that

37
there exist x € D and z € V such that z <g z, e = Kx and w = Kz. (37)
For given w € Wy = KV we denote
K Hw}y={:€eV:Kz=w},
Dg(w)={x € D: Kz =w for some z <¢ =}
and
Di(w) ={x € D : Kz =w for some z =g x}.
Notice that if K is an &, Fp-morphism, then
K is radial iff for each w € Wy, ||w|| = || Kx|| for some x € Dg(w). (38)

A characterization of radial morphisms is given in

Lemma 3.2. Let £ = (V,G, D) be an E-system and let K be an €, Fo-morphism. Then
the following two statements are valid.
(i)  For any w € Wy,

inf )HK:L‘H = inf ||Kz]. (39)

€DK (w zeK—H{w}

(ii)  The following three conditions are mutually equivalent.

K is an &, Fy-radial morphism. (40)

For each w € Wy, |Jw|| = min | Kz|. (41)
€DK (w)

For each w € Wy, ||lw|]| = min [|Kz]. (42)

ze K~ H{w}
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Proof. (i) Fix any w € Wy. Since (K {w}), = D (w) C Dg(w), we have

inf [|[Kz|| < inf [[Kz| = inf{ }||Kzl||. (43)
zE w

€Dk (w) z€D3 (w) K-1

On the other hand, for each © € Dy (w) there exists z, € V such that z, <¢ z and Kz, =
w. Hence (z;); =¢ x; = =, and further K(z,), =g, Kz, because &, Fp-morphisms
are =q, Zpg,-increasing on D. Consequently, ||K(z;)|| < ||Kz||, since the function
-]l = (-, )'/? is convex and Hy-invariant by Hy C O(W;). Therefore for each z € Dy (w),
we obtain

inf Kz < (K (z2), ]| < 1]

zeK—H{w}
Hence
inf Kzl < inf |Ka|| (44)
ze K~ H{w} €DK (w)

Combining (43) and (44) proves (39).
(77) By (38) it is clear that (41) implies (40). To see the reverse implication, for any

x € Dg(w) we derive

lwl| = inf [|Kzl| < inf Kz = inf [Kzf<|[Kz
zeK—1{w} zeK—1{w} €DK (w)

by Kz <p, Kz, and |Kz|| < ||Kz|| and by (39). Therefore (40) implies (41).

Likewise, for any « € Dk (w) we have

lwll = inf K] < [Kzf| < K (z0),]] < | K]

zeK—1{w}
with z, defined after (43). Therefore (40) implies (42). The reverse implication is obvious
by (38) and (K~*{w}), C Dg(w).
This completes the proof of the equivalences (40) < (41) < (42). O

We now concentrate on axiom (A2).

Theorem 3.3. Let £ = (V,G, D) be an E-system and let K be an &, Fy-radial mor-
phism.

The following two conditions are equivalent:

(i)  Aziom (A2) is satisfied for Fo = (Wo, Ho, Eo).
(ii) K*:Wy—V is an Fo, E-morphism, i.e., if K*Ey C D and

K*hge g K*e for hg € Hy and e € Ey. (45)

Proof. (i) = (i#i). By (i) and Theorem 3.1, one sees that Fy is an E-system. Since
K is an &, Fy-morphism, it now follows from Theorem 2.1 applied to £& and F; that
K*: Wy — V is an Fy, E-morphism.

(17) = (i). Since & = (V,G, D) is an E-system, by (3) and (45) we get

(r,gK"hoe) < (x,K"e) forz € D, g€ G, hg € Hy and e € E,. (46)
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Substituting g = id into (46) yields
(Kz,hoe) < (Kx,e) for z € D, hy € Hy and e € Ej.

Since Ey = KD, the last inequality means that condition (A2) is fulfilled for F, =
(Wo, Ho, Ey). O

For triples Fo = (W, Ho, Ey) and F = (W, H, E), we write Fy C F if
W()CVV, Ey C EF and HoC{hEHthOCW()HWO. (47)

Corollary 3.4. Let £ = (V,G, D) be an E-system and let K be an £, Fy-radial mor-
phism.

If there exists an E-system F = (W, H, E) such that Fo C F, then Fo = (W, Hy, Ey) is
an FE-system.

Proof. To see (Al) for Fy, apply Theorem 3.1. The validity of (A2) for F; is a simple
consequence of (A2) for F (see (47)). O

Theorem 3.5 provides further sufficient conditions for Fy = (Wy, Hy, Ey) to be an E-
system. This result extends [23, Theorems 3.4 and 3.9].

Theorem 3.5. Let £ = (V,G, D) be an Eaton system and let K be an &, Fy-radial
homomorphism.

If K*KD C D, then Fo = (Wy, Ho, Ey) is an E-system.

Proof. By Theorem 3.1 it is easily seen that (A1) holds for Fy. It remains to prove
that (A2) is satisfied for Fy. Take any ej,eq € Ey and hy € Hy. We have to show that
(€9, hoe1) < (ea,€1). Denote w = hpe; and e = ey. By (37), we get e = Kz and w = Kz
for some z € D and z € Cg(z) = conv G.

On the other hand, it follows from the inclusion K*KD C D and from (A2) applied
to &€ = (V,G, D) that (K*Ky, gx) < (K*Ky,x) for any y € D and g € G. Therefore
(K*Ky, z) < (K*Ky,x), because z € conv Gzx. In consequence,

(Ky, Kz) < (Ky,Kzx) for any y € D.
But e; € Ey = KD, so e = Ky for some y € D. Hence
(€9, hoer) = (Ky, Kz) < (Ky, Kz) = (eq, €1),
completing the proof. O

We now study our preservance problem for partial isometries. Remind that a linear
operator K : V. — W is said to be a partial isometry if KK*K = K. In this
event, the operator KK* : W — W is the orthoprojector from W onto the subspace
KK*W = KV =W,.

The next theorem extends [18, Theorem 3.2] from orthoprojectors to partial isometries.
It is also related to [22, Theorem 3.1] applied to the orthoprojector K K*.



628 M. Niezgoda / Morphisms of Normal Decomposition Systems

Theorem 3.6. Let K : V. — W be a partial isometry with finite-dimensional real
inner product spaces V- and W, and let D C V be a closed convexr cone. Denote
Fo = (Wo, Ho, Ey), where Wy = KV, Eg = KD and Hy is a closed subgroup of O(Wy).
Suppose that F = (W, H, E) is an E-system such that Fy C F and KK*E = Ey.

Then the following statements are mutually equivalent:

(i)  Fo= (Why, Hy, Ey) is an E-system.
(i)  The following inequality holds

KK*'w =gy KK*w| forwe W, (48)

where (+); stands for the normal map of F.
(iii) The following inclusion holds

Wo c | hEo, (49)
heH

and, in addition, the operator K K* is an F, Fy-radial homomorphism.

Proof. (i) = (ii). Since K is a partial isometry, K K* is symmetric ((KK*)* = KK*),
and the restriction of K K* to Wy = KV is the identity on Wy,

Now, it is sufficient to apply the last part of Theorem 2.2 to the operator KK* : W — W
and to the E-systems F and F.

(17) = (i7i). We shall prove (49). For this end take any w € Wj. By (A1) applied to F
we obtain w = hw) for some h € H and w| € E. It is enough to show that w, € Ej.

Since K K*|w, is the identity on Wy, we get KK*w = w = hw|. So (48) implies
hw; =g, KK*w,. Hence

lw || = [[Pawy || < [[KE wy ] < flw]]-

In fact, the first inequality follows from the convexity and H-invariance of the norm ||-||.
The second is due to Pythagorean Theorem:

oy [I* = flw, = KK w||* + | KK wy|[?,

because K K* is an orthogonal projector. Therefore ||KK*w,| = |lw,||, which implies
KK*w, =w,. But KK*E = Ey and w| € E, so w| € Ej. Finally, we have w = hw, for
some h € H and w| € Ey. This yields (49).

By (48) one sees that K K* is an F, Fo-morphism. To see that K K* is radial (see (33)),
let w € Wy. By (49), w = he for some h € H and e € Ey C Wy. Put z = w and = = e.
Since K K*|y, is the identity on Wy, it is clear that K K*z = w, KK*x = e, z <y x and
|w| = [|KK*z|. Thus KK* is an F, Fy-radial morphism.

The proof that KK* is an F, Fop-homomorphism (see (37)), is similar and therefore
omitted.

(17) = (i). Since Fy C F and K is a partial isometry, we have (KK*)*(KK*)E =
KK*E = Ey C E (see (47)). By Theorem 3.5, the triple (K K*W, Hy, KK*E) is an
E-system. But KK*W = KV = Wy and KK*E = KD = Ej, so Fy is an E-system,
completing the proof. O



M. Niezgoda / Morphisms of Normal Decomposition Systems 629

4. Applications to matrices

In this section, we interpret Theorems 2.2 and 3.6 for matrix system and their subsys-
tems.

Let £ = (V,G,D) and F = (W, H,FE) with W =V, H=G and F = D, where

V = M,,(C) = the (real) space of n x n complex matrices with the inner product
(A, B) = Retr AB* for A, B € M, (C),

G = the group of unitary equivalences u(-)v with v and v running over the group
U,, of n X n unitary matrices,

D = {diag(s1,...,8,): 81> ... > 8, >0}

(see Example 1.2). The following items constitute some subsystems Fy = (Wy, Hy, Ep)
of F [7, 8, 14, 26].
(a)

Wy = D, (R) = the space of n x n real diagonal matrices,

Hy = the group of equivalences u(-)v with v and v running over
the group GP,, of n x n generalized permutation matrices,

Eo = {diag (s1,...,8,) : 81 > ... > s, > 0}.

Wy = D, (C) = the space of n x n complex diagonal matrices,
Hy = the group of equivalences u(-)v with u and v running over

the group GPP,,(C) of n x n complex generalized permutation matrices,
Ey = {diag (s1,...,8,) : 81 > ... > s, > 0}.

0 O
with & x k matrix X € M(C) and 1 < k < n,

Hy = the group of unitary similarities u(-)v with u and v being

the matrix of the form v
0 ]n—lc

Ey = {diag (s1,...,8%,0,...,0): 81 > ... > s > 0}.

Wo = the space of n x n matrices of the form ( X0 )

) for some k x k unitary matrix U,

Wy = S, (C) = the space of n x n complex symmetric matrices,

Hy = the group of unitary congruences u(-)u’ with v running over
the group U,, of n x n unitary matrices,

Eo = {diag (s1,...,8,) : 81 > ... > s, > 0}.
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(e)

Wy = M, (R) = the space of n x n real matrices,

Hy = the group of orthogonal equivalences u(-)v with u and v running over
the group O,, of n x n orthogonal matrices,

Eo = {diag (s1,...,8,) : 81 > ... > s, > 0}.

Corollary 4.1. For any of the above subsystems Fy, let K be a linear operator from
M, (C) to M,,(C) such that KM, (C) C W.

(i) If the restriction K*|w, is a simple morphism of Fo and &, i.e., if (30) is satisfied
and K*Ey C D, then K 1s a morphism of £ and Fy, i.e., KD C Ey and
s(Kx) <y s(Kz|) for x € M,(C), (50)

where x| = diag s(z).

(i)  If the restriction K*|w, is the identity on Wy, then inequality (50) holds.

(iii) If K is symmetric (K* = K) and D C Wy, and if the restriction K|w, is the
identity, then inequality (50) holds in the form

s(Kz) <y s(z) for z € M,(C). (51)
Proof. Clearly, (i) = (i) = (i7i). To prove (i), use Theorem 2.2. O

In the case of the subsystem described in (b), (51) extends the classical inequality of Fan
|d(x)| < s(z) for z € M, (C).

In fact, it is sufficient to employ the orthoprojector Kz = diagd(z) from M,,(C) onto

D,,(C), where d(x) stands for the diagonal of x € M,,(C).

The next result follows from Theorem 3.6.

Corollary 4.2. Let K : M, (C) — M,,(C) be a partial isometry. Denote Wy = KV and
Ey = KD. Let Hy be a closed subgroup of O(Wy). Suppose that K K*D = Ej.

Then the following statements are mutually equivalent:
(i)  Fo= (Woy, Hy, Ey) is an E-system.
(i)  The following inequality holds
KK*w <y, KK*w| for w e M, (C), (52)

where w; = diag s(w).
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