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The theorem of Fubini-Tonelli is one of the most important and widespread tool theorems
in measure and integration. It is a deep theorem, manifested in the basic requirement that
the functions in it must be measurable with respect to the relevant product formation.
There are additional obstacles which impede its formulation in both simple and universal
manner: on the one hand the relevant iterated integrals can be delicate as to their kind
of existence, and on the other hand the assertions require some sort of σ finiteness of the
data.

The present article wants to invoke the author’s work in measure and integration, de-
veloped in his 1997 book [4] and subsequent papers and summarized in [7] and [8], in
order to obtain a transparent version of the field. In this work the basic concepts are
the inner and outer premeasures and their maximal inner and outer extensions, and the
basic devices are new inner and outer envelopes of set functions. We combine these
envelopes with the concept of the Choquet integral, and thus ensure the existence of all
relevant integrals, at least for functions with values in [0,∞]. This limitation is no loss,
because the Choquet integral has powerful additive properties, and it also removes the
distinction between Fubini and Tonelli type theorems.

The present article then is based on two central points in our previous development:
Section 1 uses the product theory for set functions to obtain the basic lower and upper
estimations of the relevant iterated integrals. The upper estimation has been known be-
fore in particular situations, but in place of the Choquet integral with the less estimable
conventional upper integral. Section 2 then uses the method of complemental pairs of
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828 H. König / Fubini-Tonelli Theorems

inner and outer premeasures in order to pass from the fundamental inequalities to equal-
ities of the Fubini-Tonelli type theorem. This method has its roots in the presentation of
the Radon measure theory in Schwartz [11], Part I. The fact that both these procedures
work in the present frame can be viewed as a remarkable support for the basic concepts
of our new development. After this then Section 3 will be devoted to the connection
with the traditional Fubini-Tonelli theorems.

1. The Fundamental Inequalities

We refer to the previous work of the author in measure and integration cited above. As
a rule we shall make free use of the fundamentals of this development.

1.1. Preliminaries on Set Functions

Let X be a nonvoid set and S be a lattice with ? ∈ S in X. We assume • = στ .

Lemma 1.1. Let ϕ : S → [0,∞[ be isotone with ϕ(?) = 0 and downward • continuous.

Define ξ := ϕ•|S•. Then

0) ξ : S• → [0,∞] is isotone with ξ(?) = 0 and downward • continuous.

i) ξ = ϕ⋆|S• and ξ⋆ = ξ• = ϕ•.

ii) ϕ is modular ⇐⇒ ξ is modular.

iii) ϕ is an inner • premeasure ⇐⇒ ξ is an inner • premeasure.

Proof. 0)i) are from [7], 2.2.3)4), and ii) is from [7], 2.8.1). iii) If ϕ is an inner •
premeasure then ξ•|C(ξ•) = ϕ•|C(ϕ•) is an extension of ϕ•|S• = ξ, so that ξ is an inner
• premeasure. If ξ is an inner • premeasure then ϕ•|C(ϕ•) = ξ•|C(ξ•) is an extension of
ξ and hence of ϕ, so that ϕ is an inner • premeasure.

Lemma 1.2. Let ϕ : S → [0,∞] be isotone with ϕ(?) = 0 and upward • continuous.

Define ξ := ϕ•|S•. Then

0) ξ : S• → [0,∞] is isotone with ξ(?) = 0 and upward • continuous.

i) ξ = ϕ⋆|S
• and ξ⋆ = ξ• = ϕ•.

ii) ϕ is modular ⇐⇒ ξ is modular.

iii) ϕ is an outer • premeasure ⇐⇒ ξ is an outer • premeasure.

The proof is like the previous one. The proof of the next lemma is routine.

Lemma 1.3. Let ϕ : S → [0,∞] be isotone with ϕ(?) = 0, and assume that [ϕ < ∞]
is a lattice (which is true when ϕ is submodular). Then ϕ• = (ϕ|[ϕ <∞])•.

1.2. Preliminaries on the Choquet Integral

We consider the Choquet integral from [4], Section 11 (at that place called the horizontal
integral) and [7], Section 5. We first recall [4], Theorem 11.16.

Proposition 1.4. Let ϕ : S → [0,∞] be isotone with ϕ(?) = 0. For f : X → [0,∞]
then

∫

−fdϕ⋆ = sup

{
∫

−udϕ : u ∈ S(S) with u ≦ f

}

.
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We turn to the outer counterpart of the assertion, which is more involved. We present
two versions, of which the second one will be used later on.

Proposition 1.5. Let ϕ : S → [0,∞] be isotone with ϕ(?) = 0. If f : X → [0,∞[ is
bounded above and has ϕ⋆([f > 0]) <∞ then

∫

−fdϕ⋆ = inf

{
∫

−udϕ : u ∈ S(S) with u ≧ f

}

.

Proof. 1) Fix 0 < b <∞ with f < b, and 0 < C <∞ with ϕ⋆([f > 0]) < C. Then

∫

−fdϕ⋆ =

∫

→∞

0←

ϕ⋆([f ≧ t])dt =

∫ b

0←

ϕ⋆([f ≧ t])dt ≦ Cb <∞.

Next fix 0 < c < ∞ with
∫

−fdϕ⋆ < c, and then ε > 0 with
∫

−fdϕ⋆ < c − ε. At last fix
0 < a < b with Ca < ε.

2) From
∫ b

a
ϕ⋆([f ≧ t])dt ≦

∫

−fdϕ⋆ < c − ε and the definition of the Riemann integral
there exists a decomposition a = t(0) < t(1) < · · · < t(r) = b such that

r
∑

l=1

ϕ⋆
(

[f ≧ t(l − 1)]
)

(t(l)− t(l − 1)) < c− ε.

Then fix S(l) ∈ S (l = 1, · · · ) with S(l) ⊃ [f ≧ t(l − 1)] and

r
∑

l=1

ϕ(S(l))(t(l)− t(l − 1)) < c− ε.

Also fix S(0) ∈ S with S(0) ⊃ [f > 0] and ϕ(S(0)) < C. Because of [f > 0] ⊃ [f ≧

t(0)] ⊃ · · · ⊃ [f ≧ t(r − 1)] we can replace S(p) (p = 1, · · · , r) by S(0) ∩
⋂p

l=1 S(l), and
hence assume that S(0) ⊃ S(1) ⊃ · · · ⊃ S(r). Now define

u := aχS(0) +
r

∑

l=1

(t(l)− t(l − 1))χS(l) ∈ S(S).

From [4], 11.8.1) we obtain

∫

−udϕ = aϕ(S(0)) +
r

∑

l=1

(t(l)− t(l − 1))ϕ(S(l)) < Ca+ c− ε < c.

3) It remains to show that u(x) ≧ f(x) for all x ∈ X. This is clear when x ∈ [f = 0], so
we can assume that x ∈ [f > 0] ⊂ S(0). Since x ∈ [f ≧ b] = [f ≧ t(r)] does not happen,
we are left with the two cases

i) 0 < f(x) < t(0) = a and hence u(x) ≧ a > f(x), and

ii) t(p− 1) ≦ f(x) < t(p) for some 1 ≦ p ≦ r.

Then for 1 ≦ l ≦ p we have f(x) ≧ t(l − 1) and hence x ∈ S(l). It follows that
u(x) ≧ t(p) > f(x).
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Now define Inn(S) and Out(S) to consist of the functions f : X → [0,∞] with [f ≧

t] ∈ S and [f > t] ∈ S respectively for all 0 < t < ∞, the former UM(S) and LM(S)
of [4], Section 11. Thus S(S) ⊂ Inn(S) ∩Out(S) from [4], 11.4.

Proposition 1.6. Assume that S = Sσ. Let ϕ : S → [0,∞] be isotone with ϕ(?) = 0,
and modular and upward σ continuous. For f : X → [0,∞] then

∫

−fdϕ⋆ = inf

{
∫

−udϕ : u ∈ (S(S))σ = Out(S) with u ≧ f

}

.

Note that in the present case S = Sσ we have (S(S))σ ⊂ Out(Sσ) = Out(S), which
after [4], 22.1 is ⊂ (S(S))σ, so that in fact (S(S))σ = Out(S).

Proof. 1) We can assume that
∫

−fdϕ⋆ =
∫

→∞

0←
ϕ⋆([f ≧ t])dt <∞, so that ϕ⋆([f ≧ t]) <

∞ for 0 < t <∞. Fix 0 < c <∞ with
∫

−fdϕ⋆ < c. For each two-sided sequence (t(l))l∈Z
in ]0,∞[ with t(l− 1) < t(l) and with t(l) ↓ 0 for l ↓ −∞ and t(l) ↑ ∞ for l ↑ ∞ we have

∫

−fdϕ⋆ =
∑

l∈Z

∫ t(l)

t(l−1)

ϕ⋆([f ≧ t])dt < c.

We can pass to appropriate subdivisions of the individual intervals [t(l − 1), t(l)], while
we retain the notation, in order to achieve that

∑

l∈Z

ϕ⋆
(

[f ≧ t(l − 1)]
)

(t(l)− t(l − 1)) < c.

Then we fix S(l) ∈ S with S(l) ⊃ [f ≧ t(l − 1)] such that
∑

l∈Z

ϕ(S(l))(t(l)− t(l − 1)) < c.

2) Now define u : X → [0,∞] to be

u :=
∑

l∈Z

(t(l)− t(l − 1))χS(l).

We have u(x) ≧ f(x) for all x ∈ X: This is obvious when f(x) = 0 and when f(x) = ∞.
In case f(x) ∈]0,∞[ we have t(p − 1) ≦ f(x) < t(p) for some p ∈ Z. For l ≦ p then
t(l − 1) ≦ f(x) and hence x ∈ S(l), so that

u(x) ≧
∑

l5p

(t(l)− t(l − 1)) = t(p) > f(x).

3) After this we define

un :=
n

∑

l=−n

(t(l)− t(l − 1))χS(l) ∈ S(S) for n ∈ N.

Thus un ↑ u for n→ ∞ and hence u ∈ (S(S))σ = Out(S). From [7], 5.6 we have

∫

−undϕ =
n

∑

l=−n

(t(l)− t(l − 1))ϕ(S(l)),
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and hence from [4], 11.18 that

∫

−udϕ = sup
n∈N

∫

−undϕ =
∑

l∈Z

(t(l)− t(l − 1))ϕ(S(l)) < c.

The assertion follows.

In the special case that ϕ : S → [0,∞] is a measure on a σ algebra the assertion 1.6
says for f : X → [0,∞] that

∫

−fdϕ⋆ = inf

{
∫

udϕ : u ∈ [0,∞]X measurable S with u ≧ f

}

,

where the second member is called the upper integral
∫

fdϕ of f under ϕ. This assertion
is for example in Fremlin [3], Exercise 252Yi. But one notes as in [4], Section 3, p. 27
that there is a huge gap between the measures and the set functions ϕ : S → [0,∞]
admitted in 1.6.

1.3. Preliminaries on the Product of Set Functions

We recall the product formation developed in [4], Chapter VII and summarized in [7],
Section 6. Let X and Y be nonvoid sets. For nonvoid set systems S in X and T in Y
we have the usual product set system S × T := {S × T : S ∈ S and T ∈ T} in X × Y .
For lattices S and T with ? then R := (S × T)⋆ is a lattice with ? as well, and the
same for rings and algebras. Now let ϕ : S → [0,∞] and ψ : T → [0,∞] be isotone set
functions with ϕ(?) = ψ(?) = 0. One proves that for E ∈ R the function x 7→ ψ(E(x)),
where E(x) := {y ∈ Y : (x, y) ∈ E} ∈ T is the vertical section of E at x ∈ X, is in
Inn(S) ∩Out(S). We define the product set function

ϑ = ϕ× ψ : R → [0,∞] to be ϑ(E) =

∫

−ψ(E(·))dϕ.

Its basic properties are listed in [7], 6.2: ϑ is isotone with ϑ(?) = 0 and fulfils ϑ(S×T ) =
ϕ(S)ψ(T ) for S ∈ S and T ∈ T (with 0∞ = 0 as usual), and inherits from ϕ and ψ the
properties to be modular and to be finite.

We want to add a note on the question of symmetry: In [7], 6.2.5) we assert that in
the frame of modular ϕ and ψ the present ϑ = ϕ × ψ is the unique natural product
formation. In particular it coincides with the opposite formation θ : θ(E) =

∫

−ϕ(E[·])dψ
for E ∈ R, where E[y] := {x ∈ X : (x, y) ∈ E} ∈ S is the horizontal section of E at
y ∈ Y . However, we want to present a simple example that ϑ and θ can be different
when ϕ and ψ are not both modular.

Example 1.7. Assume that ϕ : S → [0,∞[ has a pair P,Q ∈ S with P ∩ Q = ? and
ϕ(P ) = ϕ(Q) = 1, and that ψ : T → [0,∞[ has a pair U, V ∈ T with U ∩ V = ?

such that ψ(U) = ψ(V ) = 0 and ψ(U ∪ V ) = 1. Thus ψ is not modular. For E :=
(P × U) ∪ (Q × V ) ∈ R then on the one hand ψ(E(x)) = 0 for all x ∈ X and hence
ϑ(E) = 0. On the other hand ϕ(E[y]) = 1 for y ∈ U ∪ V and ϕ(E[y]) = 0 for the other
y ∈ Y , so that θ(E) = 1.
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After this the development splits into the inner and the other ones, both for • = στ . In
the inner situation we recall the basic properties obtained in [4], 21.4–7 and [5], 1.4 and
summarized in [7], 6.3.

Proposition 1.8. Assume that ϕ : S → [0,∞[ and ψ : T → [0,∞[ are isotone with

ϕ(?) = ψ(?) = 0 and downward • continuous. Then

1) ϑ = ϕ×ψ is downward • continuous (the same implication holds true for downward
• continuous at ?).

2) For E ∈ R• one has E(x) ∈ T• for all x ∈ X. Moreover the function ψ•(E(·)) :
X → [0,∞[ is in Inn(S•), and ϑ•(E) =

∫

−ψ•(E(·))dϕ•.

3) ϑ•(A×B) = ϕ•(A)ψ•(B) for all A ⊂ X and B ⊂ Y .

In the inner situation one then has the fundamental product theorem [4], 21.9 = [7], 6.4
which follows.

Theorem 1.9. Assume that ϕ : S → [0,∞[ and ψ : T → [0,∞[ are inner • premea-

sures. Then ϑ = ϕ× ψ : R → [0,∞[ is an inner • premeasure. Moreover Θ = ϑ•|C(ϑ•)
is an extension of the product Φ×Ψ of Φ = ϕ•|C(ϕ•) and Ψ = ψ•|C(ψ•).

In the outer situation we repeat the basic properties summarized in [7], 6.5 and add
their proofs, which had been left out so far. The example [7], 6.6 shows an imperfection
compared with the inner situation, and in particular that there is no full counterpart of
the product Theorem 1.9.

Proposition 1.10. Assume that ϕ : S → [0,∞] and ψ : T → [0,∞] are isotone with

ϕ(?) = ψ(?) = 0 and upward • continuous. Then

1) ϑ = ϕ× ψ is upward • continuous.

2) For E ∈ R• one has E(x) ∈ T• for all x ∈ X. Moreover the function ψ•(E(·)) :
X → [0,∞] is in Out(S•), and ϑ•(E) =

∫

−ψ•(E(·))dϕ•.

3) ϑ•(A × B) = ϕ•(A)ψ•(B) for A ⊂ X and B ⊂ Y , except perhaps when the latter

product is 0∞ or ∞0.

Proof. 1) Let M ⊂ R be nonvoid • with M ↑ E ∈ R. For x ∈ X we have {M(x) :M ∈
M} ⊂ T nonvoid • with ↑ E(x) ∈ T from [4], 20.1.3), and hence supM∈M ψ(M(x)) =
ψ(E(x)). Thus from [4], 11.18 we obtain supM∈M

∫

−ψ(M(·))dϕ =
∫

−ψ(E(·))dϕ, that is
supM∈M ϑ(M) = ϑ(E).

2) For E ∈ R• we have E(x) ∈ T• ∀x ∈ X from [4], 20.3.1) and 20.1.3). Define K ⊂ R•

to consist of all those E ∈ R• which are as claimed in the second sentence in 2). Thus
R ⊂ K. It remains to show that K• ⊂ K, because then R• ⊂ K• ⊂ K and hence K = R•.

To see this fix E ⊂ K• ⊂ R•, and then M ⊂ K ⊂ R• nonvoid • with ↑ E. As above
we have {M(x) : M ∈ M} ⊂ T• nonvoid • with ↑ E(x) ∈ T• for x ∈ X. Since
ψ•|T• is upward • continuous by 1.2.0), it follows that supM∈M ψ•(M(x)) = ψ•(E(x))
for x ∈ X. Now ψ•(M(·)) ∈ Out(S•) because M ⊂ K, and this implies at once that
ψ•(E(·)) ∈ Out(S•). Since ϕ•|S• is upward • continuous by 1.2.0), it follows from
[4], 11.18 that supM∈M

∫

−ψ•(M(·))dϕ• =
∫

−ψ•(E(·))dϕ•. In view of M ⊂ K this says
that supM∈M ϑ•(M) =

∫

−ψ•(E(·))dϕ•. Now ϑ•|R• is upward • continuous by 1) and
1.2.0), so that M ⊂ R• and E ∈ R• implies that supM∈M ϑ•(M) = ϑ•(E). Thus
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ϑ•(E) =
∫

−ψ•(E(·))dϕ• and hence E ∈ K.

3) We first show that
∫

−ψ•
(

(A×B)(·)
)

dϕ• = ϕ•(A)ψ•(B) for all A ⊂ X and B ⊂ Y (with
0∞ = 0 as usual). In fact, we have (A×B)(x) = B and hence ψ•((A×B)(x)) = ψ•(B)
for x ∈ A, and (A×B)(x) = ? and hence ψ•((A×B)(x)) = 0 for x ∈ X \ A. Thus

∫

−ψ•
(

(A×B)(·)
)

dϕ• =

∫

→∞

0←

ϕ•
(

[ψ•((A×B)(·)) ≧ t]
)

dt

is on the one hand = 0 in the two particular cases ϕ•(A) = 0 and ψ•(B) = 0, and on the
other hand for ϕ•(A) > 0 and ψ•(B) > 0 is

=

∫

→∞

0←

ϕ•
(

[ψ•(B)χA ≧ t]
)

dt =

∫

→ψ•(B)

0←

ϕ•(A)dt = ϕ•(A)ψ•(B) in all cases.

Now fix A ⊂ X and B ⊂ Y . To prove ≧ we note for E ∈ R• with E ⊃ A × B from 2)
that

ϑ•(E) =

∫

−ψ•(E(·))dϕ• ≧

∫

−ψ•
(

(A×B)(·)
)

dϕ• = ϕ•(A)ψ•(B),

and obtain ϑ•(A × B) ≧ ϕ•(A)ψ•(B), since ϑ• is outer regular R•. To prove ≦ we can
assume that ϕ•(A) < ∞ and ψ•(B) < ∞ in view of the admitted exceptions. For all
P ∈ S• with A ⊂ P and ϕ•(P ) < ∞ and all Q ∈ T• with B ⊂ Q and ψ•(Q) < ∞ then
P ×Q ∈ R• and hence from 2)

ϑ•(A×B) ≦ ϑ•(P ×Q) =

∫

−ψ•
(

(P ×Q)(·)
)

dϕ• = ϕ•(P )ψ•(Q).

This implies that ϑ•(A×B) ≦ ϕ•(A)ψ•(B), since ϕ• is outer regular S• and ψ• is outer
regular T•.

1.4. The Fundamental Inequalities

We continue to assume lattices S in X and T in Y with ? and their product lattice
R = (S × T)⋆ in X × Y . Let • = στ .

Inner Theorem 1.11. Assume that ϕ : S → [0,∞[ and ψ : T → [0,∞[ are isotone

with ϕ(?) = ψ(?) = 0, and modular and downward • continuous, and let ϑ = ϕ × ψ.

For all f : X × Y → [0,∞] then
∫

−fdϑ• ≦

∫

−
(

∫

−f(x, y)dψ•(y)
)

dϕ•(x).

Inner Lemma 1.12. Assume ϕ and ψ as in 1.11. For f ∈ S(R•) then f(x, ·) ∈ S(T•)
for all x ∈ X, and the function F : F (x) =

∫

−f(x, ·)dψ• for x ∈ X is in Inn(S•) with
∫

−Fdϕ• =
∫

−fdϑ•.

For the subsequent proofs we recall two formal rules from [4], p. 226: 1) For f : X×Y →
[0,∞] and all 0 < t <∞ and x ∈ X one has

[f(x, ·) ≧ t] = [f ≧ t](x) and [f(x, ·) > t] = [f > t](x).

2) For E ⊂ X × Y and all x ∈ X one has χE(x, ·) = χE(x).
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Proof of 1.12. We have

f =
r

∑

l=1

tlχE(l) with t1, · · · , tr > 0 and E(1) ⊃ · · · ⊃ E(r) in R•.

From the formal rule 2) for x ∈ X hence f(x, ·) =
∑r

l=1 tlχE(l)(x), and 1.8.2) implies that
E(l)(x) ∈ T• and hence f(x, ·) ∈ S(T•). Next [4], 11.8 shows that

F (x) =
r

∑

l=1

tlψ•
(

E(l)(x)
)

for x ∈ X, that is F =
r

∑

l=1

tlψ•
(

E(l)(·)
)

.

We have ψ•
(

E(l)(·)
)

∈ Inn(S•) (l = 1, · · · , r) from 1.8.2) and hence F ∈ Inn(S•) from
[4], 11.1.3). Now [7], 5.6 can be applied to ϕ•|S•, which is modular by 1.1.ii). It follows
that

∫

−Fdϕ• =

∫

−Fd(ϕ•|S•) =
r

∑

l=1

tl

∫

−ψ•
(

E(l)(·)
)

d(ϕ•|S•)

=
r

∑

l=1

tl

∫

−ψ•
(

E(l)(·)
)

dϕ• =
r

∑

l=1

tlϑ•(E(l)) =

∫

−fdϑ•,

where for the last two equalities 1.8.2) and [4], 11.8 have been used.

Proof of 1.11. We know that ϑ is modular, and downward • continuous by 1.8.1).
Thus from 1.1 and from 1.4 applied to ξ := ϑ•|R• we obtain

∫

−fdϑ• =

∫

−fdξ⋆ = sup{

∫

−udξ : u ∈ S(R•) with u ≦ f}.

But for each such u ∈ S(R•) we have from 1.12

∫

−udξ =

∫

−udϑ• =

∫

−
(

∫

−u(x, y)dψ•(y)
)

dϕ•(x) ≦

∫

−
(

∫

−f(x, y)dψ•(y)
)

dϕ•(x).

The assertion follows.

Outer Theorem 1.13. Assume that ϕ : S → [0,∞] and ψ : T → [0,∞] are isotone

with ϕ(?) = ψ(?) = 0, and modular and upward • continuous, and let ϑ = ϕ× ψ. For

all f : X × Y → [0,∞] then

∫

−fdϑ• ≧

∫

−

(
∫

−f(x, y)dψ•(y)

)

dϕ•(x).

Outer Lemma 1.14. Assume ϕ and ψ as in 1.13. For f ∈ S(R•) then f(x, ·) ∈ S(T•)
for all x ∈ X, and the function F : F (x) =

∫

−f(x, ·)dψ• for x ∈ X is in Out(S•) with
∫

−Fdϕ• =
∫

−fdϑ•.

The proof of 1.14 runs like that of 1.12, but with 1.10.2) instead of 1.8.2) and with 1.2.ii)
instead of 1.1.ii).
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Proof of 1.13. 0) We know that ϑ is modular, and upward • continuous by 1.10.1).
Thus from 1.2 and from 1.6 applied to ξ := ϑ•|R• we obtain

∫

−fdϑ• =

∫

−fdξ⋆ = inf

{
∫

−udξ : u ∈ (S(R•))σ = Out(R•) with u ≧ f

}

.

1) Now fix u ∈ (S(R•))σ = Out(R•), and then a sequence (un)n in S(R•) ⊂ Out(R•)
such that un ↑ u. We shall invoke [4], 11.18 for three times. 1.i) We have

∫

−undϑ
• =

∫

−undξ ↑
∫

−udϑ• =
∫

−udξ. 1.ii) For x ∈ X we have [u(x, ·) > t] = [u > t](x) ∈
T• ∀ 0 < t <∞ from the formal rule 1) and 1.10.2), so that u(x, ·) ∈ Out(T•). Likewise
un(x, ·) ∈ Out(T•) for n ∈ N, and of course un(x, ·) ↑ u(x, ·). Thus we have

Un(x) :=

∫

−un(x, ·)dψ
• ↑

∫

−u(x, ·)dψ• =: U(x) for x ∈ X.

1.iii) By 1.14 the functions Un : X → [0,∞] thus defined are in Out(S•) with
∫

−Undϕ
• =

∫

−undϑ
•. Then Un ↑ U implies that U ∈ Out(S•) as well. Thus we have

∫

−Undϕ
• ↑

∫

−Udϕ•.

2) The results obtained in 1) combine to furnish
∫

−udξ =

∫

−udϑ• =

∫

−Udϕ• =

∫

−

(
∫

−u(x, y)dψ•(y)

)

dϕ•(x)

≧

∫

−

(
∫

−f(x, y)dψ•(y)

)

dϕ•(x).

Thus from 0) we obtain the assertion.

1.15. Specialization of 1.13. Assume that ϕ : S → [0,∞] and ψ : T → [0,∞] are
measures on σ algebras and • = σ. First note the obvious fact that in this case the outer
envelopes fulfil ϕσ = ϕ⋆ and ψσ = ψ⋆. Thus after the final remark in the subsection on
the Choquet integral the second member in the assertion of 1.13 for f : X × Y → [0,∞]

is the iterated upper integral
∫ (∫

f(x, y)dψ(y)
)

dϕ(x). As to the first member, we know
from [7], 3.3 that ϑ = ϕ × ψ is an outer σ premeasure, and shall see in Section 3 that
its maximal extension Θ = ϑσ|C(ϑσ) is the so-called primitive product measure of ϕ and
ψ. It is an immediate verification that ϑσ = Θσ = Θ⋆. Hence the first member becomes
∫

−fdϑσ =
∫

−fdΘ⋆ =
∫

fdΘ. Thus in the present special case the assertion in 1.13 reads

∫

fdΘ ≧

∫
(
∫

f(x, y)dψ(y)

)

dϕ(x) for all f : X × Y → [0,∞].

This version appears for example in Rao [10], Lemma 7, p. 371 and is attributed to
M. H. Stone.

2. The Fubini-Tonelli Type Theorem for • Premeasures

The two fundamental inequalities of the previous section are intended to lead to Fubini-
Tonelli type theorems. It is obvious that this aim requires substantial relations between
the inner and the outer • envelopes of the involved set functions. Our favorite source
for these relations is the method of complemental pairs of inner and outer • premea-
sures developed in [6], Part I and summarized in [7], Section 4. We start to recall this
procedure.
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2.1. Preliminaries on Complemental Pairs

The present subsection assumes a nonvoid setX and • = ⋆στ . We define a pair of lattices
S and P with ? in X to be • complemental iff P ⊂ (S⊤S•)⊥ and S ⊂ (P⊤P•)⊥. An
obvious example is a ring S = P in X. The most important example is S = Comp(X)
and P = Op(X) in a Hausdorff topological space X. In the present subsection we fix a
• complemental pair S and P in X. We quote some basic results from [6], Sections 2–4.

Inner Theorem 2.1. Let ϕ : S → [0,∞[ be an inner • premeasure, and define ξ :=
ϕ•|P. Then

i) ξ : P → [0,∞] is an outer • premeasure with P ⊂ C(ϕ•) ⊂ C(ξ•).

ii) ϕ• ≦ ξ•, and ϕ•|P
• = ξ•|P•. Hence ξ• is inner regular S• at P•.

iii) ϕ•(A) = ξ•(A) for all A ∈ C(ϕ•) with ξ
•(A) < ∞. Hence ϕ• = ξ• on all members

of C(ϕ•) which are upward enclosable [ξ• <∞]σ.

iv) If ϕ• is outer regular P• at S•, then ξ
•|S <∞.

Outer Theorem 2.2. Let ξ → [0,∞] be an outer • premeasure with ξ•|S < ∞, and

define ϕ := ξ•|S. Then

i) ϕ : S → [0,∞[ is an inner • premeasure with S ⊂ C(ξ•) ⊂ C(ϕ•).

ii) ϕ• ≦ ξ•, and ϕ• = ξ• on S•. Hence ϕ• is outer regular P• at S•.

iii) ϕ•(A) = ξ•(A) for all A ∈ C(ξ•) upward enclosable S.

After this we turn to a natural combination of the two theorems. We define an inner •
premeasure ϕ : S → [0,∞[ to be • tame for S and P iff ϕ• is outer regular P• at S•;
equivalent is the much simpler condition that each S ∈ S is contained in some P ∈ P•

with ϕ•(P ) <∞. Likewise we define an outer • premeasure ξ : P → [0,∞] to be • tame

for S and P iff ξ• is inner regular S• at P• and fulfils ξ•|S < ∞. For these particular
• premeasures one extracts from 2.1 and 2.2 the previous main result [6], 4.6 = [7], 4.6
which follows.

Theorem 2.3. There is a one-to-one correspondence between

– the inner • premeasures ϕ on S which are • tame for S and P, and

– the outer • premeasures ξ on P which are • tame for S and P,

via ϕ 7→ ξ := ϕ•|P and ξ 7→ ϕ := ξ•|S. Under this correspondence we have

i) C(ϕ•) = C(ξ•) =: C.

ii) ϕ• ≦ ξ•.

iii) ϕ• = ξ• on all members of C which are upward enclosable [ξ• <∞]σ.

We define a pair of • premeasures ϕ : S → [0,∞[ and ξ : P → [0,∞] as above to be •
complemental for S and P.

An important specialization of 2.3 is for Radon premeasures on Hausdorff topological
spaces. It is due to Schwartz [11], Part I and is the source of the present method of
complemental pairs. For Radon premeasures we also refer to [7], 4.3 and to the earlier
presentation in Bourbaki [1]. Let as above be S = Comp(X) and P = Op(X) on a
Hausdorff topological space X, and let ϕ : S → [0,∞[ be a Radon premeasure on X.
We recall that the envelopes ϕ• are the same for • = ⋆στ . One defines ϕ to be locally
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finite iff each S ∈ S is contained in some P ∈ P with ϕ•(P ) <∞: that means iff ϕ is •
tame for S and P. We call the outer • premeasure ξ := ϕ•|P which is • complemental
to ϕ the hull of ϕ. We recall from 2.3 that ϕ• ≦ ξ•, and that ϕ• = ξ• on all members of
C(ϕ•) = C(ξ•) which are upward enclosable [ξ• <∞]σ.

Next we note a simple and almost amusing specialization of 2.3. We make use of [7], 3.7
and 3.3.

Specialization 2.4. Let S be a ring in X and ϕ : S → [0,∞[ be isotone with ϕ(?) = 0
and modular, that is a finite content. Then ϕ is downward • continuous at ? iff it is

upward • continuous, that is an inner • premeasure iff it is an outer • premeasure - all

this called • continuous for short. In this case

i) C(ϕ•) = C(ϕ•) =: C.

ii) ϕ• ≦ ϕ•.

iii) ϕ• = ϕ• on all members of C which are upward enclosable [ϕ• <∞]σ.

Proof. We know that S and P := S form a • complemental pair. Then the inner •
premeasure ϕ on S and the outer • premeasure ξ := ϕ on P = S are • tame and •
complemental for S and P = S.

We want to note that in case • = σ the last specialization has a wide but complicated
extension in [4], 7.5 = [7], 3.10: The assertions remain true whenever S is a lattice with
? in X and ϕ : S → [0,∞[ is both an inner and an outer σ premeasure.

We add a little reformulation which is a simple consequence of the definition.

Remark 2.5. Let ϕ : S → [0,∞] be isotone with ϕ(?) = 0. For the subsets of X then
upward enclosable [ϕ• <∞]• is equivalent to upward enclosable [ϕ <∞]•.

2.2. The Fubini-Tonelli Type Theorem

We turn to the announced Fubini-Tonelli type theorem for • premeasures. The present
subsection assumes • = στ , and

– a pair of lattices S and P with ? in the nonvoid set X,

– a pair of lattices T and Q with ? in the nonvoid set Y ,

with the product lattices R = (S × T)⋆ and N = (P × Q)⋆ in X × Y . We first note a
basic lemma.

Lemma 2.6. We have the implications

– P ⊂ (S⊤S•)⊥ and Q ⊂ (T⊤T•)⊥ =⇒ N ⊂ (R⊤R•)⊥,

– S ⊂ (P⊤P•)⊥ and T ⊂ (Q⊤Q•)⊥ =⇒ R ⊂ (N⊤N•)⊥.

Thus if the pairs S&P and T&Q are both • complemental then the pair R&N is •
complemental as well.

Proof. We prove the first relation. To be shown is that P ∈ P and Q ∈ Q fulfil
P × Q ∈ (R⊤R•)⊥ or (P × Q)′ = (P ′ × Y ) ∪ (X × Q′) ∈ R⊤R•. It suffices to see for
S ∈ S and T ∈ T that

(P ′ × Y ) ∩ (S × T ) = (P ′ ∩ S)× T and (X ×Q′) ∩ (S × T ) = S × (Q′ ∩ T )
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are ∈ R•. But by assumption these formations are in S• × T and S × T• and hence
both in R•.

In the sequel we assume that the pairs S&P and T&Q are both • complemental.

Theorem 2.7. Assume that ϕ : S → [0,∞[ and ψ : T → [0,∞[ are inner • premeasures

with ϑ = ϕ× ψ : R → [0,∞[. If as in 2.1 one forms

ξ = ϕ•|P and η = ψ•|Q with ρ = ξ × η : N → [0,∞],

then ρ = ϑ•|N, and hence 2.1.i) implies that ρ is an outer • premeasure with N ⊂
C(ϑ•) ⊂ C(ρ•). The functions f : X × Y → [0,∞] which are measurable C(ϑ•) and have

[f > 0] upward enclosable [ρ• <∞]σ fulfil

∫

−fdϑ• =

∫

−

(
∫

−f(x, y)dψ•(y)

)

dϕ•(x)

=

∫

−

(
∫

−f(x, y)dη•(y)

)

dξ•(x) =

∫

−fdρ•.

We note for f : X × Y → [0,∞] from the definition of the Choquet integral that
∫

−fdρ• <∞ implies that [f > 0] is upward enclosable [ρ• <∞]σ.

Proof. 1) From the fundamental inequalities 1.11 and 1.13 combined with 2.1 applied
to ϕ and ψ we see that all functions f : X × Y → [0,∞] fulfil

∫

−fdϑ• ≦

∫

−

(
∫

−f(x, y)dψ•(y)

)

dϕ•(x)

≦

∫

−

(
∫

−f(x, y)dη•(y)

)

dξ•(x) ≦

∫

−fdρ•.

Therefore ϑ• ≦ ρ•.

2) We claim that ρ = ϑ•|N. To see this note from 1.8 for P ∈ P and Q ∈ Q that

ρ(P ×Q) = ξ(P )η(Q) = ϕ•(P )ψ•(Q) = ϑ•(P ×Q),

and from 1.9 that N ⊂ (C(ϕ•) × C(ψ•))
⋆ ⊂ C(ϑ•). For N ∈ N we have to prove that

ρ(N) ≦ ϑ•(N) and thus can assume that ϑ•(N) <∞. It follows that ϑ• <∞ and hence
ρ <∞ on {A ∈ N : A ⊂ N}, and then [4], 2.5 implies that ρ(N) = ϑ•(N). Thus in fact
2.1 can be applied to ϑ and ρ, and in particular ρ is an outer • premeasure.

3) Now let f : X × Y :→ [0,∞] be measurable C(ϑ•), that is [f ≧ t] ∈ C(ϑ•) for
0 < t < ∞, and [f > 0] be upward enclosable [ρ• < ∞]σ. Then 2.1.iii) implies that
ϑ•([f ≧ t]) = ρ•([f ≧ t]) for 0 < t <∞ and hence

∫

−fdϑ• =
∫

−fdρ•. Thus we obtain the
final assertion.

The simplest special case is the one which results from the specialization 2.4 of 2.3.

Specialization 2.8. Assume that

– ϕ : S → [0,∞[ is a content on the ring S in X and • continuous,
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– ψ : T → [0,∞[ is a content on the ring T in Y and • continuous,

so that ϑ = ϕ × ψ : R → [0,∞[ is a content on the ring R = (S × T)⋆ in X × Y and

• continuous as well. Then the functions f : X × Y → [0,∞] which are measurable

C(ϑ•) = C(ϑ•) and have [f > 0] upward enclosable [ϑ• <∞]σ fulfil

∫

−fdϑ• =

∫

−

(
∫

−f(x, y)dψ•(y)

)

dϕ•(x)

=

∫

−

(
∫

−f(x, y)dψ•(y)

)

dϕ•(x) =

∫

−fdϑ•.

As above we note for f : X×Y → [0,∞] that
∫

−fdϑ• <∞ implies that [f > 0] is upward
enclosable [ϑ• <∞]σ.

3. The Connection with the Traditional Fubini-Tonelli Theorems

The notion of product for traditional measures has been a delicate one from the start.
It appears that the development culminated in the two notions of the primitive product

and the c.l.d. (:=complete locally determined) product of measures due to Fremlin [3],
Section 251. We start to describe the connection with the present formations.

3.1. Preliminaries on the Product of Measures

The present section assumes a pair of measures α : A → [0,∞] and β : B → [0,∞] on σ
algebras A in X and B in Y , and their product π := α×β on the algebra G := (A×B)⋆,
which is upward σ continuous and hence an outer σ premeasure. We form the restrictions

ϕ := α|[α <∞] = α|S on S := [α <∞],

ψ := β|[β <∞] = β|T on T := [β <∞],

and their product ϑ := ϕ×ψ on the ring R := (S×T)⋆, which are finite contents and σ
continuous in the sense of 2.4 and hence inner and outer σ premeasures. We also consider
the restriction δ := π|[π < ∞] on the ring [π < ∞]. Of course R ⊂ [π < ∞] ⊂ G and
ϑ = δ|R. We proceed to the relations between the inner and outer σ envelopes of these
formations.

Remark 3.1. i) From 1.3 and from the definition we have ασ = ϕσ and βσ = ψσ, and
πσ = δσ ≦ ϑσ, where in the last case < can happen.

ii) For E ⊂ X × Y we have

ϑσ(E) <∞ =⇒ E is upward enclosable Rσ =⇒ ϑσ(E) = πσ(E).

Proof. i) We present an example for <: Let X be uncountable and α the cardinality on
A = P(X), and β = 0 on B = P(Y ) in nonvoid Y . Then on the one hand π = 0, and
X × Y ∈ G implies that πσ = 0. On the other hand X × Y is not upward enclosable
Rσ, so that ϑσ(X × Y ) = ∞.

ii) The first =⇒ is clear. For the second =⇒ it is to be shown that ϑσ(E) ≦ πσ(E).
Assume that πσ(E) < c < ∞, and take a sequence (An)n in G with An ↑ A ⊃ E and
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limn→∞ π(An) < c. Also take a sequence (Rn)n in R with Rn ↑ R ⊃ E, which exists by
assumption. Then An ∩Rn ∈ R with An ∩Rn ↑ A ∩R ⊃ E and

ϑσ(E) ≦ lim
n→∞

ϑ(An ∩Rn) = lim
n→∞

π(An ∩Rn) ≦ lim
n→∞

π(An) < c.

The assertion follows.

Next define H ⊂ P(X × Y ) to consist of the subsets H ⊂ X × Y such that H ⊂
(P × Y ) ∪ (X × Q) for some P ∈ S with ϕ(P ) = α(P ) = 0 and some Q ∈ T with
ψ(Q) = β(Q) = 0. Thus H is hereditary and fulfils Hσ = H, and the H ∈ H have
πσ(H) = π⋆(H) = 0.

Lemma 3.2.

i) Each E ∈ G with π(E) <∞ is of the form E = R∪H with R ∈ R and H ∈ H∩G.

ii) Each E ∈ Gσ with πσ(E) <∞ is of the form E = R∪H with R ∈ Rσ and H ∈ H.

Proof. i) From [4], 20.2.2) we have

E =
r
⋃

l=1

Al ×Bl with A1, · · · , Ar ∈ A pairwise disjoint and B1, · · · , Br ∈ B,

so that the Al × Bl are pairwise disjoint and π(E) =
∑r

l=1 α(Al)β(Bl) < ∞. It follows
that E = R ∪H, where R is the union of the Al × Bl with α(Al) <∞ and β(Bl) <∞,
while H is the union of the Al × Bl with either α(Al) = ∞ and hence β(Bl) = 0 or
β(Bl) = ∞ and hence α(Al) = 0. Thus the representation E = R ∪H is as required.

ii) Take a sequence (En)n in G with En ↑ E and hence π(En) < ∞. From i) we have
En = Rn∪Hn with Rn ∈ R and Hn ∈ H∩G. We can assume that Rn ↑ to some R ∈ Rσ

and Hn ↑ to some H ∈ Hσ = H. Then E = R ∪H.

Lemma 3.3. Let λ : L → [0,∞[ be a finite content on a ring. If (En)n is a decreasing

sequence in L and (Sn)n is a sequence in L with Sn ⊂ En and λ(Sn) = λ(En) for n ∈ N,

then λ(S1 ∩ · · · ∩ Sn) = λ(En) for n ∈ N.

Proof. The induction step 1 ≦ n⇒ n+ 1: For D := S1 ∩ · · · ∩ Sn we have

λ(D ∩ Sn+1) + λ(D ∪ Sn+1) = λ(D) + λ(Sn+1) = λ(En) + λ(En+1).

Now D ⊂ D ∪ Sn+1 ⊂ En ∪ En+1 = En and hence λ(D ∪ Sn+1) = λ(En). It follows that
λ(D ∩ Sn+1) = λ(En+1).

Remark 3.4. ϑσ = δσ.

Proof. ϑσ ≦ δσ is clear since ϑ is a restriction of δ. To prove ϑσ(E) ≧ δσ(E) for
E ⊂ X × Y we can assume that δσ(E) > 0. Fix δσ(E) > c > 0, and take a sequence
(En)n in [π < ∞] with En ↓⊂ E and π(En) = δ(En) > c for n ∈ N. From the above
3.2.i) we have En = Rn ∪ Hn with Rn ∈ R and Hn ∈ H ∩ G. Thus π(Hn) = 0 and
hence δ(Rn) = δ(En). From 3.3 it follows that δ(R1 ∩ · · · ∩ Rn) = δ(En). Thus the
Dn := R1 ∩ · · · ∩ Rn form a sequence in R with Dn ↓⊂ E and ϑ(Dn) > c for n ∈ N, so
that ϑσ(E) ≧ c. The assertion follows.
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We combine the above facts with the previous specialization 2.4 and with 2.5 to obtain
the consequence which follows.

Consequence 3.5.

0) We have ϑσ = δσ ≦ πσ = δσ ≦ ϑσ, and all these set functions have the same

Carathéodory class C(·) =: C.

i) ϑσ(E) = ϑσ(E) for all E ∈ C upward enclosable Rσ.

ii) δσ(E) = δσ(E) for all E ∈ C upward enclosable [π <∞]σ.

For the sequel we need one more fact.

Remark 3.5. For E ∈ C we have

ϑσ(E) = sup{πσ
(

E ∩ (P ×Q)
)

: P ∈ S and Q ∈ T}.

Proof. To see ≧ we note from 3.5.0)i) that

ϑσ(E) ≧ ϑσ
(

E ∩ (P ×Q)
)

= ϑσ
(

E ∩ (P ×Q)
)

≧ πσ
(

E ∩ (P ×Q)
)

.

To see ≦ fix c < ϑσ(E). Since ϑσ is inner regular Rσ there is an M ∈ Rσ with M ⊂ E

and c < ϑσ(M). Now M ⊂ P ×Q for some P ∈ S and Q ∈ T. Thus M ⊂ E ∩ (P ×Q)
and hence c < ϑσ

(

E ∩ (P ×Q)
)

≦ πσ
(

E ∩ (P ×Q)
)

from 3.5.0).

We turn to the comparison with the two product formations due to Fremlin [3], Section
251. First one defines γ : P(X × Y ) → [0,∞] to be

γ(M) = inf

{

∞
∑

l=1

α(Al)β(Bl) : (Al)l in A and (Bl)l in B with M ⊂
∞
⋃

l=1

Al ×Bl

}

.

It has been proved in [3], 251E that

1) γ is an outer measure in the Carathéodory sense. Thus Γ := γ|C(γ) is a measure on
the σ algebra C(γ).

2) A × B ⊂ C(γ) and hence Gσ ⊂ Aσ(A × B) ⊂ C(γ).

3) γ(A×B) = Γ(A×B) = α(A)β(B) for A ∈ A and B ∈ B.

4) We add the obvious fact that γ is outer regular Gσ.

From these facts γ can be identified as follows.

Remark 3.7. γ = πσ.

Proof. i) It suffices to prove γ = πσ on Gσ, because both sides are outer regular Gσ;
for γ this is in 4). ii) It suffices to prove γ = πσ on G, because both sides are upward σ
continuous on Gσ; for γ this is in 1)2). iii) Now let E ∈ G and hence

E =
r
⋃

l=1

Al ×Bl with A1, · · · , Ar ∈ A pairwise disjoint and B1, · · · , Br ∈ B.

From 1)2)3) then

γ(E) = Γ(E) =
r

∑

l=1

Γ(Al ×Bl) =
r

∑

l=2

α(Al)β(Bl) = π(E) = πσ(E).
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The measure Γ : C(γ) = C(πσ) = C → [0,∞] is defined to be the primitive product of α
and β. The c.l.d. product ν : C → [0,∞] of α and β is defined to be

ν(E) = sup{Γ
(

E ∩ (P ×Q)
)

: P ∈ S and Q ∈ T} for E ∈ C.

Thus we obtain the representations which follow.

Theorem 3.8. We have Γ = πσ|C = δσ|C and ν = ϑσ|C = δσ|C. Thus ν ≦ Γ. For

f : X × Y → [0,∞] measurable C it follows that
∫

−fdπσ =

∫

−fdδσ =

∫

fdΓ and

∫

−fdϑσ =

∫

−fdδσ =

∫

fdν.

We note at once the connection with the inner σ premeasures.

Proposition 3.9. Assume that α = ξσ|C(ξσ) and β = ησ|C(ησ) are the maximal inner

σ extensions of inner σ premeasures ξ on X and η on Y . Then the c.l.d. product

ν : C → [0,∞] of α and β is the maximal inner σ extension Λ = λσ|C(λσ) of the product

inner σ premeasure λ = ξ × η on X × Y .

Proof. We know from 1.9 that Λ is an extension of α × β = π and hence an extension
of δ = π|[π < ∞]. Thus δσ = Λ = λσ on [π < ∞] ⊂ C(λσ) and hence on [π < ∞]σ.
Now δσ is inner regular [π < ∞]σ; and also λσ, because the domain of λ = ξ × η is
⊂ (S × T)⋆ = R ⊂ [π < ∞]. It follows that δσ = λσ on P(X × Y ), and hence
ν = δσ|C = δσ|C(δσ) = λσ|C(λσ) = Λ.

3.2. The Fubini-Tonelli Theorem

We combine the fundamental inequalities 1.11 and 1.13 with 3.1.i) and 3.5.0).

Theorem 3.10. For all f : X × Y → [0,∞] we have
∫

−fdδσ =

∫

−fdϑσ ≦

∫

−

(
∫

−f(x, y)dψσ(y)

)

dϕσ(x)

≦

∫

−

(
∫

−f(x, y)dψσ(y)

)

dϕσ(x) =

∫

−

(
∫

−f(x, y)dβσ(y)

)

dασ(x)

≦

∫

−fdπσ =

∫

−fdδσ ≦

∫

−fdϑσ.

Next we recall two basic facts from Section 2, this time combined with 2.5.

i) For all f : X × Y → [0,∞] the definition of the Choquet integral implies that
∫

−fdϑσ <∞ =⇒ [f > 0] is upward enclosable Rσ,

∫

−fdπσ =

∫

−fdδσ <∞ =⇒ [f > 0] is upward enclosable [π <∞]σ.

ii) For all f : X × Y → [0,∞] measurable C we conclude from 2.4.iii) that

[f > 0] upward enclosable Rσ =⇒

∫

−fdϑσ =

∫

−fdϑσ,

[f > 0] upward enclosable [π <∞]σ =⇒

∫

−fdδσ =

∫

−fdδσ.
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We combine ii) with 3.10 to obtain the subsequent Fubini-Tonelli theorem. We invoke
3.8 in order to formulate the result in terms of Γ and ν, and leave aside the less important
ϑσ. For the connection with Section 2 see the final Remark 3.12 below.

Theorem 3.11. The functions f : X × Y → [0,∞] which are measurable C and have

[f > 0] upward enclosable [π <∞]σ fulfil

∫

fdν =

∫

−

(
∫

−f(x, y)dψσ(y)

)

dϕσ(x) =

∫

−

(
∫

−f(x, y)dβσ(y)

)

dασ(x) =

∫

fdΓ.

As far as the author can see the above Theorem 3.11 comprises the present versions of
the Fubini-Tonelli theorems - with two exceptions that will be discussed thereafter. This
statement requires two amendments: On the one hand our theorem contains, as before in
Section 2, in contrast to the traditional ones no assertion relative to the legitimacy and
to the kind of existence of the respective iterated integrals: for the simple reason that
the use of our envelopes and of the Choquet integral makes this problem disappear, and
the earlier assertions themselves do not seem to be of particular interest. On the other
hand both the previous formations Γ and ν and the present π and ϑ and δ, as well as ϑ
and ρ in Section 2, are symmetric in the two factors. Therefore our theorem implies the
usual assertions on the equality under the two possible orders in the respective iterated
integrals.

We quote a few examples of Fubini-Tonelli theorems in the recent textbook literature,
which can be considered to be representative. First of all one often assumes the measures
α and β to be σ finite : then X × Y ∈ Rσ, and hence all functions f : X × Y → [0,∞]
have [f > 0] upward enclosable Rσ. Examples are Elstrodt [2], Theorem 2.1, p. 175–176,
Pap [9], Corollary 162, and Rao [10], Theorem 2, p. 385. Examples of Fubini-Tonelli
theorems without this assumption are Fremlin [3], Exercises 252Ycd, Pap [9], Theorem
160 and Rao [10], Theorem 1, p. 381. These theorems assume

∫

fdΓ <∞ and thus result
from our 3.11 combined with the above i). Moreover Fremlin [3], Theorem 252G and
Pap [9], Theorem 161 are examples of partial assertions which result from the first ≦ in
our previous 3.10.

After this we pass to the two particular former Fubini-Tonelli theorems emphasized
above. These are Fremlin [3], 252B and [4], 22.9 due to the present author. The ba-
sic deviations from the present treatment are that in these theorems the σ finiteness
requirement is directed to the second factor alone, and that in compensation from the
two fundamental inequalities in 3.10 the left inner one alone is claimed to turn into an
equation. Of course this requires a different technique. It is not clear and rather doubtful
whether the idea can be carried through in the present context, and the point does not
seem to be in special demand. In [4], 22.9 one assumes, in accord with the spirit of [4],
the measures α and β to be as in 3.9, and the assertion is for their product ν = Λ. In [3],
252B the situation is somewhat more comprehensive, in that one admits certain cases
where instead of α and β their completions are required to be as in 3.9. However, the
essential difference between the two presentations is that [4], 22.9 is for both • = στ in
uniform manner, like in the present Section 2, while in [3] the entire treatment of • = τ

is separated from the abstract measure situation • = σ and restricted to the topological

context.

Remark 3.12. In the deduction of Theorem 3.11 the substance of Section 2 has been
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used in two applications of 2.4, but not in form of the previous Fubini-Tonelli Theorem
2.7. In fact, it is quite clear that 3.11 is not an immediate consequence of 2.7. In the
sequel we want to show that in the present context the natural application of 2.7 leads
to a Fubini-Tonelli theorem which is similar to but different from 3.11: If 2.7 starts from
ϕ : S → [0,∞[ and ψ : T → [0,∞[ with ϑ = ϕ×ψ : R → [0,∞[, then it is most natural
to take P = A and Q = B, so that N = (P × Q)⋆ = (A × B)⋆ = G. Then one obtains,
via ξ = ϕσ|A and η = ψσ|B and 3.5.0), the outer σ premeasure ρ = ϑσ|N = ϑσ|G ≦

πσ|G = π. Thus the final assertion for the functions f : X × Y → [0,∞] measurable
C(ϑσ) = C reads

∫

−fdν =

∫

−

(
∫

−f(x, y)dψσ(y)

)

dϕσ(x)

=

∫

−

(
∫

−f(x, y)dησ(y)

)

dξσ(x) =

∫

−fdρσ,

whenever [f > 0] is upward enclosable [ρ <∞]σ. Thus compared with 3.11 the assertion
is for a larger class of functions f but furnishes a weaker result.
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(1969).

[2] J. Elstrodt: Maß- und Integrationstheorie, 5th Ed., Springer, Berlin (2007).

[3] D. H. Fremlin: Measure Theory, Vol. 1-4, Torres Fremlin, Colchester (2000–2003), available
at: http://www.essex.ac.uk/maths/staff/fremlin/mt.htm; (in a numbered reference the
first digit indicates its volume).

[4] H. König: Measure and Integration: An Advanced Course in Basic Procedures and Appli-
cations, Springer, Berlin (1997); corr. reprint (2009).

[5] H. König: The product theory for inner premeasures, Note Mat. 17 (1997) 235–249.

[6] H. König: Measure and integration: mutual generation of outer and inner premeasures,
Ann. Univ. Sarav., Ser. Math. 9 (1998) 99–122.

[7] H. König: Measure and integration: an attempt at unified systematization, Rend. Ist.
Mat. Univ. Trieste 34 (2002) 155–214; available at: http://www.math.uni-sb.de (Preprint
no. 42).

[8] H. König: Measure and integral: new foundations after one hundred years, in: Functional
Analysis and Evolution Equations. The Günter Lumer Volume, H. Amann et al. (ed.),
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