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In this paper we reconsider the question of when the continuous linear image of a closed convex cone
is closed in Euclidean space. In particular, we show that although it is not true that the closedness of
the image is preserved under small perturbations of the linear mappings it is “almost” true that the
closedness of the image is preserved under small perturbations, in the sense that, for “almost all” linear
mappings from R

n into R
m if the image of the cone is closed then there is a small neighbourhood around

it whose members also preserve the closedness of the cone.
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1. Introduction

We say that a nonempty subset K of a vector space V is a cone if for each λ ∈ [0,∞)
and each x ∈ K, λx ∈ K. If {a1, a2, . . . , an} is a finite subset of a vector space V then
we shall denote by 〈a1, a2, . . . , an〉 the cone generated by {a1, a2, . . . , an} i.e.,

〈a1, a2, . . . , an〉 :=

{

n
∑

k=1

λkak : 0 ≤ λk < ∞ for all 1 ≤ k ≤ n

}

.

Further, we shall say that a convex cone K in a vector space V is finitely generated if
there exists a finite set {a1, a2, . . . , an} ⊆ V such that K = 〈a1, a2, . . . , an〉. By [2, p.
25] we know that each finitely generated cone in a normed linear space X is closed. In
fact, each finitely generated cone is a polyhedral set i.e., a finite intersection of closed
half-spaces, [2, p. 99].
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If X and Y are finite dimensional normed linear spaces then we shall denote by, L(X, Y )
the set of all linear transformations from X into Y . Throughout this paper we shall
assume that L(X, Y ) is endowed with a Hausdorff linear topology. Since all Hausdorff
linear topologies on finite dimensional spaces are homeomorphic, [3, p. 51] we shall, with
out loss of generality, assume that the topology on L(X, Y ) is generated by the operator
norm on L(X, Y ) and that the topologies on X and Y are generated by the Euclidean
norms.

In this paper we will examine the question of whether the continuous linear image of a
closed convex cone is closed. The motivation for this will be well known to many readers:
the abstract version of the Farkas lemma [2, p. 24] or the Krein-Rutman theorem [2,
Cor. 3.3.13] asserts that for a closed convex cone K in Y and A in L(X, Y ) one has

(

A−1K
)+

= A∗(K+) (1)

if, and only, if A∗(K+) is closed. Here K+ := {x ∈ Y : 〈x, y〉 ≥ 0, for all y ∈ K} is the
positive dual cone and A∗ denotes the transpose operator. Formula (1) in turn is the
basis of strong duality in abstract linear programming [2, §5.3] and of the Karush-Kuhn-
Tucker theorem [2, §6.1] and its generalizations.

A naive guess – based on two-dimensional reasoning – might be that the continuous
linear image of a closed convex cone is always closed and in fact this is the case for
finitely generated cones (or, equivalently, polyhedral cones). There are, however, simple
examples (see for instance Example 2.1) that show that this naive guess is false. One
might then speculate that the closedness of the image of a closed convex cone under a
continuous linear mapping might, at least, be preserved under small perturbations of
the linear map. This is made more plausible by the recent literature on the distance to
inconsistency for abstract inequality systems [2, p. 122] viewed as a generalization of
the condition number. As pioneered by Renegar and others, there is a strictly positive
distance to inconsistency for a system {x ∈ X : Ax− b ∈ K} and one might hope this is
true for closure.

2. Two Limiting Examples

Such speculation is also refuted by Example 2.1 which brings us to the other purpose of
this paper. This is to (i) analyze when the continuous linear image of a closed convex
cone is closed and to (ii) provide some sufficiency conditions under which the continuous
linear image of a closed convex cone is closed. There is surprisingly little literature on
the issue of when precisely a conical linear image is closed, see for example [4] and [1].

Example 2.1. Let

K := {(w, x, y, z) ∈ R
4 : 0 ≤ w, 0 ≤ x and y2 + (z − x)2 ≤ x2}.

Then K is an inverse linear image of the right-circular cone and so closed and convex.
For each λ ≥ 0 define the linear mapping Tλ : R4 → R

3 by, Tλ(w, x, y, z) := (x−λw, y, z),
a rank-one linear perturbation of T0. Note that if λ = 0 then Tλ(K) is a closed cone in
R

3, but for every λ > 0 the image

Tλ(K) ≡ {(x, y, z) : z > 0} ∪ {(x, 0, 0) : x ∈ R}

which is convex but not closed. g��
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Example 2.1 shows that the closedness of the image of a closed convex cone under a
linear mapping is not stable even under arbitrarily small rank-one perturbations. A
more concrete, but closely related example, is given by the following abstract linear
program.

Example 2.2. Let us consider the following closed convex cone in R
7. We simplify

things by letting z := (x1, x2, x3, x4, y1, y2, y3) denote a point in R
7 and let

K := {z ∈ R
7 : 0 ≤ x1, 0 ≤ x2, x

2
3 + (x4 − x2)

2 ≤ x2
2, 0 ≤ y1, y

2
2 + (y3 − y1)

2 ≤ y21}

and let the linear mapping z∗ : R
7 → R be defined by z∗(z) := x4 + y3. For each

0 ≤ λ < ∞ and µ ∈ R let us define

Aλ :=





−λ 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0



 and βµ :=





1
1
µ



 .

Then for each 0 ≤ λ < ∞ and µ ∈ R we can consider the optimization problem.

E(λ, µ) := inf{z∗(x) : x ∈ K and Aλx = βµ}.

It is easy to check that this infimum is obtained if, and only if, λ = µ = 0. g��

Example 2.2 shows that the existence of minima in abstract linear programming problems
is not stable under arbitrarily small rank-one perturbations. This again highlights the
difficulty of exactly characterizing closure of a conical linear image.

3. Preliminary Positive Results

We first collect and improve various known results. In each case we aim at concise self-
contained proofs. Versions of each are to be found in [2]. Our first result shows that the
closedness of the image of a closed convex cone is related to the closedness of the sum
of a closed convex cone with a finite dimensional subspace.

Proposition 3.1. Let T ∈ L(Rn,Rm) and let ? 6= K ⊆ R
n be an arbitrary set. Then

T (K) is closed in R
m if, and only if, K + ker(T ) is closed in R

n.

Proof. Suppose that T (K) is closed. Then T−1(K) = K + ker(T ) is closed in R
n,

since T is continuous. Conversely, suppose that K + ker(T ) is closed in R
n. Then

C := [K + ker(T )] ∩ [ker(T )]⊥ is also closed in R
n, and moreover, T (K) = T (C). Now,

T |ker(T )⊥ is a 1-to-1 linear mapping (and hence a homeomorphism) onto T ([ker(T )]⊥);
which is a closed subspace of Rm. Therefore, T (K) = T (C) is closed in T ([ker(T )]⊥)
and hence closed in R

m. g��

Proposition 3.2. Suppose that K is a finitely generated convex cone in a vector space
X. If T : X → Y is a linear mapping into a normed linear space Y then T (K) is a
closed convex cone in Y .

Proof. Since K is finitely generated there exists a finite set {a1, a2, . . . , an} in X such
that K = 〈a1, a2, . . . , an〉. A simple calculation then reveals that T (K) = 〈T (a1), T (a2),
. . . , T (an)〉; which is finitely generated and hence closed, [2, p. 25]. g��
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Next we give some sufficiency conditions for the image of a closed convex cone to be
closed.

Proposition 3.3. Let T ∈ L(Rn,Rm) and let K be a closed cone (not necessarily con-
vex) in R

n. If

K ∩ ker(T ) = {0}

then there exists a neighbourhood N of T in L(Rn,Rm) such that S(K) is closed in R
m

for each S ∈ N .

Proof. Let C := {k ∈ K : ‖k‖ = 1}. Then both C and T (C) are compact and 0 6∈ T (C)
therefore dist(0, T (C)) > 0 and so there exists a neighbourhood N of T in L(Rn,Rm)
such that dist(0, S(C)) > 0 for each S ∈ N . Since

S(K) = {λc : c ∈ S(C) and 0 ≤ λ < ∞}

and S(C) is compact for each S ∈ N , it follows that S(K) is closed in R
m for each

S ∈ N , as claimed. g��

Proposition 3.4. Let T ∈ L(Rn,Rm) and let K be a closed convex cone in R
n. If

K ∩ ker(T ) is a linear subspace then T (K) is closed convex cone in R
m.

Proof. LetM := K∩ker(T ) and letN := M⊥∩[K+M ] = M⊥∩K. Then T (N) = T (K)
and N ∩ ker(T ) = {0}. Therefore, T (K) = T (N) is a closed convex cone on application
of Proposition 3.3. g��

For a subset D of a vector space V , the core of D, denoted, cor(D), is the set of all points
d ∈ D where for each x ∈ V \ {d} there exists an 0 < r < 1 such that λx+ (1− λ)d ∈ D

for all 0 ≤ λ < r. Clearly if the affine span aff(D) 6= V then cor(D) = ?. In this case
the following concept is useful.

Given a subset C of a vector space V , the intrinsic core of C, denoted icor(A), is the
set of all points c ∈ C where for each x ∈ aff(C) there exists an 0 < r < 1 such that
λx+ (1− λ)c ∈ C for all 0 ≤ λ < r.

One of the most important properties of the intrinsic core is that if C is a convex subset
of a finite dimensional vector space V then icor(C) 6= ?, [3, p. 7]. In fact, if V is a finite
dimensional topological vector space then icor(C) is dense in C for each convex subset
C of the space V . Another important property of the core is that for a convex subset C
of a finite dimensional topological vector space, cor(C) = int(C), [2, Theorem 4.1.4].

The reason for our interest in the intrinsic core is based in the following result.

Proposition 3.5. Let Y be a normed linear space, T : Rn → Y be a linear transforma-
tion and let K be a closed cone in R

n. If

ker(T ) ∩ icor(K) 6= ?

then T (K) is a finite dimensional linear subspace of Y and hence a closed convex cone.
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Proof. By [2, Problem 13 part (e)], {0} = T (ker(T ) ∩ icor(K)) ⊆ T (icor(K)) ⊆
icor(T (K)). Since T (K) is a cone we see that T (K) = aff(T (K)) = span(T (K)). The
result now follows, since every finite dimensional subspace of a normed linear space is
closed. g��

From Proposition 3.4 and Proposition 3.5 we see that:

Corollary 3.6. The only way T (K) can fail to be closed is if

ker(T ) ∩K ⊆ K \ icor(K)

and that at the same time ker(T ) ∩K is not a linear subspace.

4. The Main Results

We are now ready for our principle positive results.

Lemma 4.1. Suppose that K is a closed convex cone in R
n, Y := K−K, T ∈ L(Rn,Rm)

and T |Y ∈ L(Y,Rm) has rank m. If

ker(T ) ∩ icor(K) 6= ?

then there exists a neighbourhood W of T in L(Rn,Rm) such that

ker(S) ∩ icor(K) 6= ?

for all S ∈ W. In particular, S(K) is a closed convex cone in R
m for each S ∈ W.

Proof. Let M ⊆ L(Y,Rm) be the family of all mappings with rank m. It is routine to
show that M is a dense open subset of L(Y,Rm) since T |Y ∈ M and so m ≤ Dim(Y ).

(a) We shall consider first the case when Y = R
n. For each S ∈ L(Rn,Rm), let AS

denote the matrix representation of S with respect to the standard bases on R
n and R

m.
Since rank(S) = m for all S ∈ M, the rows of each AS, S ∈ M are linearly independent.
Therefore, for each S ∈ M, the matrix At

S(ASA
t
S)

−1AS is well-defined and represents
the orthogonal projection of Rn onto the row space of AS. Since the null space of AS is
perpendicular to the row space of AS, In −At

S(ASA
t
S)

−1AS is the matrix representation
of the projection of Rn onto the null space of AS. Here In denotes the n × n identity
matrix.

Next, we shall consider M(n,n), the space of all n× n matrices, endowed with the linear
topology of component-wise convergence. With respect to this topology the mapping
ϕ : M → M(n,n) defined by, ϕ(S) := In − At

S(ASA
t
S)

−1AS is continuous. Moreover, for
any fixed x ∈ R

n, the mapping S 7→ ϕ(S)(x) is continuous on M and ϕ(S)(x) ∈ ker(S)
for all S ∈ M. Therefore, if we choose x ∈ ker(T ) ∩ icor(K) = ker(T ) ∩ cor(K) =
ker(T ) ∩ int(K) then there exists a neighbourhood W of T in L(Rn,Rm) such that
ϕ(S)(x) ∈ ker(S) ∩ int(K) = ker(S) ∩ cor(K) = ker(S) ∩ icor(K) for all S ∈ W. This
completes the proof for the special case when Y = R

n.

(b) In the general case, consider the mapping R : L(Rn,Rm) → L(Y,Rm) defined by,
R(S)(x) := S(x) for all x ∈ Y . Then R is a continuous linear mapping from L(Rn,Rm)
into L(Y,Rm). We now apply the first part of the proof to R(T ) ∈ M to obtain a
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neighbourhood W ′ of R(T ) in L(Y,Rm) such that ker(S) ∩ icor(K) 6= ? for all S ∈ W ′.
Therefore, if we let W := R−1(W ′) then W is an open neighbourhood of T in L(Rn,Rm)
and ker(S) ∩ icor(K) ⊇ ker(R(S)) ∩ icor(K) 6= ? for all S ∈ W. g��

The next result shows – as promised – that although it is not true that, if T (K) is closed
for some closed convex cone K then S(K) is closed for all S in some neighbourhood of
T , it is “almost� true, in the sense that for “almost all� T ∈ L(Rn,Rm) if T (K) is closed
then there exists a neighbourhood W of T such that S(K) is closed for all S ∈ W.

Theorem 4.2. Suppose that K is a closed convex cone in R
n then

int{T ∈ L(Rn,Rm) : T (K) is closed}

is a dense open subset of L(Rn,Rm).

Proof. Let Y := K −K, and let M ⊆ L(Rn,Rm) be the family of all linear mappings
T such that T |Y has maximal rank (i.e., rank(T |Y ) = min{m,Dim(Y )}). It is standard
that M is a dense open subset of L(Rn,Rm). Hence it will be sufficient to show that

int{T ∈ L(Rn,Rm) : T (K) is closed}

is dense in M. If Dim(Y ) ≤ m then T |Y is one-to-one for each member of M and so
ker(T ) ∩ K = {0} for each T ∈ M and thus we are done by Proposition 3.3. Hence
we shall assume that m < Dim(Y ). Let T be any element of M and let N be any
neighbourhood of T in M. If ker(T ) ∩K = {0} then we are again done by Proposition
3.3. So let us suppose that {0} 6= ker(T ) ∩K. If ker(T ) ∩ icor(K) 6= ? then by Lemma
4.1 there exists a neighbourhood N ′ of T in N such that S(K) is closed for each S ∈ N ′.
Thus, we will suppose that

{0} 6= ker(T ) ∩K ⊆ K \ icor(K).

Choose k0 ∈ [ker(T )∩K]\ [{0}∪ icor(K)]. Then since inf{‖T (k)‖ : k ∈ icor(K)∩V} = 0
for each neighbourhood V of k0 there exists a k′ ∈ icor(K) and S ∈ N such that
S(k′) = 0. We now re-apply Lemma 4.1 to obtain a neighbourhood U of S in N such
that ker(S ′) ∩ icor(K) 6= ? for all S ′ ∈ U and so S ′(K) is a closed subspace for each
S ′ ∈ U . g��

Corollary 4.3. For any given closed convex cone K, the abstract Farkas lemma of equa-
tion (1) holds for a dense open set of operators.

Proof. The adjoint mapping between L(Rn,Rm) and L(Rm,Rn) preserves both density
and openness. Indeed, for a dense open set of operators both A(K) and A∗(K+) are
simultaneously closed. g��

This result should be compared to corresponding results on negligibility in Hausdorff
measure in [5] for abstract linear programming. Those results were largely motivated by
semi-definite programming, [6]. This makes natural the following question:

Question 4.4. Suppose that K is a closed convex cone in R
n. Is

L(Rn,Rm) \ int{T ∈ L(Rn,Rm) : T (K) is closed}

a σ-porous set?
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