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1. Introduction

Let S be a nonempty closed subset of Rn. For x ∈ S, a vector ζ ∈ R
n is said to be

proximal normal to S at x provided that there exists σ = σ(x, ζ) ≥ 0 such that

〈ζ, s− x〉 ≤ σ‖s− x‖2 ∀s ∈ S, (1)

where 〈·, ·〉 and ‖·‖ denote the standard inner product and Euclidean norm, respectively.
The relation (1) is commonly referred to as the proximal normal inequality. No nonzero
ζ satisfying (2) exists if x ∈ intS, but this may also occur for x ∈ bdryS, as is the case
when S is the epigraph of the function f(z) = −|z| and x = (0, 0). For such points, the
only proximal normal is ζ = 0. In view of (1), the set of all proximal normals to S at x
is a convex cone, and we denote it by NP

S (x).

Let x ∈ bdryS, and suppose that 0 6= ζ ∈ R
n and r > 0 are such that

B

(

x+ r
ζ

‖ζ‖ ; r
)

∩ S = ∅, (2)

where B(z; ρ) denotes the open ball of radius ρ centered at z (the closed ball being
denoted by B̄(z; ρ)). Then ζ is a proximal normal to S at x and we say that ζ is realized
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by an r-sphere. Note that ζ is then also realized by an r′-sphere for any 0 < r′ < r.
One can show that ζ being realized by an r-sphere is equivalent to the proximal normal
inequality holding with σ = 1

2r
; that is,

〈

ζ

‖ζ‖ , s− x

〉

≤ 1

2r
‖s− x‖2 ∀s ∈ S. (3)

Our general reference regarding proximal normals as well as other constructs of proximal
analysis is Clarke, Ledyaev, Stern and Wolenski [7].

For a point x ∈ bdryS, if there exists r > 0 such that some 0 6= ζ ∈ NP
S (x) is realized by

an r-sphere, then we say that S satisfies an exterior r-sphere condition at x. In sphere
terminology, it is equivalent to the existence of yx 6∈ S such that

B(yx; r) ∩ S = ∅ and ‖x− yx‖ = r.

If this holds (for a single r > 0) at every boundary point x, then S is said to satisfy an
exterior r-sphere condition, and if there exists such an r, we simply say that S satisfies
the uniform exterior sphere condition.

Of course, when S = cl (intS) (the closure of the interior), the uniform exterior sphere
condition is equivalent to (intS)c (the complement of the interior) satisfying a uniform
interior sphere condition. The latter condition is a well known one in control theory,
and is important in deriving regularity properties of the minimal time function; see e.g.
Cannarsa and Frankowska [4], Cannarsa and Sinestrari [4, 5] and Sinestrari [18].

If, for a point x ∈ bdryS, r > 0 is such that every 0 6= ζ ∈ NP
S (x) is realized by

an r-sphere, then S is said to be r-proximally smooth at x. Paralleling the preceding
terminology, if this holds at every boundary point x for some positive r, then we say that
S is r-proximally smooth, and if there exists such an r, S is simply said to be uniformly
proximally smooth.

In addition to several other interesting consequences, uniform proximal smoothness of S
implies that NP

S (x) 6= {0} for all x ∈ bdryS. Furthermore, if S is closed and convex,
then the proximal normal inequality holds at every x ∈ S with σ = 0; hence this class of
sets is uniformly proximally smooth, and every x ∈ bdryS is realized by an r-sphere of
arbitrarily large radius. Apparently, uniform proximal smoothness was first studied by
Federer [11], who referred to the property as positive reach. In Clarke, Stern andWolenski
[8] (see also Canino [2] and Shapiro [17]), proximal smoothness was studied in detail in a
Hilbert space setting, and tie-ins were made with smoothness properties of the euclidean
distance function dS(·) on an open tube around S, but in the present work, we will not
rely on those results. We also refer the reader to Poliquin and Rockafellar [13], Poliquin,
Rockafellar and Thibault [14], Rockafellar and Wets [16], Colombo and Marigonda [9]
and Colombo, Marigonda and Wolenski [10] for investigations and applications of related
properties such as prox-regularity and ϕ-convexity.1

1A set S is said to be r-prox-regular at a point x0 ∈ bdryS if there exists δ > 0 such that
〈

ζ
‖ζ‖ , s− x

〉

≤
1

2r
‖s−x‖2 for all x and s in S ∩B(x0; δ) and for all 0 6= ζ ∈ NL

S (x) (the limiting normal cone to S at x,
see [7]). It was proven in [14] that a property termed uniformly r-prox-regularity coincides with uniform
r-proximal smoothness. A closed set S is said to be ϕ-convex if there exists a continuous function
ϕ : S −→ [0,+∞[ such that 〈ζ, s−x〉 ≤ ϕ(x) ‖ζ‖ ‖s−x‖2 for all x, s ∈ S and for all ζ ∈ NP

S (x). Clearly
uniform proximal smoothness coincides with ϕ-convexity if ϕ is a constant function. See [9] for results
concerning ϕ-convexity.
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Figure 1.1: Example 2.2

The goal of the present article is to compare the exterior sphere condition with proximal
smoothness. Obviously, if S is r-proximally smooth, then it satisfies the exterior r-sphere
condition. Our purpose here is to answer the following two questions concerning possible
reverse implications:

(∗) If S satisfies an exterior r-sphere condition and S is known to be uniformly proxi-
mally smooth, is it necessarily r-proximally smooth?

(∗∗) If S satisfies a uniform exterior sphere condition, is S necessarily uniformly proxi-
mally smooth? (Here there is no mention of radius.)

After settling these issues, we will also study the equivalence between S satisfying the
uniform interior sphere condition and S being the union of uniform spheres, and in so
doing clarify a semantic ambiguity in the literature concerning these properties.

In the next section, we shall see, by means of counterexamples, that the answer to both
questions (∗) and (∗∗) is “no�. Then in Section 3 geometric conditions will be provided
under which equivalence between the uniform exterior sphere condition and uniform
proximal smoothness does hold. Section 4 is devoted to the comparison of the uniform
interior sphere condition and the union of uniform balls property.

2. Counterexamples

As mentioned above, it is clear from the definitions that if S is r-proximally smooth,
then it possesses the exterior r-sphere condition. That the reverse implication is not
necessarily true is illustrated by the following simple example.

Example 2.1. Let S := {(x, |x|) : x ∈ R} ⊂ R
2. This set possesses the exterior r-sphere

condition for any r > 0, but fails to be r-proximally smooth for any r > 0, and thereby
provides a negative answer to Question (∗∗). Indeed, for each x ∈ ]0,+∞[ the vector
ζ = (−1, 1) is a proximal normal to S at (x, x), but the radius of the sphere which
realizes ζ must approach 0 as x ↓ 0.

In the preceding example, the set S has an empty interior. We now will focus our
attention on sets S satisfying S = cl (intS), which are of the type commonly used in
control theory as targets in minimal time optimal control problems. We shall refer to
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Figure 2.1: Example 2.3

such sets as standard sets. Consider the following.

Example 2.2. Let S be the standard region inside the rectangle and outside the two
large circles in Figure 1.1. This set satisfies an exterior 1-sphere condition. (Observe
that the non-vertically oriented circle has 1 as radius.) But, while S is clearly uniformly
proximally smooth, it fails to be 1-proximally smooth, since the unit vector (0,−1)
normal to S at (0, 1

2
) cannot be realized by 1-sphere. This shows that Question (∗) has

a negative answer.

While it is true that the set S in the previous example is not 1-proximally smooth, it is
r-proximally smooth for any 0 < r ≤ 1

2
, and therefore it does not address Question (∗∗).

The following example does so.

Example 2.3. Let S be the standard region inside the infinite rectangle and outside
the circles (of radius 2) of Figure 2.1. The intersection of two consecutive circles Cn and
Cn+1 consists of two points of the form pn = (an,

1
2n
) and qn = (an,− 1

2n
), where an ∈ R

and n ≥ 1. Then S satisfies the exterior 1-sphere condition, but fails to be r-proximally
smooth for any r > 0, since vertical proximal normals at pn and qn are realizable only
by spheres of radius at most 1

2n
.

The set S of the previous example is connected, but it fails to be compact. The following
example is a two dimensionsal compact counterexample for Question (∗∗) in which the
set S is not connected.2

Example 2.4. Let S be the infinite union of the “curved� triangles of Figure 2.2. The
curved sides of these triangles are arcs of unit circles tangent to the horizontal bases of
the triangles. The points an and bn are chosen in such a way that the sequences |bn−an|
and |an+1 − bn| converge to 0 and such that the curved triangles converge to a point
(included in the set S); note that S is therefore compact. Clearly S satisfies the exterior
1-sphere condition but fails to be r-proximally smooth for any r > 0. Indeed, the radius

2It is an open question whether a two dimensions connected and compact counterexample to Question
(∗∗) exists. Example 2.4 due to Zvi Artstein (private communication). A similiar example, but in
another context, can be also found in Marigonda [12].
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Figure 3.1: Example 2.5

of the spheres which realize horizontal proximal normals at the points bn must approach
0.

We shall conclude this section with a third negative example for Question (∗∗), but
where S is a three dimensions compact and connected set. It will play a role in the next
section as well; see Remark 3.10 below.

Example 2.5. Consider the following three surfaces in R
3, shown in the left picture of

Figure 3.1:

• S1 is the part of the sphere x2 + y2 + (z − 2)2 = 4 with x ≤ 0, y ≤ 0 and z ≤ 2.

• S2 is the part of the cylinder y2 + (z − 2)2 = 4 with 0 ≤ x ≤ 2, −2 ≤ y ≤ 0 and
z ≤ 2.

• S3 is the part of the cylinder x2 + (z − 2)2 = 4 with −2 ≤ x ≤ 0, 0 ≤ y ≤ 2 and
z ≤ 2.

Now define S to be the region between the surface S1∪S2∪S3 and the plane z = 0, as is
shown in the right picture of Figure 3.1. Clearly S is a standard set. Moreover, S satisfies
the exterior 1-sphere condition, but it fails to be uniformly proximally smooth. Indeed,
similarly to Example 2.1, for each x ∈ ]0, 2[ the vector ζ = (0, 1, 0) is a proximal normal
to S at (x, 0, 0), but the radius of the sphere which realizes ζ necessarily approaches 0
as x ↓ 0.

3. Conditions for equivalence

Let S ⊂ R
n be a closed set, not necessarily standard. We introduce a geometric hypoth-

esis, for a given point x ∈ bdryS and scalar δ > 0:
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(Hx,δ): For every y ∈ (S ∩B(x; δ))\{x} and all t ∈ [0, 1[ one has

S ∩ I(x, y, t) 6= ∅,

where I(x, y, t) denotes the open interval from (1− t)y + tx to x.

Remark 3.1. Clearly a convex set S satisfies hypothesis (Hx,δ) for all boundary points
x and all δ > 0. The hypothesis is also satisfied by locally convex or, more generally,
locally star-shaped sets. An example of set which satisfies (Hx,δ) but fails to be locally
star-shaped is the epigraph of the function

f(x) =

{

x sin
(

1
x

)

if x 6= 0

0 if x = 0.

Proposition 3.2. Let S be a closed set with x ∈ bdryS, and assume that hypothesis
(Hx,δ) holds. Then S is δ

2
-proximally smooth at x.

Proof. We proceed via contradiction. Assume that S is not δ
2
-proximally smooth at x.

Then there exist a unit vector ζ0 ∈ NP
S (x) and s0 ∈ S \ {x} such that

〈ζ0, s0 − x〉 > 1

δ
‖s0 − x‖2. (4)

The last inequality yields s0 ∈ B(x; δ). Then by (Hx,δ) we obtain the existence of a
sequence 0 < ti < 1 such that ti −→ 1 and (1− ti)s0 + tix ∈ S. Since ζ0 ∈ NP

S (x), there
exists σ > 0 such that

〈ζ0, s− x〉 ≤ σ‖s− x‖2 ∀s ∈ S.

Hence
(1− ti)〈ζ0, s0 − x〉 ≤ σ(1− ti)

2‖s0 − x‖2,
which yields

〈ζ0, s0 − x〉 ≤ σ(1− ti)‖s0 − x‖2. (5)

Now using the two inequalities (4) and (5) we obtain that 1
δ
< σ(1−ti). Letting i −→ +∞

in the preceding inequality provides the desired contradiction.

A point x ∈ bdryS is said to be normal if the proximal normal cone at x is a half line;
that is, there exists a vector 0 6= ζ such that

NP
S (x) := {tζ : t ≥ 0}.

Remark 3.3.

• Clearly proximal smoothness holds at normal points.

• If S is standard and has C2-smooth boundary near x, then x is normal.

• If S satisfies an interior sphere condition at x, then either x is normal or NP
S (x) =

{0}.
• If x is normal, then S does not necessarily satisfy an interior sphere condition at x.

This is illustrated by the cylinder with heart-shaped cross-section shown in Figure
3.2, where x is the cusp at the top. Note that (Hx,δ) is satisfied at this cusp.
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Figure 3.2: Heart cylinder

• On the other hand, hypothesis (Hx,δ) can fail at a normal point even if S is uni-
formly proximally smooth. An example is the epigraph of f(x) = −x2 at the
origin.

Upon imposing uniformity on δ in hypothesis (Hx,δ), we obtain the following as a direct
consequence of Proposition 3.2.

Corollary 3.4. Let S be a nonempty closed set and assume that there exists δ > 0 such
that every x ∈ bdryS is either normal, or (Hx,δ) holds. Then if S satisfies an exterior
r-sphere condition, S is uniformly proximally smooth. (In particuar, it is min{r, δ

2
}-

proximally smooth.)

Another corollary ensues from the previous one, and the fact that the uniform exterior
sphere condition is weaker than uniform proximal smoothness:

Corollary 3.5. Under the assumptions of the preceding corollary, S satisfies the uniform
exterior sphere condition if and only if it is uniformly proximally smooth.

Remark 3.6.

• The set S of Example 2.1 does not satisfy the hypothesis of the preceding two
corollaries. Indeed, no points are normal and no uniform δ > 0 can be found.

• The set S of Example 2.2 does satisfy the hypotheses, with a maximum δ of 1
n
.

• Clearly the sets of Example 2.3, Example 2.4 and Example 2.5 do not satisfy the
hypotheses. Indeed, consider points pn for Example 2.3, bn for Example 2.4 and
(x, 0, 0) for Example 2.5.

We will now introduce a more important geometric condition than (Hx,δ). Recall that
a closed set S is said to be wedged (or epi-Lipschitz) at a boundary point x, if near x

the set S can be viewed, after application of an orthogonal matrix, as the epigraph of a
Lipschitz continuous function. Specifically, there exists an open neighborhood V of x, a
unit vector e, and for the hyperplane

H := {x′ : 〈e, x′ − x〉 = 0}
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through x, a Lipschitz continuous function f : H ∩ V −→ R such that for some open
neighborhood W of x one has

W ∩ S = W ∩ {x′ + te : x′ ∈ H ∩ V and f(x′) ≤ t < ∞}.

This geometric definition was introduced by Rockafellar in [15]. The property is also
characterizable in terms of the nonemptiness of the topological interior of the Clarke
tangent cone which is also equivalent to the pointedness of the Clarke normal cone; see
[7] and [16]. If S is wedged at x for all x ∈ bdryS, then we simply say that S is wedged,
and in this case it is clear that S is standard. Note that normality of a point does not
imply wedgedness at that point; again, consider the heart cylinder in Figure 3.2.

The following theorem asserts that wedgedness of S at a boundary point x guarantees
equivalence of the exterior sphere condition and proximal smoothness in a local sense.
Here uniform proximal smoothness (resp. the uniform exterior sphere condition) of S
near x connotes the existence of r > 0 and δ > 0 such that S is r-proximally smooth
(resp. satisfies the exterior r-sphere condition) at y for all y ∈ bdryS ∩B(x; δ).

Theorem 3.7. Let S be a nonempty closed set and let x ∈ bdryS. Assume that S is
wedged at x. Then S satisfies a uniform exterior sphere condition for all boundary points
near x iff S is uniformly proximally smooth near x.

Before giving the proof of this result, we shall require the following lemma.

Lemma 3.8. Let f : U −→ R be a K-Lipschitz function defined on an open, convex
and bounded set U ⊂ R

n. Let epi(f) := {(x, α) : x ∈ U, α ≥ f(x)} (the epigraph of f)
satisfies the exterior r-sphere condition. Then epi(f) is r

(1+K2)
3
2

-proximally smooth.

In the lemma’s statement, the definitions of proximal smoothness and the exterior sphere
condition are extended to the locally closed set epi(f) in the obvious way. Prior to giving
the proof, we need to recall some definitions and facts from nonsmooth analysis.

The following definition has relevance for a wider class of functions, but let us assume
that f : W → R where W ⊂ R

n is open, and that f is K-Lipschitz near a point x. A
vector ζ ∈ R

n is a proximal subgradient of f at x provided that

(ζ,−1) ∈ NP
epi(f)(x, f(x)),

and this is equivalent to the existence of σ = σ(x, ζ) ≥ 0 and δ > 0 such that the
following proximal subgradient inequality holds:

f(y)− f(x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ B(x; δ) ∩W.

The proximal subdifferential of f at x, denoted ∂Pf(x) is the set of all the proximal
subgradients at x. Under the present Lipschitz assumption, one can employ the previous
inequality to show that ‖ζ‖ ≤ K for every ζ ∈ ∂Pf(x). In addition, it is an exercise
using the proximal normal inequality to show that every nonzero proximal normal (ζ, θ)
to epi(f) at (x, f(x)) has θ < 0, and therefore the cone NP

epi(f)(x, f(x)) is generated by

those vectors of the form (ζ,−1). We shall also require the following result, proven in
Theorem 5.1 of Clarke, Stern and Wolenski [8]:
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Proposition 3.9. Let f : U −→ R be a K-Lipschitz function defined on an open, convex
and bounded set U ⊂ R

n, and suppose that σ > 0 is such that for each x ∈ U , there
exists ζ ∈ R

n such that

f(y)− f(x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ U. (6)

Then for each x ∈ U , (6) holds for all ζ ∈ ∂Pf(x).

We are now in position to prove the lemma.

Proof of Lemma 3.8. Assume that epi(f) satisfies the exterior r-sphere condition and
let x ∈ U . Then there exists (0, 0) 6= (ζ, θ) ∈ NP

epi(f)(x, f(x)) such that

〈

(ζ, θ)

‖(ζ, θ)‖ , (y, α)− (x, f(x))

〉

≤ 1

2r
‖(y, α)− (x, f(x))‖2

for all y ∈ U and for all α ≥ f(y). Since f is Lipschitz we have that θ < 0 and then

〈

( ζ

−θ
,−1)

‖( ζ

−θ
,−1)‖

, (y, α)− (x, f(x))

〉

≤ 1

2r
‖(y, α)− (x, f(x))‖2

for all y ∈ U and for all α ≥ f(y). Hence ξ := ζ

−θ
∈ ∂Pf(x) is such that

〈

(ξ,−1)

‖(ξ,−1)‖ , (y, α)− (x, f(x))

〉

≤ 1

2r
‖(y, α)− (x, f(x))‖2 (7)

for all y ∈ U and for all α ≥ f(y).

The K-Lipschitz assumption on f implies ‖ξ‖ ≤ K, so we have ‖(ξ,−1)‖ ≤
√
1 +K2.

Then a straightforward calculation using (f(y)− f(x))2 ≤ K2‖y − x‖2 readily yields

f(y) ≥ −(1 +K2)
3

2

2r
‖y − x‖2+ < ξ, y − x > +f(x) (8)

for all y ∈ U . Then by Proposition 3.9, inequality (8) holds for all ξ ∈ ∂Pf(x). That is,

f(y) ≥ −(1 +K2)
3

2

2r
‖y − x‖2+ < ξ, y − x > +f(x)

for all y ∈ U and for all ξ ∈ ∂Pf(x). This implies that

α− f(x) +
(1 +K2)

3

2

2r

[

‖y − x‖2 + (α− f(x))2
]

≥ 〈ξ, y − x〉

for all y ∈ U , for all α ≥ f(y) and for all ξ ∈ ∂Pf(x). It follows that

〈

(ξ,−1)

‖(ξ,−1)‖ , (y, α)− (x, f(x))

〉

≤ (1 +K2)
3

2

2r
‖(y, α)− (x, f(x))‖2
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Figure 3.3: Epigraph example

for all y ∈ U , for all α ≥ f(y) and for all ξ ∈ ∂Pf(x). Since NP
epi(f)(x, f(x)) is generated

by those vectors of the form (ζ,−1), we obtain

〈

(ζ, θ)

‖(ζ, θ)‖ , (y, α)− (x, f(x))

〉

≤ (1 +K2)
3

2

2r
‖(y, α)− (x, f(x))‖2

for all y ∈ U , for all α ≥ f(y) and for all (0, 0) 6= (ζ, θ) ∈ NP
epi(f)(x, f(x)). Therefore

epi(f) is r

(1+K2)
3
2

-proximally smooth.

Remark 3.10. The Lipschitz assumption on the function f is crucial in the preceding
lemma, as can be seen as follows. Let S1, S2,and S3 be as in Example 2.5, and then
“glue� the surface S1 ∪ S2 ∪ S3 to itself so as to obtain the surface of Figure 3.3, which
is the graph of a function z = f(x, y). Take U to be an open, convex and bounded
neighborhood of the origin in the plane z = 0. Clearly f is not Lipschitz on U . On the
other hand, epi(f) possesses the exterior 1-sphere condition but fails to be proximally
smooth.

We are now ready to prove Theorem 3.7.

Proof of Theorem 3.7. We only need to prove the “only if� part of the statement,
since the “if� is immediate. To this end, let S be a nonempty closed set and let x ∈
bdryS. Assume that S is wedged at x and that S satisfies a uniform exterior sphere
condition at all boundary points near x. Then there exists δx > 0 and r > 0 such
that S satisfies the exterior r-sphere at any point in bdryS ∩ B(x; δx), and in view
of wedgedness, S ∩ B(x; δx) can be viewed as the epigraph of K-Lipschitz function, as
described above. Then by the preceding lemma we deduce that the set S ∩ B(x; δx) is

r

(1+K2)
3
2

-proximally smooth in the following sense: For all y ∈ bdryS ∩ B(x; δx) and for

all 0 6= ζ ∈ NP
S (y) we have

〈

ζ

‖ζ‖ , s− y

〉

≤ (1 +K2)
3

2

2r
‖s− y‖2 (9)
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for all s ∈ S ∩ B(x; δx). We claim that there exists r′ > 0 for which S is r′-proximally
smooth at any point in bdryS ∩ B(x; δx

2
). Indeed, if this were not the case, then there

would exist three sequences yi ∈ bdryS∩B(x; δx
2
), 0 6= ζi ∈ NP

S (yi) and si ∈ S such that

〈

ζi

‖ζi‖
, si − yi

〉

> i‖si − yi‖2.

The last inequality yields ‖si − yi‖ ≤ 1
i
, and therefore for i sufficiently large we can

assume that ‖si − x‖ < δx. Then by (9), for i sufficiently large one has

〈

ζi

‖ζi‖
, si − yi

〉

≤ (1 +K2)
3

2

2r
‖si − yi‖2,

and so (1+K2)
3
2

2r
> i. This provides the desired contradiction, and therefore S is uniformly

proximally smooth on S ∩B(x; δx
2
).

Remark 3.11. Example 2.5 shows that wedgedness is crucial in Theorem 3.7. Indeed,
the set S of that example is not wedged at the origin, satisfies the exterior sphere
condition near the origin, but fails to be proximally smooth near the origin.

If we assume that the boundary of S is compact then we have the following corollary, in
which the assertion of Theorem 3.7 is strengthened.

Corollary 3.12. Let S ⊂ R
n be a wedged set with compact boundary. Then S satisfies

a uniform exterior sphere condition iff S is uniformly proximally smooth.

Proof. By Theorem 3.7 we have that for all x ∈ bdryS there exists δx > 0 and rx > 0
such that S is rx-proximally smooth at any point in bdryS ∩ B(x; δx). Since bdryS is
compact we deduce the existence of finite sequence {xi}1≤i≤n in bdryS such that

bdryS ⊂
n
⋃

i=1

B(xi; δxi
).

Clearly this implies that S is r-proximally smooth, where r := min{rx1
, rx2

, ...rxn
}.

Remark 3.13. The set of Example 2.3 is wedged but does not have a compact boundary.
This shows that the preceding corollary fails if we drop that compactness assumption.
On the other hand, the sets of Example 2.4 and Example 2.5 are not wedged but pos-
sess compact boundary. This shows that the corollary fails if we drop the wedgedness
assumption.

4. Interior sphere condition

We continue to assume that our set S is standard; that is, S = cl (intS). In the control
theoretic literature on can find two definitions of the interior r-sphere condition. The
first one (see [1, 3, 4]) is complementary to the notion of exterior r-sphere condition
which we have been using; that is, for each x ∈ bdryS there exists yx ∈ S such that

x ∈ B̄(yx; r) ⊂ S.
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Figure 4.1: Example 4.1

The second one (see [5, 6, 18]) says that for all x ∈ S there exists yx ∈ S such that

x ∈ B̄(yx; r) ⊂ S.

This means that S is the union of closed r-balls. Equivalently, there exists S0 ⊂ S

such that S0 + rB̄ = S. Clearly, if S is the union of closed r-balls then it satisfies the
interior r-sphere condition. The following example shows that the reverse implication is
not necessarily true and then the two definitions are not equivalent.

Example 4.1. Let S be the closed region inside the three circles of Figure 4.1. Clearly
this set satisfies the interior 1-sphere condition (in the first sense) since the three circles
are of radius 1. But the origin cannot be covered by a 1-ball contained in S; in fact,
the maximal radius for a family of covering balls is 1√

3
. Therefore the interior sphere

condition does not hold for S in the second sense.

If a closed set C ⊂ R
n is r-proximally smooth, then the complement of its interior,

(intC)c, is the union of closed r-balls. To see why, consider any x ∈ (intC)c. If dC(x) > r,
then clearly there is an r-ball centered at x which is contained in (intC)c. If dC(x) ≤ r,
consider any closest point s ∈ C to x. Then ζ := x− s is a proximal normal to C at s.
Since ζ is realizable by an r-sphere, there is a closed r-ball centered at s+ r ζ

‖ζ‖ which is

contained in (intC)c, and x is in this ball.

Therefore we have

(intS)c is uniformly proximally smooth

⇒ S is the union of uniform closed balls

⇒ S has the uniform interior sphere condition.

The reverse implications are not necessarily true, as shown by Examples 2.3, 2.4 and
2.5. Indeed, in those examples the set (intS)c has the union of uniform balls property,
but S is not uniformly proximally smooth.
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From Corollary 3.12 we obtain the following corollary, which asserts that the wedgedness
of S together with boundary compactness guarantee the equivalence between the three
properties under consideration.

Corollary 4.2. Assume that S is wedged and that bdryS is compact. Then the following
assertions are equivalent:

(i) (intS)c is proximally smooth.

(ii) S is the union of uniform closed balls.

(iii) S possesses the uniform interior sphere condition.

Remark 4.3. Let us reconsider Example 4.1. We noted that while S has the interior
1-sphere property, it is not the union of closed 1-balls. But it certainly is the union of
closed r-balls for r ≤ 1√

3
. It remains an open question as to whether the uniform interior

sphere condition for S implies that S is a union of uniform closed balls. We conclude by
expressing this question as a formal conjecture, and in a way that is free of terminology.

Conjecture 4.4. Suppose that S is a closed set and that there exists r > 0 as follows:
For each x ∈ bdryS there exists yx ∈ S for which x ∈ B̄(yx; r) ⊂ S. Then there exists
r′ > 0 such that S is the union of balls of radius r′.
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