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Let B(X,Y ) be the continuous linear transformations from a normed linear space X to a normed linear
space Y . This article presents two general results - one for the norm topology on Y and one for the weak
topology on Y - that explain how convergence of sequences in B(X,Y ) with respect to a topology of
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1. Introduction

Let 〈X, || · ||X〉 and 〈Y, || · ||Y 〉 be normed linear spaces over a field of scalars F where
either F = R or F = C. The operator norm || · ||op on the space B(X, Y ) of continuous
linear transformations from X to Y is defined by the familiar formula

||T ||op := sup {||Tx||Y : ||x||X ≤ 1} (T ∈ B(X, Y )).

Denoting the unit ball of X by UX , operator norm convergence of T1, T2, T3, . . . to T in
B(X, Y ) means uniform convergence of 〈Tn〉 to T on UX , and thus uniform convergence
on each bounded subset B of X, since for S ∈ B(X, Y ) and α ∈ F,

sup {||Sx||Y : x ∈ αB} = |α| · sup {||Sx||Y : x ∈ B}.

Thus, convergence in the operator norm is convergence with respect to a topology of
uniform convergence on a bornology [16], that is, a family of nonempty subsets of X that
is closed under taking finite unions, that is closed under taking subsets, and that forms
a cover of X. In this case it is the bornology B(|| · ||X) of norm bounded subsets of X.

Now the bornology of bounded sets plays a fundamental role in a description of operator
norm convergence of sequences in B(X, Y ) in terms of the convergence of the associated
sequence of graphs in X × Y . Let us equip the product with the norm ||(x, y)||box :=
max{||x||X , ||y||Y } (any equivalent norm can also be used). The following result was
obtained by Penot and Zălinescu [22] for general continuous linear transformations (the
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special case of continuous linear functionals was handled earlier in [3, 7]). For T ∈
B(X, Y ), let us now put Gr(T ) := {(x, y) : Tx = y}.

Theorem 1.1. Let X and Y be normed linear spaces and let T, T1, T2, T3, . . . be a se-
quence in B(X, Y ). Then limn→∞ ||Tn − T ||op = 0 if and only if ∀ε > 0 ∀E ∈ B(|| · ||box)
we have eventually both

Gr(Tn) ∩ E ⊆ Gr(T ) + εUX×Y ,

Gr(T ) ∩ E ⊆ Gr(Tn) + εUX×Y .

Arguably, their result should be well-known among the analysis community whereas
exactly the opposite is the case. Convergence of graphs in this sense is a special case
of a well-studied convergence notion for closed sets in a normed linear space, called
Attouch-Wets convergence or bounded Hausdorff convergence in the literature. For closed
subsets A,A1, A2, A3, . . . of 〈X, || · ||X〉, we write A = AW − limAn if for each norm
bounded set B and each ε > 0, we have eventually both

An ∩B ⊆ A+ εUX and A ∩B ⊆ An + εUX .

This convergence is compatible with a metrizable topology that is completely metrizable
whenX is a Banach space [1, 5]. It is hard to overstate the importance of this convergence
notion in convex and variational analysis [26, 2, 4, 5, 11, 20, 21, 24, 22].

It is the purpose of this note to replace the bornology of bounded subsets of X by an
arbitrary subfamily B and display how uniform convergence in B(X, Y ) on members of
B can be explained in terms of convergence of graphs.

2. Preliminaries

Let 〈X, || · ||X〉 be a normed linear space over a field of scalars F. We denote the origin of
X by θ and the space B(X,F) by X∗. If A ⊆ X, we denote its convex hull by co(A); by
a polytope, we mean the convex hull of a finite set. We denote its absolutely convex hull
by aco(A); this is the smallest balanced convex set containing A. Elements of aco(A),
consist of all linear combinations of elements of A of the form

λ1a1 + λ2a2 + · · ·+ λnan

where {a1, a2, a3, . . . , an} ⊆ A and Σn
j=1|λj| ≤ 1.

A subset A of X is called starshaped with respect to a0 ∈ A if ∀a ∈ A, co({a, a0}) ⊆ A

[25]. The smallest set containing E ⊆ X that is starshaped with respect to the origin is
star (E; θ) := ∪e∈E co({e, θ}) = ∪λ∈[0,1]λE.

We next introduce two idempotent operators ↓ and Σ on families of nonempty subsets
of X, defined in [19] by

↓ S := {E 6= ∅ : ∃S ∈ S with E ⊆ S};

ΣS := {E : E is a finite union of elements of S}.

Given a family of nonempty subsets S of norm bounded subsets of X that is a cover
of X, the topology τ s

S
of strong uniform convergence on elements of S for B(X, Y ) is a
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locally convex topology having as a local base at the the zero linear transformation all
sets of the form

V (S1, S2, . . . Sn; ε) := {T ∈ B(X, Y ) : ∀x ∈ ∪n
j=1Sj, ||Tx||Y < ε},

where {S1, S2, . . . Sn} ⊆ S and ε > 0. When Y = F, such topologies are often called for
good reason polar topologies(see, e.g., [23, p. 46]).

The strongest such topology is obtained when S = {nUX : n ∈ N} and is the op-
erator norm topology. The weakest such topology is the topology of strong point-
wise convergence, sometimes called the strong operator topology in the literature [15,
p. 475], which of course is the weak-star topology when the codomain is the field of
scalars. As another example, when Y = F, the topology of strong uniform convergence
on {S : S is the range of a norm convergent sequence} is called the bounded weak-star
topology (see more generally [15, p. 512].

The requirement that the sets be norm bounded of course is included to guarantee
that each neighborhood is absorbing with respect to the vector space B(X, Y ). The
requirement that the family be a cover is included so that the convergence implies strong
pointwise convergence. More generally, if a second cover T refines S, that is, T ⊆↓ S,
then τ s

T
is coarser than τ s

S
. One consequence we shall use in our main results is this:

S ⊆ T ⊆↓ S ⇒ τ s
T
= τ s

S
.

It is also easy to see that τ sΣS
= τ s

S
, so that S can be enlarged to ↓ ΣS = Σ ↓ S, the

smallest bornology containing S, without changing the topology. For example, strong
pointwise convergence is uniform convergence with respect to the bornology of nonempty
finite subsets FX of X. Further, it is clear that the τ s

S
topology for B(X, Y ) is not altered

by replacing S by the larger family {αS : α ∈ F, S ∈ S}.

In the theory of locally convex spaces, topologies of uniform convergence are often pre-
sented in terms of families of absolutely convex sets, in view of the historical importance
of the Mackey-Arens theorem [23, p. 62]. For example, the topology of uniform conver-
gence on the weakly compact absolutely convex subsets of X for X∗ is called the Mackey
topology ; when X is a Banach space, by Krein’s Theorem [15, p. 434], the topology of
strong uniform convergence on weakly compact absolutely convex subsets agrees with
the topology of strong uniform convergence on weakly compact subsets.

The next result, which we view as a folk theorem, attempts to reconcile some of the
approaches we have indicated.

Proposition 2.1. Let S be a family of norm bounded subsets of X that is a cover of
X. Then there a bornology B containing S and a subfamily B0 with B0 ⊆ B ⊆ ↓ B0

consisting of norm bounded absolutely convex sets that is closed under homothetic images
such that τ s

S
= τ s

B
= τ s

B0
.

Proof. Let D be the smallest bornology containing S, and consider this family of subsets
of X:

B0 := {αaco(D) : α > 0 and D ∈ D}.

Note B0 is a family of norm bounded absolutely convex sets closed under homothetic
images. In view of the description of the absolutely convex hull of a set in terms of linear
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combinations of elements of the set, clearly τ s
S
= τ s

B0
. Put B :=↓ B0. Evidently B is an

hereditary family such that τ s
S
= τ s

B
= τ s

B0
, and so we are done if we can show that B is

closed under finite unions. To this end, suppose E1 ⊆ α1aco(D1) and E2 ⊆ α2aco(D2)
where {D1, D2} ⊆ D. Then

E1 ∪ E2 ⊆ (α1 + α2)(aco(D1) ∪ aco(D2)) ⊆ (α1 + α2)aco(D1 ∪D2) ∈ B0

as required.

We will also be interested in the topology of weak uniform convergence τw
B

with respect
to a cover B of X by norm bounded subsets. A local base at the zero transformation for
this locally convex topology consists of all sets of the form

W (S, f1, f2, . . . fm; ε) := {T ∈ B(X, Y ) : ∀x ∈ S ∀j ≤ m, |(fj ◦ T )x| < ε},

where S ∈ ΣB, ε > 0, and {f1, f2, f3, . . . fm} ⊆ Y ∗. Evidently, T = τw
B
-limTn if and

only if ∀f ∈ Y ∗ we have f ◦ T = τ s
B
-lim f ◦ Tn.

When B = FX this is the topology of weak pointwise convergence, a.k.a. the weak operator
topology [15], as T = τw

FX
-limTn if and only if for each x ∈ X, 〈Tnx〉 converges weakly to

Tx. All of our comments for topologies of strong uniform convergence remain valid for
these weaker topologies and, in particular, the analog of Proposition 2.1 holds.

Our results that describe convergence in B(X, Y ) with respect to topologies of uniform
convergences in terms of the graphs of the transformations involve a generalization of
Attouch-Wets convergence studied vigorously over the last five years in the context of
metric spaces (see, e.g., [19, 12, 8, 9, 13]). To provide a framework that includes this body
of research as well as the present investigation, we give a definition in a general context.
Suppose 〈X,U〉 is a Hausdorff uniform space where U is a diagonal uniformity [27, p. 238].
If A ⊆ X and U is an entourage, we write U(A) for {x ∈ X : ∃a ∈ A with (a, x) ∈ U}.

Definition 2.2. Let 〈X,U〉 be a Hausdorff uniform space and let S be a cover of X. A
net 〈Aλ〉λ∈Λ of closed subsets of X is declared S-convergent to a closed subset A if for
each U ∈ U and S ∈ S there exists an index λ0 in the underlying directed set Λ for the
net such that whenever λ � λ0 we have both

A ∩ S ⊆ U(Aλ) and Aλ ∩ S ⊆ U(A).

In the sequel, when 〈Aλ〉 is S-convergent to A, we will write A = S-limAλ. No finer
convergence results if S is replaced by the bornology generated by S, and thus convergence
in this sense is called bornological convergence. Again paralleling what we have for
topologies of uniform convergence, if T refines S, then A = S− limAλ ⇒ A = T− limAλ.
As a trivial example, if our family S consists of all nonempty subsets of X, then for
convergence we need only check the definition at S = X. Convergence in this sense
is just convergence with respect to the hyperspace uniform topology [27, p. 250] which
generalizes the Hausdorff metric topology [18, 5, 20] in the metric setting. We mention
that if S = the nonempty compact subsets of X, then bornological convergence of closed
sets is convergence with respect to the Fell topology [5, p. 141], a.k.a, the topology of
closed convergence [18] (see the discussion following Corollary 3.6 infra).

In applications the uniformity in question often is a metric uniformity. When the metric
comes from a norm, equivalent norms produce the same bornological convergence, as
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the metrics they induce are uniformly equivalent. Necessary and sufficient conditions for
two metric bornological convergences to coincide are presented in [8].

Note also that not all entourages need be checked: a base for the uniformity will do. In
particular if X is a Hausdorff locally convex space with a local base {Vi : i ∈ I} at θ,
then with respect to the natural uniformity associated with {Vi : i ∈ I}, we see that
A = S− limAλ if and only if for each S ∈ S and i ∈ I, eventually both A∩ S ⊆ Aλ + Vi

and Aλ ∩ S ⊆ A+ Vi.

In our discussion of topologies of uniform convergence on B(X, Y ), we remarked that we
could restrict our attention to uniform convergence on certain (absolutely) convex sets.
We do not have this luxury in the case of bornological convergence, even for sequences
of compact convex sets.

Example 2.3. Consider the plane R
2 equipped with the Euclidean norm (or the box

norm) and with the bornology of finite subsets FR2 . Let 〈xn〉 be a sequence of distinct
norm one elements, and let An = co({xn, θ}). While {θ} = FR2 − limAn, bornological
convergence fails with respect to the bornology generated by all polytopes, i.e., convex
hulls of members of FR2 , which of course coincides with the bornology of norm bounded
sets in this setting.

3. Results

We first introduce some notation. Let X and Y be normed linear spaces. If S is a family
of nonempty subsets of X and T is a family of nonempty subsets of Y , we write S ⊗ T

for the associated family of subsets of X×Y consisting of all products of the form S×T

where S ∈ S and T ∈ T.

Theorem 3.1. Let 〈X, || · ||X〉 and 〈Y, || · ||Y 〉 be normed linear spaces. Let B0 be a cover
of nonempty norm bounded subsets of X each starshaped with respect to the origin that
is closed under multiplication by positive scalars, and suppose B0 ⊆ B ⊆↓ B0. Suppose
T, T1, T2, T3, . . . is a sequence in B(X, Y ). The following conditions are equivalent:

(1) Gr(T ) = B ⊗ {Y }-limGr(Tn) with respect to the uniformity of the box norm for
X × Y ;

(2) Gr(T ) = B0 ⊗ {αUY : α > 0}-limGr(Tn) with respect to the uniformity of the box
norm for X × Y ;

(3) T = τ s
B0
-limTn;

(4) T = τ s
B
-limTn.

Proof. Since B0 ⊗ {αUY : α > 0} refines B ⊗ {Y }, (1) implies (2) and clearly (3 ) and
(4) are equivalent. We prove (2) ⇒ (3 ) and (4) ⇒ (1).

Assume (2) holds and fix B ∈ B0. By scaling we may assume without loss of generality
that B ⊆ 1

2
UX because by assumption B is norm bounded and uniform convergence

on any homothetic image of B implies uniform convergence on B. We first claim that
∪∞

n=1Tn(B) is a norm bounded subset of Y . If ∪∞

n=1Tn(B) fails to be bounded, then since
linear transformations preserve starshapedness with respect to the origin, there exists
for infinitely many n ∈ N xn ∈ B with

||Tnxn||Y = 2

(
||T ||op +

1

2

)
.
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Choose by graph convergence k0 ∈ N such that ∀n > k0 we have

Gr(Tn) ∩

(
B × 2

(
||T ||op +

1

2

)
UY

)
⊆ Gr(T ) +

1

2
(UX×Y ).

Now pick n1 > k0 and xn1
∈ B with ||Tn1

xn1
||Y = 2(||T ||op +

1
2
), and then pick x ∈ X

with

(♦) ||(xn1
, Tn1

xn1
)− (x, Tx)||box ≤

1

2
.

Since xn1
∈ B ⊆ 1

2
UX , we conclude x ∈ UX , and we obtain

||Tn1
xn1

− Tx||Y ≥ | ||Tn1
xn1

||Y − ||Tx||Y | ≥ |2

(
||T ||op +

1

2

)
− ||T ||op| >

1

2
.

and this contradicts (♦).

The claim established, next choose α > 0 where ∪∞

n=1Tn(B) ⊂ αUY and let ε > 0.
To show that 〈Tn〉 converges strongly uniformly to T on B, we consider two cases: (i)
∀x ∈ X, Tx = 0; and (ii) ||T ||op > 0.

In case (i) choose k ∈ N such that ∀n > k

Gr(Tn) ∩ (B × αUY ) ⊆ Gr(T ) + εUX×Y = X × εUY .

By the choice of α for each x ∈ B and for all n we have (x, Tnx) ∈ B × αUY and so for
n > k we obtain ||Tnx− Tx||Y ≤ ε as required.

In case (ii), put δ := ε(2||T ||op + 2)−1 and choose k ∈ N so large that ∀n > k, we have

(♥) Gr(Tn) ∩ (B × αUY ) ⊆ Gr(T ) + δUX×Y .

Let x ∈ B and n > k be arbitrary; by the choice of δ and (♥), we can find w ∈ X such
that ||w − x||X < ε

2
||T ||−1

op and ||Tw − Tnx||Y < ε
2
. As a result,

||Tw − Tx||Y ≤ ||T ||op ·
ε

2||T ||op
=

ε

2
,

and it follows that

||Tnx− Tx||Y ≤ ||Tnx− Tw||Y + ||Tw − Tx||Y <
ε

2
+

ε

2
= ε.

In either case we conclude that sup{||Tx− Tnx||Y : x ∈ B} ≤ ε, and since B ∈ B0 was
arbitrary, we have T = τ s

B0
-limTn. Thus (3 ) holds

The proof of (4) ⇒ (1) is very easy. Suppose T = τ s
B
-limTn and ε > 0 and B ∈ B are

arbitrary. Choose k ∈ N so large that ∀n > k, supx∈B||Tnx − Tx||Y < ε. Then for all
such n we actually have Gr(T )∩(B×Y ) ⊆ Gr(Tn)+({θ}×εUY ) and Gr(Tn)∩(B×Y ) ⊆
Gr(T ) + ({θ} × εUY ), and so both

Gr(T ) ∩ (B × Y ) ⊆ Gr(Tn) + εUX×Y ,

and
Gr(Tn) ∩ (B × Y ) ⊆ Gr(T ) + εUX×Y .

This completes the proof.
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We note that while τ s
B
-convergence implies two-sided bornological graph convergence,

the proof of Theorem 3.1 shows that τ s
B
-convergence follows just from upper bornological

graph convergence. For example, condition (1) can be replaced by

∀B ∈ B ∀ε > 0 ∃n0 ∈ N ∀n > n0 Gr(Tn) ∩ (B × Y ) ⊆ Gr(T ) + εUX×Y .

From this perspective, the equivalence of conditions (1) and (4) is a special case of
Theorem 6.18 of [10].

In applications of Theorem 3.1, on the bornological side, we can replace B ⊗ {Y } and
B0 ⊗ {αUY : α > 0} by any intermediate family, and thus by families that generate the
same bornology as does an intermediate family. Frequently, we will use B⊗{αUY : α >

0}. On the uniform convergence side, we can replace B by various associated families
as indicated by but not limited to the constructs of Proposition 2.1. For example, in
our first application Proposition 3.2, we replace B by a family S from which B can be
recovered by taking convex hulls of finite unions of members of S.

Proposition 3.2. Let X and Y be a normed linear spaces, and let {T, T1, T2, . . .} ⊆
B(X, Y ). The following are equivalent:

(1) ∀x ∈ X, limn→∞ ||Tnx− Tx||Y = 0;

(2) whenever P is a polytope in X and α > 0 and ε > 0, then eventually both

Gr(Tn) ∩ (P × αUY ) ⊆ Gr(T ) + εUX×Y ,

Gr(T ) ∩ (P × αUY ) ⊆ Gr(Tn) + εUX×Y .

Proof. Strong pointwise convergence implies strong uniform convergence on each finite
set {a1, a2, ..., an} and thus on each polytope co({a1, a2, ..., an}). Apply Theorem 3.1
where B = the set of all polytopes and B0 = the set of all polytopes containing the
origin.

We note that in the context of linear transformations between reflexive spaces, Zălinescu
[28] has shown that strong pointwise convergence of 〈Tn〉 to T plus strong pointwise
convergence of the induced sequence of adjoints (defined from Y ∗ to X∗) amounts to the
Mosco convergence (see, e.g., [5, 20]) of 〈Gr(Tn)〉 to Gr(T ) provided X∗ has the Kadec
property.

Specializing to linear functionals, Proposition 3.2 becomes

Corollary 3.3. Let X be a normed linear space, and let {f, f1, f2, . . .} ⊆ X∗. The
following are equivalent:

(1) 〈fn〉 is weak-star convergent to f ;

(2) whenever P is a polytope in X × F and ε > 0, then eventually both

Gr(Tn) ∩ P ⊆ Gr(T ) + εUX×F and Gr(T ) ∩ P ⊆ Gr(Tn) + εUX×F.

Proof. Each polytope P in X × F is contained in πX(P )× πF(P ) and of course πF(P )
is contained in αUF for some α > 0. On the other hand if P ′ is a polytope in X then
P ′×αUF is contained in some polytope in X×F, as each closed ball in the field of scalars
is contained in a polytope.
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For sequences of functions between metric spaces, uniform convergence on compact sub-
sets amounts to pointwise convergence plus equicontinuity. Specializing to linear trans-
formations, strong uniform convergence of 〈Tn〉 to T on norm compact subsets amounts to
strong pointwise convergence plus uniform boundedness of {Tn : n ∈ N}. We also note for
the record that uniform convergence on compacta is equivalent to sequential strong con-
tinuous convergence : whenever x0, x1, x2, . . . is a sequence in X with lim ||xn−x0||X = 0,
then lim ||Tnxn−Tx||Y = 0 [14, p. 268]. In the last two results, one would like to replace
the topology of strong pointwise convergence by the topology of strong uniform conver-
gence on norm compact subsets and to compensate on the bornological convergence side,
polytopes by norm compact convex sets, but in a general normed linear space neither
the closed convex hull nor the closed absolutely convex hull of a norm compact set need
be norm compact. It is at this point that starshapedness comes into play.

Lemma 3.4. Suppose A ⊆ X is norm (resp. weakly) compact and α > 0. Then
αstar(A; θ) is norm (resp. weakly) compact.

Proof. The product [0, α] × A is compact and αstar(A; θ) is the image of [0, α] × A

under the continuous function (α, a) 7→ αa.

Applying Theorem 3.1 with B = the norm compact subsets of X and B0 = the norm
compact subsets of X that are starshaped with respect to the origin, we get

Proposition 3.5. Let X and Y be normed linear spaces and let {T, T1, T2, . . .} ⊆
B(X, Y ). Then 〈Tn〉 convergences to T uniformly on each norm compact subset of X if
and only if for each norm compact subset K of X and α > 0 we have eventually both

Gr(Tn) ∩ (K × αUY ) ⊆ Gr(T ) + εUX×Y ,

Gr(T ) ∩ (K × αUY ) ⊆ Gr(Tn) + εUX×Y .

Specializing to linear functionals, Proposition 3.5 becomes

Corollary 3.6. Let X be a normed linear space and let {f, f1, f2, . . .} ⊆ X∗. Then 〈fn〉
is convergent to f uniformly on norm compact subsets if and only if for each ε > 0 and
for each norm compact subset K of X × F we have eventually both

Gr(fn) ∩K ⊆ Gr(f) + εUX×F,

Gr(f) ∩K ⊆ Gr(fn) + εUX×F.

It is well-known (see [5, Thms. 5.1.6 and 5.2.10]) that if A,A1, A2, A3, . . . is a sequence
of closed sets in a metric space 〈X, d〉 and K is the family of compact subsets of X, then
the following three conditions are equivalent:

(1) A = K- limAn;

(2) 〈An〉 is convergent to A in the Fell Topology, that is
(2a) whenever V is open and A ∩ V 6= ∅, then eventually An ∩ V 6= ∅, and
(2b) whenever K is compact and A ∩K = ∅, then eventually An ∩K = ∅;

(3) 〈An〉 is Kuratowski convergent to A, that is, A is at once the upper closed limit of
〈An〉 and the lower closed limit of 〈An〉.

By our remarks preceding Lemma 3.4 and equivalence of conditions (1) and (3) immedi-
ately above, Corollary 3.6 for linear functionals may be restated in this known form [3,
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Thm. 4.1] : 〈Gr(fn)〉 is Kuratowski convergent to Gr(f) if and only if 〈fn〉 is weak-star
convergent to f and {||fn||op : n ∈ N} is a bounded set of reals.

We also note that the statements of Corollaries 3.3 and 3.6 obviously remain valid with
minor adjustments for linear transformations with values in F

n, not just for linear func-
tionals.

By Mazur’s Theorem [15, p. 416], if X is a Banach space then the closed convex hull
of a norm compact set is norm compact and we can give formal results that parallel
Proposition 3.2 and Corollary 3.3 where convexity only appears on one side. But by
the Uniform Boundedness Principle [15, p. 66], when X is a Banach space, a sequence
convergent strongly pointwise automatically convergences strongly uniformly on norm
compact subsets, as the sequence is uniformly bounded in the operator norm and hence
is equicontinuous. So nothing is really gained by stating such results whenX is a Banach
space.

We can present an exact analog to Proposition 3.5 for weakly compact sets, but we prefer
to state a more aesthetically pleasing result by placing a restriction on the codomain.

Proposition 3.7. Let X be a normed linear space and let Y be the dual of a Banach
space, and let {T, T1, T2, . . .} ⊆ B(X, Y ). Then 〈Tn〉 convergences to T uniformly on
each weakly compact subset of X if and only if for each weakly compact subset C of X
and each weak-star compact subset K of Y we have eventually both

Gr(Tn) ∩ (C ×K) ⊆ Gr(T ) + εUX×Y ,

Gr(T ) ∩ (C ×K) ⊆ Gr(Tn) + εUX×Y .

Proof. By the Uniform Boundedness Principle and Alaoglu’s Theorem [15, p. 424], the
bornology on Y having as a base the weak-star compact sets coincides with B(|| · ||Y ).
Apply Theorem 3.1.

Specializing to linear functionals, Proposition 3.7 becomes

Corollary 3.8. Let X be a normed linear space and let {f, f1, f2, . . .} ⊆ X∗. Then 〈fn〉
is convergent to f strongly uniformly on weakly compact subsets of X if and only if for
each ε > 0 for each weakly compact subset K of X × F we have eventually both

Gr(fn) ∩K ⊆ Gr(f) + εUX×F,

Gr(f) ∩K ⊆ Gr(fn) + εUX×F.

By Krein’s Theorem, if X is a Banach space, we can convexify our last two results on
the bornological convergence side. We leave this as an easy exercise for the reader.

As we must stop somewhere, we choose to finish with an application to Mackey con-
vergence of linear functionals, i.e., uniform convergence on weakly compact absolutely
convex subsets of X.

Proposition 3.9. Let X be a normed linear space, and let {f, f1, f2, . . .} ⊆ X∗. The
following are equivalent:

(1) 〈fn〉 is Mackey convergent to f ;
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(2) whenever C is a weakly compact convex subset in X×F and ε > 0, then eventually
both

Gr(fn) ∩ C ⊆ Gr(f) + εUX×F and Gr(f) ∩ C ⊆ Gr(fn) + εUX×F.

Proof. Here B = B0 = the weakly compact absolutely convex subsets of X. Let C

denote the convex weakly compact subsets of X × F. Each element of B ⊗ {αUF : α >

0} belongs to C, and if C ∈ C, then C is contained in aco(πX(C)) × αUF (note that
the absolutely convex hull of a convex weakly compact set is weakly compact without
completeness - see the proof of Lemma 3.4 supra). Thus, the bornology generated by C

coincides with the bornology generated by B ⊗ {αUF : α > 0}.

Our result for topologies of weak uniform convergence essentially falls out of Theorem
3.1. Given normed linear spaces X and Y let U be the diagonal uniformity on X × Y

having as a base all sets of the form

]f1, . . . , fn; ε[:= {((x1, y1), (x2, y2)) : ||x1 − x2||X ≤ ε and ∀i ≤ n |fi(y1 − y2)| ≤ ε}

where ε > 0 and {f1, f2, f3, . . . , fn} is a finite subset of Y ∗. This of course is the
uniformity associated with the usual local basis of absolutely convex neighborhoods of θ
for the product of X with the norm topology and Y with the weak topology [23, p. 87].
Observe that for A ⊆ X×Y, A+(εUX ×{y : ∀i ≤ n |fi(y)| ≤ ε}) =]f1, f2, . . . , fn; ε[(A).

Theorem 3.10. Let 〈X, ||·||X〉 and 〈Y, ||·||Y 〉 be normed linear spaces. Let B0 be a cover
of nonempty norm bounded subsets of X each starshaped with respect to the origin that
is closed under multiplication by positive scalars, and suppose B0 ⊆ B ⊆↓ B0. Suppose
T, T1, T2, T3, . . . is a sequence in B(X, Y ). The following conditions are equivalent:

(1) Gr(T ) = B ⊗ {Y }-limGr(Tn) with respect to the uniformity U for X × Y ;

(2) ∀B ∈ B0, ∀f ∈ Y ∗, ∀α > 0, ∀ε > 0 and for each weak neighborhood V of the
origin in Y , we have eventually both

Gr(T ) ∩ (B × {y : |f(y)| ≤ α}) ⊆ Gr(Tn) + (εUX × V ), and

Gr(Tn) ∩ (B × {y : |f(y)| ≤ α}) ⊆ Gr(T ) + (εUX × V );

(3) T = τw
B0
-limTn;

(4) T = τw
B
-limTn.

Proof. (1) ⇒ (2). The cover {B × {y : |f(y)| ≤ α} : B ∈ B0, f ∈ Y ∗ and α > 0} of
X × Y refines B ⊗ {Y }.

(2) ⇒ (3 ). Assuming (2) it suffices to show for each f ∈ Y ∗ we have f ◦ T = τ s
B0

−
lim f ◦ Tn. Fix B ∈ B0, ε > 0 and α > 0; with V = {y : |f(y)| ≤ ε}, choose by (2)
k ∈ N such that whenever n > k, both

Gr(T ) ∩ (B × {y : |f(y)| ≤ α}) ⊆ Gr(Tn) + (εUX × {y : |f(y)| ≤ ε}), and

Gr(Tn) ∩ (B × {y : |f(y)| ≤ α}) ⊆ Gr(T ) + (εUX × {y : |f(y)| ≤ ε}).

Now let (x, (f ◦ T )x) ∈ B × αUF be arbitrary. Then (x, Tx) ∈ B × {y : |f(y)| ≤ α}
and so ∀n > k ∃(xn, Tnxn) with ||x − xn||X ≤ ε and Tx − Tnxn ∈ {y : |f(y)| ≤ ε}, i.e.,
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|(f ◦ Tn)xn − (f ◦ T )x| ≤ ε. This implies (x, (f ◦ T )x) belongs to Gr(f ◦ Tn) + εUX×F

and it follows that for all n > k

Gr(f ◦ T ) ∩ (B × αUF) ⊆ Gr(f ◦ Tn) + εUX×F.

The same argument gives

Gr(f ◦ Tn) ∩ (B × αUF) ⊆ Gr(f ◦ T ) + εUX×F,

and applying Theorem 3.1 condition (3 ) follows.

(3 ) ⇒ (4). This is obvious.

(4) ⇒ (1). Fix B ∈ B and let {f1, f2, . . . , fm} in Y ∗ and ε > 0 be arbitrary. By
weak uniform convergence on B, there exists k ∈ N such that for all n > k and all
x ∈ B, (T − Tn)x ∈ {y : ∀i ≤ m |fi(y)| ≤ ε}. This immediately implies

Gr(T ) ∩ (B × Y ) ⊆ Gr(Tn) + (εUX × {y : ∀i ≤ m |fi(y)| ≤ ε}), and

Gr(Tn) ∩ (B × Y ) ⊆ Gr(T ) + (εUX × {y : ∀i ≤ m |fi(y)| ≤ ε}).

While the bornology of norm bounded sets seems natural to attach to the norm topology
of a normed linear space X to form a so-called bornological universe [17, 6], for the
weak topology a more appropriate choice may be provided by the smallest bornology
containing {x : |f(x)| ≤ α} where f runs over X∗ and α runs over the positive scalars.
This weak bornology is natural with respect to viewing the weak topology as a topology
of pointwise convergence, identifying each x ∈ X with x̂ ∈ X∗∗ ⊆ F

X∗

where of course

x̂(f) = f(x) (f ∈ X∗).

Just as the product topology on F
X∗

= the topology of pointwise convergence on the
scalar-valued functions defined on X∗ is the coarsest topology on the product containing
π−1
f (V ) for each open set V in F and each f ∈ X∗, the natural product bornology [6]

is the coarsest bornology containing π−1
f (B) for each bounded set B of scalars and each

f ∈ X∗. The trace of this bornology on {x̂ : x ∈ X} is precisely what we have suggested.
Theorem 3.10 of course provides additional support for this choice. That said, it is a
little disturbing that while the norm and weak topologies agree for a finite dimensional
space, the norm and weak bornologies diverge, e.g., in R

2 the union of the coordinate
axes belongs to the weak bornology.
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