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A normal decomposition (ND) system is an algebraic structure connected with a decomposition state-
ment for vectors of a linear space and with a variational inequality related to the decomposition. E.g.,
the Singular Value Decomposition for complex matrices and the trace inequality of von Neumann pro-
vide an example of an ND system. In this paper, we study morphisms and homomorphisms of ND
systems. Applications to singular values of matrices are given.
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1. Preliminaries and motivation

Let V be a finite-dimensional real linear space with inner product 〈·, ·〉, and let G be
a closed subgroup of the orthogonal group O(V ) acting on V . The group majorization
w.r.t.G, abbreviated asG-majorization and written as�G, is theG-invariant preordering
on V defined by

y �G x iff y ∈ convGx,

where x, y ∈ V and CG(x) = convGx stands for the convex hull of the set Gx = {gx :
g ∈ G}. We write y ≡G x if y = gx for some g ∈ G.

It is known that

y �G x iff m(z, y) ≤ m(z, x) for z ∈ V ,

where m(z, v) = maxg∈G〈z, gv〉 for z ∈ V is the support function of CG(v) for v ∈ V [24,
Section 13].

The group majorization �G on V is called a group induced cone (GIC) ordering if there
exists a nonempty closed convex cone D ⊂ V such that

(A1) V = GD, i.e., V =
⋃

g∈G gD =
⋃

x∈D Gx,

(A2) 〈x, gy〉 ≤ 〈x, y〉 for x, y ∈ D and g ∈ G

(see [7, 8, 25]). Indeed GIC orderings cover many orderings of practical interest [7, 8].
If (A1) and (A2) are met, we say that the structure (V,G,D) is an Eaton system (for
short, E-system) [26, 27]. In this event, the support function m(·, ·) on D ×D reduces
to the inner product 〈·, ·〉.
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Each E-system (V,G,D) induces the normal map (·)↓ : V → D defined by

{x↓} = D ∩Gx for x ∈ V (1)

[18, p. 14]. Following Lewis [14, 15], we call the triple (V,G, (·)↓) a normal decomposition
(ND) system. Conversely, each ND system induces E-system (V,G,D) with D = V↓ (see
[14, Theorem 2.4], [15, p. 817]).

For later use, we record here two basic equivalences. Namely, for x, y ∈ V ,

y �G x iff y↓ �G x↓. (2)

Furthermore, if x ∈ D and y ∈ V , then

y �G x iff 〈z, gy〉 ≤ 〈z, x〉 for z ∈ D and g ∈ G. (3)

Before presenting two basic examples of E-systems, we now give motivation and summary
of the paper. Given two E-systems E = (V,G,D) and F = (W,H,E), we are interested
in linear operators K : V → W such that

KD ⊂ E and Kx �H Kx↓ for x ∈ V . (4)

We call them morphisms of E and F . Throughout the paper Kx↓ means K(x↓), that is
the operation (·)↓ has a higher priority than linear operators.

A nonlinear analog of (4) for real (nonnegative) functions has been studied by Iwasa [12]
in the context of convolution inequalities with applications in statistics.

In matrix theory, the inequality in (4) can be interpreted in terms of eigenvalues and
singular values of matrices via the E-systems demonstrated in Examples 1.1 and 1.2.

In the present paper we consider two problems. Firstly, in Section 2 we find conditions
implying (4). The key idea of our method is using the dual operator K∗ of K. In Theo-
rem 2.1 we show that K is a morphism if and only if K∗ is so. By employing some easily
checkable classes of morphisms K∗, we get some morphisms K (see Theorem 2.2). Sec-
ondly, in Section 3 we study conditions under which a morphism preserves the structure
of E-system (see Theorem 3.5). Such operators are called homomorphisms.

In order to illustrate the above-mentioned notions, we now present two examples related
to the eigenvalues of Hermitian matrices and to the singular values of complex matrices.
We use the following notation. Let z[1] ≥ z[2] ≥ . . . ≥ z[n] denote the entries of z =
(z1, z2, . . . , zn)

T ∈ R
n in nonincreasing order, where (·)T stands for the transpose. For

x, y ∈ R
n, if

∑i
j=1 y[j] ≤

∑i
j=1 x[j], i = 1, . . . , n, then we write y ≺w x and say that y is

weakly majorized by x [17, p. 10]. If, in addition,
∑n

j=1 yj =
∑n

j=1 xj, we write y ≺ x

and say that y is majorized by x [17, p. 7]. The orderings ≺ and ≺w on R
n are called

majorization and weak majorization, respectively. It is known that ≺ is GIC ordering
induced by the group of n × n permutation matrices [7, p. 16]. Likewise, the group of
n× n generalized permutation matrices induces ≺w on R

n
+ [7, p. 16].

By Mn(C) we denote the space of n× n complex matrices. The symbols Hn and Dn(R)
stand for the spaces of n×n Hermitian matrices and real diagonal matrices, respectively.
By Un and On we mean the groups of n×n unitary and orthogonal matrices, respectively.
We denote by diag z the diagonal matrix with the entries of a vector z ∈ R

n on the main
diagonal.
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Example 1.1 (Cf. [7, p. 17], [14, pp. 943-944]). Take V = Hn with inner product
defined by

〈X, Y 〉 = Re trXY for X, Y ∈ Hn,

and let G be the group of operators

X → UXU∗ for X ∈ Hn,

with U running over the unitary group Un. Here U∗ means the conjugate transpose of
U . It is known that (V,G,D) is an E-system for

D = {diag (z1, . . . , zn) ∈ Dn : z1 ≥ . . . ≥ zn}.

In fact, (A1) is the Spectral Theorem, and (A2) is the trace inequality of von Neumann
(cf. [7, p. 17]).

Furthermore
X↓ = diagλ(X) for X ∈ Hn, (5)

where λ(X) stands for the vector of eigenvalues of a matrix X ∈ Hn arranged in nonin-
creasing order. In addition,

Y �G X iff λ(Y ) ≺ λ(X) for X, Y ∈ Hn (6)

(see (2) and [7, p. 17]). So, �G on Dn(R) may be identified with the classical majorization
≺ on R

n.

Example 1.2 (Cf. [7, pp. 17-18], [14, pp. 944-945]). Let V be the space Mn(C)
with real inner product given by

〈X, Y 〉 = Re trXY ∗ for X, Y ∈ Mn(C),

where (·)∗ denotes conjugate transpose. Let G be the group of all linear operators

X → U1XU2 for X ∈ Mn(C),

where U1 and U2 vary over the unitary group Un. Take

D = {diag (z1, . . . , zn) ∈ Dn : z1 ≥ . . . ≥ zn ≥ 0}.

Here (A1) is the Singular Values Decomposition Theorem [17, p. 498], and (A2) is the
trace inequality of von Neumann [17, p. 514]. Therefore (V,G,D) is an E-system.

In addition,
X↓ = diag s(X) for X ∈ Mn(C), (7)

where s(X) stands for the vector of singular values of a matrix X ∈ Mn(C) (i.e., eigen-
values of (X∗X)1/2) arranged in nonincreasing order. Moreover,

Y �G X iff s(Y ) ≺w s(X) for X, Y ∈ Mn(C) (8)

(see (2) and [7, pp. 17–18]).

It is well known that

s(A ◦X) ≺w s(A) ◦ s(X) for A,X ∈ Mn(C), (9)
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where ◦ stands for the Hadamard (entrywise) product of matrices and of vectors in R
n

(see [13, p. 168]). Define K : Mn(C) → Mn(C) by

KX = A ◦X for X ∈ Mn(C),

where A is a diagonal matrix with decreasingly ordered positive diagonal entries. Let
(W,H,E) = (V,G,D). Then KD ⊂ E and inequality (9) is of form (4).

A similar result is the following inequality for the conventional product:

s(AX) ≺w s(A) ◦ s(X) for A,X ∈ Mn(C) (10)

(see [13, p. 168]). Taking

KX = AX for X ∈ Mn(C),

with A as above, we conclude from (10) that (4) is satisfied.

2. Morphisms of E-systems

Unless otherwise stated, throughout this section V and W are finite-dimensional real
inner product spaces, and G and H are closed subgroups of the orthogonal groups O(V )
and O(W ), respectively. These assumptions will not be repeated in our theorems, corol-
laries, etc.

In this section we introduce morphisms of Eaton systems and study their properties. We
begin with a motivation for studying such a class of operators between two E-systems.

Assume E = (V,G,D) and F = (W,H,E) are E-systems, and (V,G, (·)↓) and (W,H, (·)↓)
are related ND systems. In [23] the author characterized linear maps K : V → W

preserving the normal maps of E and F in the sense that

(Kx)↓ = Kx↓ for x ∈ V . (11)

A direct consequence of (11) is the inclusion KD ⊂ E.

Following Lewis [14, p. 931], we say that the ND systems (V,G, (·)↓) and (W,H, (·)↓) are
isomorphic if there exist an inner product space isomorphism K : V → W and a group
isomorphism ϕ : G → H such that

(Kx)↓ = Kx↓ and Kgx = ϕ(g)Kx for x ∈ V and g ∈ G (12)

(cf. [23, Theorem 3.1, Theorem 3.9]).

We say that the linear operator K is an E ,F -morphism if

KD ⊂ E and (Kx)↓ �H Kx↓ for x ∈ V . (13)

This definition can be restated in other forms. By (A1) applied to E , the inequality in
(13) can be equivalently rewritten in the form

Kgx �H Kx for x ∈ D and g ∈ G. (14)

It is not hard to verify by a convexity argument that (14) is equivalent to

y �G x implies Ky �H Kx for x ∈ D and y ∈ V , (15)
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which can be restated as

y �G x implies Ky �H Kx↓ for x, y ∈ V . (16)

Clearly, (15) asserts that

KCG(x) ⊂ CH(Kx) for x ∈ D, (17)

which is equivalent to
KCG(x) ⊂ CH(Kx↓) for x ∈ V . (18)

An important subclass of E ,F -morphisms are simple morphisms formed by linear op-
erators K : V → W satisfying the following requirement:

KD ⊂ E and Kx ≡H Kx↓ for x ∈ V , (19)

or equivalently,

KD ⊂ E and Kgx ≡H Kx for x ∈ D and g ∈ G. (20)

The second part of (20) is equivalent to the condition:

for x ∈ D and g ∈ G there exists h ∈ H such that Kgx = hKx (21)

(cf. (12)). To see the difference between (11) and (19), consult [23, Theorem 3.1]. The
set of all simple morphisms of E-systems E and F is denoted by SMor (E ,F).

If G and H are finite, then condition (21) says that the linear operator K : V → W

preserves the group majorizations �G and �H in the sense that for x, y ∈ V ,

y �G x implies Ky �H Kx (22)

(see [20, Theorems 2.1 and 2.2], [18, Theorem 3.1]). For V = W = R
n and G = H =

the group of n× n permutation matrices, such operators have been studied extensively
in [2, 6]. For the matrix group majorizations described in Examples 1.1 and 1.2, a
characterization of linear operators satisfying (21) is given in a paper by Li and Pierce
[16].

Hereinafter K∗ : W → V is the dual operator of K defined by

〈Kx, y〉 = 〈x,K∗y〉 for x ∈ V and y ∈ W .

The set of E ,F -morphisms, denoted by Mor (E ,F), is a closed convex cone:

(1) K ∈ Mor (E ,F) and t ≥ 0 imply tK ∈ Mor (E ,F),

(2) K1, K2 ∈ Mor (E ,F) implies K1 +K2 ∈ Mor (E ,F),

(3) Ki ∈ Mor (E ,F), i = 1, 2, . . . , implies lim
i→∞

Ki ∈ Mor (E ,F).

In addition, Mor E = Mor (E , E) is a selfadjoint semigroup:

(4) idV ∈ Mor E ,

(5) K1, K2 ∈ Mor E implies K2K1 ∈ Mor E ,

(6) K ∈ Mor E implies K∗ ∈ Mor E .
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The proof of properties (1)–(5) is straightforward by using (3) and (13)–(16). Property
(6) follows from Theorem 2.1 which says that

K is an E ,F -morphism iff K∗ is an F , E-morphism.

In addition, this result induces some special classes of morphisms (see Theorem 2.2).

Theorem 2.1. Assume E = (V,G,D) and F = (W,H,E) are E-systems, and K : V →
W is a linear operator. The following two conditions are equivalent:

KD ⊂ E and Kgx �H Kx for x ∈ D and g ∈ G. (23)

K∗E ⊂ D and K∗hz �G K∗z for z ∈ E and h ∈ H. (24)

Proof. By duality, it is enough to prove (23) ⇒ (24). By using (3) and KD ⊂ E, we
rewrite the inequality of (23) in the form

〈z, hKgx〉 ≤ 〈z,Kx〉 for x ∈ D, g ∈ G, z ∈ E and h ∈ H. (25)

Substituting h = idW (the identity operator on W ) into (25), we get

〈K∗z, x− gx〉 ≥ 0 for x ∈ D, g ∈ G and z ∈ E. (26)

The set {x− gx : x ∈ D, g ∈ G} is a generator of the cone

dualD = {v ∈ V : 〈v, z〉 ≥ 0 for z ∈ D}

(see [19, Lemma 3.2]). Therefore (26) means

K∗z ∈ dual (dualD) = D.

Thus we obtain the inclusion K∗E ⊂ D.

On the other hand, (25) is equivalent to

〈g∗K∗h∗z, x〉 ≤ 〈K∗z, x〉 for x ∈ D, g ∈ G, z ∈ E and h ∈ H. (27)

Remind that G∗ = G and H∗ = H, since G and H are groups consisting of orthogonal
operators. It now follows from (3) that (27) gives the inequality of (24). This completes
the proof of (24).

Combining Theorem 2.1 and (13)–(18), one sees that

K ∈ Mor (E ,F) implies K∗K ∈ Mor (E) and KK∗ ∈ Mor (F).

Assume that F = (W,H,E) is an E-system. If the triple F0 = (W0, H0, E0) is an E-
system, where W0 is a subspace of W , E0 ⊂ W0 is a closed convex subcone of E, and
H0 is a closed subgroup of H such that H0W0 ⊂ W0, then F0 is called a subsystem of F
(cf. [14, pp. 933, 937]).

In the next theorem we show how to construct morphisms for given subsystem in F .
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Theorem 2.2. Assume E = (V,G,D) and F = (W,H,E) are E-systems, and K : V →
W is a linear operator. Suppose that F0 = (W0, H0, E0) is a subsystem of F such that
KV ⊂ W0.

If K∗ ∈ Mor (F0, E), i.e., K
∗E0 ⊂ D and

K∗h0z �G K∗z for z ∈ E0 and h0 ∈ H0, (28)

then K ∈ Mor (E ,F0), i.e., KD ⊂ E0 and

Kgx �H0
Kx for x ∈ D and g ∈ G. (29)

In particular, if K∗ ∈ SMor (F0, E), i.e., K
∗E0 ⊂ D and

for z ∈ E0 and h0 ∈ H0 there exists g ∈ G such that K∗h0z = gK∗z, (30)

then K ∈ Mor (E ,F0).

E.g., if E = F and the restriction of K∗ to W0 is the identity, then (29) holds.

Proof. Define K0 : V → W0 by K0x = Kx for x ∈ V . The restriction of K∗ : W → V

to W0 is K∗
0 . Applying Theorem 2.1 to K0, F0 and �H0

in place of K, F and �H ,
respectively, we get (29) from (28).

To see the next part of Theorem 2.2, observe that (30) implies (28). In consequence,
(29) holds.

If, in addition, the restriction of K∗ to W0 is the identity, then (30) holds trivially for
g = h0, because E = F and H0 ⊂ H = G.

3. Homomorphisms of E-systems

Group induced cone orderings, Eaton systems and normal decomposition systems play
a unifying role in many problems of statistics, probability, matrix theory, Lie theory,
convex analysis and optimization [7, 8, 9, 10, 14, 15, 18, 21, 22, 26, 27]. In this section,
our aim is to provide some sufficient conditions for a triple F0 = (W0, H0, E0) to be an
E-system. That is, we intend to present conditions guaranteeing the validity of axioms
(A1) and (A2) for F0.

Unless otherwise stated, throughout this section, W0 is a finite-dimensional real inner
product space, H0 is a closed subgroup of the orthogonal group O(W0), and E0 is a
closed convex cone included in W0.

The first theorem shows a relationship between our problem and morphisms. Also, it
gives a motivatation for introducing some special classes of morphisms after the proof of
Theorem 3.1.

We denote ‖w‖ = 〈w,w〉1/2 for w ∈ W0.

Theorem 3.1. The following three statements are mutually equivalent:

(i) Axiom (A1) is satisfied for F0 = (W0, H0, E0).

(ii) For any w ∈ W0 there exists e ∈ E0 such that w �H0
e and ‖w‖ = ‖e‖.
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(iii) There exist a triple E = (V,G,D) (not necessarily E-system) and a linear operator
K : V → W0 such that the following conditions (31), (32) and (33) are satisfied.

W0 = KV, E0 = KD and H0 is a closed subgroup of O(W0). (31)

For z ∈ V and x ∈ D, z �G x implies Kz �H0
Kx. (32)

For w ∈ W0 there exist x ∈ D and z ∈ V such that

z �G x, w = Kz and ‖w‖ = ‖Kx‖.
(33)

Proof. (i) ⇒ (ii). Fix any w ∈ W0. By (A1) for F0, we have w = h0w↓ for some h0 ∈ H0

and w↓ ∈ E0. Taking e = w↓, we get e ∈ E0, w �H0
e and ‖w‖ = ‖h0w↓‖ = ‖w↓‖ = ‖e‖,

as required.

(ii) ⇒ (iii). In order to see (iii), it is sufficient to put E = F0, i.e., V = W0, G = H0

and D = E0, and K = the identity on W0.

(iii) ⇒ (i). Take any w ∈ W0. By (33), we obtain w = Kz for some x ∈ D and
z ∈ CG(x) such that ‖w‖ = ‖Kx‖. Denote e = Kx.

On the other hand, we get Kz �H0
Kx from (32). Therefore w �H0

e. Hence w ∈
CH0

(e) = convH0e. In other words, w =
∑m

i=1 αihie for some positive integer m, hi ∈ H0

and positive reals αi summing to one. Without lost of generality, it can be assumed that
there are not equal vectors among hie, i = 1, . . . ,m. In fact, if hi1e = hi2e for some
i1, i2 ∈ {1, . . . ,m} with i1 6= i2, then we can write αhi1e in place of αi1hi1e + αi2hi2e,
where α = αi1 + αi2 . So, the sum

∑m
i=1 αihie can be rewritten in form of a sum of

the same type but with different vectors among hie and with some smaller number of
summands.

It now follows that

‖e‖ = ‖w‖ = ‖
m
∑

i=1

αihie‖ ≤
m
∑

i=1

αi‖hie‖ =
m
∑

i=1

αi‖e‖ = ‖e‖,

where ‖ · ‖ = 〈·, ·〉1/2. This is the equality case of the triangle inequality. So, all the
vectors hie are equal. This is a contradiction, unless m = 1. Thus we obtain w = h1e.

We have shown that W0 ⊂
⋃

h0∈H0
h0E0. The reverse inclusion holds by H0W0 ⊂ W0.

Thus (A1) is proved for F0.

In the remainder of this section, we study axioms (A1) and (A2) for systems F0 =
(W0, H0, E0) of form (31), where K : V → W0 is a linear operator and E = (V,G,D) is a
triple (not necessarily E-system). According to the last theorem, it is sufficient to focus
on operators satisfying (32)–(33).

In the literature (see e.g., [5, 16]), if ≺1 and ≺2 are orderings on V and W0, respectively,
then a linear operator K : V → W0 is said to be a preserver (resp., strong preserver) if

for z ∈ V and x ∈ V , z ≺1 x implies (resp., if and only if) Kz ≺2 Kx. (34)

In our considerations we need directional monotonicity in sense of (32) (cf. [12, Defini-
tion 2.3]). According to (13) and (15), we say that K is an E ,F0-morphism if (32) is
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met. (Here we do not assume that E and F0 are E-systems.) In contrary to (34), (32)
distinguishes directions in D from other directions in V . It is clear that (32) means

KCG(x) ⊂ CH0
(Kx↓) for x ∈ V (35)

(see (18)).

A related condition is of Schur-Horn-Kostant type:

KGx = CH0
(Kx↓) for x ∈ V . (36)

The caseK is the orthoprojector from V ontoW0 ⊂ V , has been studied in [27, Section 6].
See also [28] for an interpretation of (36) in Lie theory.

In light of Theorem 3.1, it is useful to work with some special morphisms. We introduce
radial morphisms as follows. An E ,F0-morphism K is said to be E ,F0-radial morphism
if (33) holds. It is readily seen that simple morphisms are radial morphisms, but not
vice versa (see (19)–(20)).

We say that an E ,F0-morphism K is an E ,F0-homomorphism if

for e ∈ E0 and w ∈ W0, w ≡H0
e implies that

there exist x ∈ D and z ∈ V such that z �G x, e = Kx and w = Kz.
(37)

For given w ∈ W0 = KV we denote

K−1{w} = {z ∈ V : Kz = w},

DK(w) = {x ∈ D : Kz = w for some z �G x}

and
Ds

K(w) = {x ∈ D : Kz = w for some z ≡G x}.

Notice that if K is an E ,F0-morphism, then

K is radial iff for each w ∈ W0, ‖w‖ = ‖Kx‖ for some x ∈ DK(w). (38)

A characterization of radial morphisms is given in

Lemma 3.2. Let E = (V,G,D) be an E-system and let K be an E ,F0-morphism. Then
the following two statements are valid.

(i) For any w ∈ W0,
inf

x∈DK(w)
‖Kx‖ = inf

z∈K−1{w}
‖Kz↓‖. (39)

(ii) The following three conditions are mutually equivalent.

K is an E ,F0-radial morphism. (40)

For each w ∈ W0, ‖w‖ = min
x∈DK(w)

‖Kx‖. (41)

For each w ∈ W0, ‖w‖ = min
z∈K−1{w}

‖Kz↓‖. (42)
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Proof. (i) Fix any w ∈ W0. Since (K−1{w})↓ = Ds
K(w) ⊂ DK(w), we have

inf
x∈DK(w)

‖Kx‖ ≤ inf
x∈Ds

K
(w)

‖Kx‖ = inf
z∈K−1{w}

‖Kz↓‖. (43)

On the other hand, for each x ∈ DK(w) there exists zx ∈ V such that zx �G x andKzx =
w. Hence (zx)↓ �G x↓ = x, and further K(zx)↓ �H0

Kx, because E ,F0-morphisms
are �G,�H0

-increasing on D. Consequently, ‖K(zx)↓‖ ≤ ‖Kx‖, since the function
‖·‖ = 〈·, ·〉1/2 is convex andH0-invariant byH0 ⊂ O(W0). Therefore for each x ∈ DK(w),
we obtain

inf
z∈K−1{w}

‖Kz↓‖ ≤ ‖K(zx)↓‖ ≤ ‖Kx‖.

Hence
inf

z∈K−1{w}
‖Kz↓‖ ≤ inf

x∈DK(w)
‖Kx‖. (44)

Combining (43) and (44) proves (39).

(ii) By (38) it is clear that (41) implies (40). To see the reverse implication, for any
x ∈ DK(w) we derive

‖w‖ = inf
z∈K−1{w}

‖Kz‖ ≤ inf
z∈K−1{w}

‖Kz↓‖ = inf
x∈DK(w)

‖Kx‖ ≤ ‖Kx‖

by Kz �H0
Kz↓ and ‖Kz‖ ≤ ‖Kz↓‖ and by (39). Therefore (40) implies (41).

Likewise, for any x ∈ DK(w) we have

‖w‖ = inf
z∈K−1{w}

‖Kz‖ ≤ ‖Kzx‖ ≤ ‖K(zx)↓‖ ≤ ‖Kx‖

with zx defined after (43). Therefore (40) implies (42). The reverse implication is obvious
by (38) and (K−1{w})↓ ⊂ DK(w).

This completes the proof of the equivalences (40) ⇔ (41) ⇔ (42).

We now concentrate on axiom (A2).

Theorem 3.3. Let E = (V,G,D) be an E-system and let K be an E ,F0-radial mor-
phism.

The following two conditions are equivalent:

(i) Axiom (A2) is satisfied for F0 = (W0, H0, E0).

(ii) K∗ : W0 → V is an F0, E-morphism, i.e., if K∗E0 ⊂ D and

K∗h0e �G K∗e for h0 ∈ H0 and e ∈ E0. (45)

Proof. (i) ⇒ (ii). By (i) and Theorem 3.1, one sees that F0 is an E-system. Since
K is an E ,F0-morphism, it now follows from Theorem 2.1 applied to E and F0 that
K∗ : W0 → V is an F0, E-morphism.

(ii) ⇒ (i). Since E = (V,G,D) is an E-system, by (3) and (45) we get

〈x, gK∗h0e〉 ≤ 〈x,K∗e〉 for x ∈ D, g ∈ G, h0 ∈ H0 and e ∈ E0. (46)
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Substituting g = id into (46) yields

〈Kx, h0e〉 ≤ 〈Kx, e〉 for x ∈ D, h0 ∈ H0 and e ∈ E0.

Since E0 = KD, the last inequality means that condition (A2) is fulfilled for F0 =
(W0, H0, E0).

For triples F0 = (W0, H0, E0) and F = (W,H,E), we write F0 ⊂ F if

W0 ⊂ W, E0 ⊂ E and H0 ⊂ {h ∈ H : hW0 ⊂ W0}|W0
. (47)

Corollary 3.4. Let E = (V,G,D) be an E-system and let K be an E ,F0-radial mor-
phism.

If there exists an E-system F = (W,H,E) such that F0 ⊂ F , then F0 = (W0, H0, E0) is
an E-system.

Proof. To see (A1) for F0, apply Theorem 3.1. The validity of (A2) for F0 is a simple
consequence of (A2) for F (see (47)).

Theorem 3.5 provides further sufficient conditions for F0 = (W0, H0, E0) to be an E-
system. This result extends [23, Theorems 3.4 and 3.9].

Theorem 3.5. Let E = (V,G,D) be an Eaton system and let K be an E ,F0-radial
homomorphism.

If K∗KD ⊂ D, then F0 = (W0, H0, E0) is an E-system.

Proof. By Theorem 3.1 it is easily seen that (A1) holds for F0. It remains to prove
that (A2) is satisfied for F0. Take any e1, e2 ∈ E0 and h0 ∈ H0. We have to show that
〈e2, h0e1〉 ≤ 〈e2, e1〉. Denote w = h0e1 and e = e1. By (37), we get e = Kx and w = Kz

for some x ∈ D and z ∈ CG(x) = convGx.

On the other hand, it follows from the inclusion K∗KD ⊂ D and from (A2) applied
to E = (V,G,D) that 〈K∗Ky, gx〉 ≤ 〈K∗Ky, x〉 for any y ∈ D and g ∈ G. Therefore
〈K∗Ky, z〉 ≤ 〈K∗Ky, x〉, because z ∈ convGx. In consequence,

〈Ky,Kz〉 ≤ 〈Ky,Kx〉 for any y ∈ D.

But e2 ∈ E0 = KD, so e2 = Ky for some y ∈ D. Hence

〈e2, h0e1〉 = 〈Ky,Kz〉 ≤ 〈Ky,Kx〉 = 〈e2, e1〉,

completing the proof.

We now study our preservance problem for partial isometries. Remind that a linear
operator K : V → W is said to be a partial isometry if KK∗K = K. In this
event, the operator KK∗ : W → W is the orthoprojector from W onto the subspace
KK∗W = KV = W0.

The next theorem extends [18, Theorem 3.2] from orthoprojectors to partial isometries.
It is also related to [22, Theorem 3.1] applied to the orthoprojector KK∗.
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Theorem 3.6. Let K : V → W be a partial isometry with finite-dimensional real
inner product spaces V and W , and let D ⊂ V be a closed convex cone. Denote
F0 = (W0, H0, E0), where W0 = KV , E0 = KD and H0 is a closed subgroup of O(W0).
Suppose that F = (W,H,E) is an E-system such that F0 ⊂ F and KK∗E = E0.

Then the following statements are mutually equivalent:

(i) F0 = (W0, H0, E0) is an E-system.

(ii) The following inequality holds

KK∗w �H0
KK∗w↓ for w ∈ W, (48)

where (·)↓ stands for the normal map of F .

(iii) The following inclusion holds

W0 ⊂
⋃

h∈H

hE0, (49)

and, in addition, the operator KK∗ is an F ,F0-radial homomorphism.

Proof. (i) ⇒ (ii). Since K is a partial isometry, KK∗ is symmetric ((KK∗)∗ = KK∗),
and the restriction of KK∗ to W0 = KV is the identity on W0,

Now, it is sufficient to apply the last part of Theorem 2.2 to the operatorKK∗ : W → W

and to the E-systems F and F .

(ii) ⇒ (iii). We shall prove (49). For this end take any w ∈ W0. By (A1) applied to F
we obtain w = hw↓ for some h ∈ H and w↓ ∈ E. It is enough to show that w↓ ∈ E0.

Since KK∗|W0
is the identity on W0, we get KK∗w = w = hw↓. So (48) implies

hw↓ �H0
KK∗w↓. Hence

‖w↓‖ = ‖hw↓‖ ≤ ‖KK∗w↓‖ ≤ ‖w↓‖.

In fact, the first inequality follows from the convexity and H-invariance of the norm ‖ ·‖.
The second is due to Pythagorean Theorem:

‖w↓‖
2 = ‖w↓ −KK∗w↓‖

2 + ‖KK∗w↓‖
2,

because KK∗ is an orthogonal projector. Therefore ‖KK∗w↓‖ = ‖w↓‖, which implies
KK∗w↓ = w↓. But KK∗E = E0 and w↓ ∈ E, so w↓ ∈ E0. Finally, we have w = hw↓ for
some h ∈ H and w↓ ∈ E0. This yields (49).

By (48) one sees that KK∗ is an F ,F0-morphism. To see that KK∗ is radial (see (33)),
let w ∈ W0. By (49), w = he for some h ∈ H and e ∈ E0 ⊂ W0. Put z = w and x = e.
Since KK∗|W0

is the identity on W0, it is clear that KK∗z = w, KK∗x = e, z �H x and
‖w‖ = ‖KK∗x‖. Thus KK∗ is an F ,F0-radial morphism.

The proof that KK∗ is an F ,F0-homomorphism (see (37)), is similar and therefore
omitted.

(iii) ⇒ (i). Since F0 ⊂ F and K is a partial isometry, we have (KK∗)∗(KK∗)E =
KK∗E = E0 ⊂ E (see (47)). By Theorem 3.5, the triple (KK∗W,H0, KK∗E) is an
E-system. But KK∗W = KV = W0 and KK∗E = KD = E0, so F0 is an E-system,
completing the proof.
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4. Applications to matrices

In this section, we interpret Theorems 2.2 and 3.6 for matrix system and their subsys-
tems.

Let E = (V,G,D) and F = (W,H,E) with W = V , H = G and E = D, where

V = Mn(C) = the (real) space of n× n complex matrices with the inner product

〈A,B〉 = Re trAB∗ for A,B ∈ Mn(C),

G = the group of unitary equivalences u(·)v with u and v running over the group

Un of n× n unitary matrices,

D = {diag (s1, . . . , sn) : s1 ≥ . . . ≥ sn ≥ 0}

(see Example 1.2). The following items constitute some subsystems F0 = (W0, H0, E0)
of F [7, 8, 14, 26].

(a)

W0 = Dn(R) = the space of n× n real diagonal matrices,

H0 = the group of equivalences u(·)v with u and v running over

the group GPn of n× n generalized permutation matrices,

E0 = {diag (s1, . . . , sn) : s1 ≥ . . . ≥ sn ≥ 0}.

(b)

W0 = Dn(C) = the space of n× n complex diagonal matrices,

H0 = the group of equivalences u(·)v with u and v running over

the group GPn(C) of n× n complex generalized permutation matrices,

E0 = {diag (s1, . . . , sn) : s1 ≥ . . . ≥ sn ≥ 0}.

(c)

W0 = the space of n× n matrices of the form

(

X 0
0 0

)

with k × k matrix X ∈ Mk(C) and 1 ≤ k ≤ n,

H0 = the group of unitary similarities u(·)v with u and v being

the matrix of the form

(

U 0
0 In−k

)

for some k × k unitary matrix U ,

E0 = {diag (s1, . . . , sk, 0, . . . , 0) : s1 ≥ . . . ≥ sk ≥ 0}.

(d)

W0 = Sn(C) = the space of n× n complex symmetric matrices,

H0 = the group of unitary congruences u(·)uT with u running over

the group Un of n× n unitary matrices,

E0 = {diag (s1, . . . , sn) : s1 ≥ . . . ≥ sn ≥ 0}.
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(e)

W0 = Mn(R) = the space of n× n real matrices,

H0 = the group of orthogonal equivalences u(·)v with u and v running over

the group On of n× n orthogonal matrices,

E0 = {diag (s1, . . . , sn) : s1 ≥ . . . ≥ sn ≥ 0}.

Corollary 4.1. For any of the above subsystems F0, let K be a linear operator from
Mn(C) to Mn(C) such that KMn(C) ⊂ W0.

(i) If the restriction K∗|W0
is a simple morphism of F0 and E, i.e., if (30) is satisfied

and K∗E0 ⊂ D, then K is a morphism of E and F0, i.e., KD ⊂ E0 and

s(Kx) ≺w s(Kx↓) for x ∈ Mn(C), (50)

where x↓ = diag s(x).

(ii) If the restriction K∗|W0
is the identity on W0, then inequality (50) holds.

(iii) If K is symmetric (K∗ = K) and D ⊂ W0, and if the restriction K|W0
is the

identity, then inequality (50) holds in the form

s(Kx) ≺w s(x) for x ∈ Mn(C). (51)

Proof. Clearly, (i) ⇒ (ii) ⇒ (iii). To prove (i), use Theorem 2.2.

In the case of the subsystem described in (b), (51) extends the classical inequality of Fan

|d(x)| ≺w s(x) for x ∈ Mn(C).

In fact, it is sufficient to employ the orthoprojector Kx = diag d(x) from Mn(C) onto
Dn(C), where d(x) stands for the diagonal of x ∈ Mn(C).

The next result follows from Theorem 3.6.

Corollary 4.2. Let K : Mn(C) → Mn(C) be a partial isometry. Denote W0 = KV and
E0 = KD. Let H0 be a closed subgroup of O(W0). Suppose that KK∗D = E0.

Then the following statements are mutually equivalent:

(i) F0 = (W0, H0, E0) is an E-system.

(ii) The following inequality holds

KK∗w �H0
KK∗w↓ for w ∈ Mn(C), (52)

where w↓ = diag s(w).
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