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Recently in [4] a new class of maximal monotone operators has been introduced. In this note we study
domain-range properties as well as connections with other classes and calculus rules for these operators
we called strongly-representable. While not every maximal monotone operator is strongly-representable,
every maximal monotone NI operator is strongly-representable, and every strongly-representable oper-
ator is locally maximal monotone, maximal monotone locally, strongly maximal monotone, and ANA.
As a consequence the conjugate of the Fitzpatrick function of a maximal monotone operator is not
necessarily a representative function.

1. Introduction

Let X be a non trivial (real) Banach space and X* its topological dual; set Z := X x X*

which is a Banach space with respect to the norm ||(z,z*)| := (Hx“2 + H.CE*H2)1/2. We

(1PN [P

denote by “s” the strong topology, by “w” the weak topology on X, by “w*” the weak-star
topology on X* and by Z* := X* x X* the dual of Z.

For z := (x,2%) € Z we set c¢(z) := (x,z*) := z*(x). For the sake of simplicity, we
use the same notation ¢ for the coupling in Z*, that is, ¢(z*) := (x*, 2**) := ™ (z*) for
2* = (x*,2™) € Z*, since the contexts of Z or Z* offer no possibility of confusion for c.

Consider
F=FZ)={feNZ)| f(z) >c(z), Vz€ Z}, Fs = Fs(Z2) = F(Z)NTs(2),

where for a locally convex space (F, 7), A(E) denotes the class of proper convex functions
f:E — Rand I';(E) is the class of those f € A(E) which are 7-lower semicontinuous
(Isc for short). The elements of F(Z) are called representative functions in Z.

It is known that whenever f € F(Z) the set

Mp:=[f<c:={2e€Z2[fz)<clz2)} ={2€Z]|[(z) =c(z)} = [f =
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is monotone, that is, c(z — 2’) > 0 for all 2,2’ € My; this also follows from Proposition
2.1 below.

For 21 := (x1,2}), 20 := (12, 23) € Z we set
(21, 20) := 21 29 1= (x1, 23) + (@2, 27) .
Note the following useful relations:

c(zx2)=c(z) £(2,2) +c(2), c(z)=c(—2)=3(z2), Vz,2 € Z

N =

For z = (x,2*) € Z, a > 0, and ¢g : Z — R we denote by g, and g, the functions on Z
defined by

g:(w) == g(z + w) — c(z + w) + c(w), ga(w) := ag (y, ofly*) , forw:= (y,y") € Z.

Hence g.(w) = g(z + w) — z - w — ¢(z) for w € Z, and so g, is convex as the sum of a
convex function and an affine function; moreover

g:(w) —c(w) =gz +w) —c(z+w), Vz,we Z, (1)

Ja(w) — c(w) = alg(wy) — c(wy)], Ya >0, Yw € Z, (2)

where w,, := (y,a'y*) for w = (y,y*). It follows that

feF(Z)=fa, . € F(Z), Ya >0, Vz € Z],
f€FZ) = [fa, [. € Fs(Z), Va >0, Vz € 7],

and
My, = My —z, My, ={(z,0x7) | (z,27) € My} (3)
for every f € F(Z), z € Z, and a > 0.

In the sequel for a proper function g : Z — R, we denote by ¢* its usual (C(EIVGX)
conjugate, and by Jg its usual subdifferential, that is, ¢* : Z* = X* x X** — R and
dg : Z = Z*, while the pairing between Z and Z* is given by

((x, "), (u*,u™)) = (z,u”) + (x*,u™), V(r,z")e X x X*, (u*,u™) e X" x X™.

Let = be the image J(x) of x € X, where J : X — X** is the canonical injection of X
into X**, that is, J(x)(z*) := (z,2*) for * € X* and z € X. In the sequel we shall
use 7 for (z*,%) € Z* when z := (x,2*) € Z. Moreover, for g : Z — R we consider
g" : Z — R defined by ¢”(2) := ¢*(2); hence g~ is convex and s x w*-Isc.

For M C X x X*, its Fitzpatrick function @y is defined as
pur(2) = sup{(z, w) — cnr(w) [ w € Z} = sup{(z, w) — c(w) | w € M},
where cpr(2) = ¢(2), for z € M and cp(z) := oo, for z € Z \ M; in simpler words
onlx,a*) = iy (27, 7) = &y, a%) or puy(2) = iy (2) = & (2), for z = (z,2%) € Z.
The Penot function of a non-empty monotone set M C X x X* is defined by ¢y/(2) =

0i,(2) = o5(2) for z € Z, and is the greatest w x w*—lsc proper convex function
majorized by cp; in Z.



M. D. Voisei, C. Zalinescu / Strongly-Representable Monotone Operators 1013

Let g : X x X* — R be a proper function and z := (z,2*) € Z. Then
=g" (v + 2" u” +72)— (r,u") — (", u") — (z,2"), V(u,u™)e X" x X,
that is,
(9:)"(w") = g" (" +2) — c(w" +2) + c(w"), Vu' e 2%,
or equivalently
(9:)" = (%)=

and
0g.(w) ={w € Z* |w*" +Z € dg(w+2)} =0dg(w+2) — 2 Yw,z € Z.

In particular, Imdg, = Imdg — Z.
Fora >0,z € X, ", u* € X*, v € X*, we have

(9a)" (u”

) — (a 1U*,U**),
(u*,u™) € Ogo(x,x ) & ( u*,u**) € Og(z, a'a").

Let us consider the more restrictive classes
G:=G(2) = {f € F(Z) | f'(=") 2 (=), V=" € 27}, G, 1= Gu(Z) == G(Z)NT,(2).

The classes F.(Z), G-(Z) are defined similarly, for any other topology 7 on Z.
Using the formulas above for (g,)* and (g,)* we get

f€Gi(Z) = [fa, f- €Gs(Z), Ya >0, Vz € Z]. (4)

A set M C Z is called strongly-representable in Z whenever there is f € G¢(Z) such that
M = Mjy. In this case f is called a strong-representative of M.

It has been proven in [4, Th. 4.2] that every strongly-representable operator is maximal
monotone. In this paper we show that not every maximal monotone operator is strongly-
representable by providing the property of convexity for the closure of the range; property
that distinguishes between these two classes.

Consider
BiX )X R, hat) = 3l = el + I, (@et) € X x X
Since the dual norm on X* x X** is given by ||(u*, u**)|| = ( ||u*||2 + ||u*"‘||2 )1/2 we know
that A*(u*, u™) = 5 | (w*, u*)||*. Notice that
h > +c, h* > +ec. (5)

Moreover,

Oh(z,z*) = Fx(x) X Fx«(z*) V(z,2%) € X x X*,
where Fy : X = X* is the duality mapping of X, that is,

Fx(z) = (3 1°) (@) = {«* € X" | ||2|* = ||l2"|* = {&,2") }, = € X,
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and similarly for F'x-. Note that
2
[z D < lzll 121 Je(z) — e < 5llz =217+ 1120 -l = 21, V2,2 € 2. (6)
Taking 2’ = z in the first inequality or 2/ = 0 in the second we get |¢(z)| < 1 || 2]|* for

Z € J.

When there is no risk of confusion a multifunction S : E = F'is identified with its graph
gph S := {(z,y) | y € S(z)}; moreover, dom S := Prg(gph S), Im S := Prg(gph S), and
S71:F = Ehasgph S~ := {(y,2) | (z,y) € gph S}.

When E|F are (real) linear spaces, A,B C E, and o € R, we set A+ B := {a +
b|a€ A be B} and aA = {aa | a € A} with A+ 0 = 0 and al) := 0 by
convention. For ST : F = F and o € R, the multifunctions S + 7 : F = F and
aS : E = F have the graphs gph(S+1T) := {(x,y +v) | (x,y) € gph S, (z,v) € gph T},
that is, (S + T)(x) = S(x) + T(z), and gph(aS) := {(z,ay) | (z,y) € gph S}, that is,
(aS)(z) = aS(x). Hence dom(S + T) = domS Ndom7, Im(S+7T) C ImS + ImT,
dom(aS) = dom S, and Im(a.S) = aIm S.

Generally gph(S + T') is different from gphS + gphT and gph(«.S) is different from
agph§S.

As usual, for a subset A of a normed vector space X and x € X, we set d(x,A) =
inf {||x — u|| | u € A} with the convention that inf() := +oo.

2. Domain-range properties

Proposition 2.1. Suppose that f € F(Z), z1,20 € Z, and 1,65 > 0 are such that
f(z1) < c(z1) +e1 and f(22) < c(22) +&2. Then

C(Zl — ZQ) Z —2(81 -+ 52).
Proof. Indeed,
C (%21 + %22) < f %Zl + 22) < %f(Zl) + %f( ) < % ( ( 1) + 81) + % (C(ZQ) + 62) ,

whence —%(51 +e9) < i (21 — 22). The conclusion follows. O

Proposition 2.2. Let f € G(Z). Then:

(i)  For every z € Z one has

inf (f-(w) + h(w)) = — min [(f*(Z+w*) = c(Z+w")) + (b (w") + ¢(w"))] = 0.

weZ wreL*

(1i) For every z € Z there is z* € My« such that Z — z* € gph(—Fx+) and ||z — 2*|]* <
2(f*(2) — ¢(2)). Moreover

(V2=1) 2= 2]l < dz M) < V2 G) — @) = 2(£7() — =) (7)

(#i) For every a > 0, Im ( (Mf*)_1 + a(FX*)—l) — X*.
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Proof. (i) Taking into account the formulas related to f, we may (and do) assume that
z = 0. Because f > c and f* > ¢, we obtain from (5) that f +h > 0 and f*+ h* > 0.
Since f is convex and h is finite, convex, and continuous on Z, using the Fenchel duality
theorem (see e.g. [16, Cor. 2.8.5]) we obtain

0 < if[f(=) +A(2)] = — min [[*(=") + b (=) = = min, [/*(=") + 1" (")

= — inf [f*(z") +h*(z")] 0.

z*eZ*

The conclusion of (i) follows because f, € G(Z) whenever f € G(Z).

(i1) Fix z € Z. We get from (i) an element z* € Z* such that
[ ) =)+ [h(z"=2)+c(z"—2)] =0.

Because the terms in square brackets are non-negative, we see that f*(2*) — ¢(z*) = 0,
that is, 2* € Mg+ and h*(2* — 2) + ¢(2* — Z) = 0, whence z — 2* € gph(—Fx+). Since
[7(2%) = c(2¥) we have f*(2) > ¢m,.(2) > (Z,2%) — c(2¥) (for more details see [13,
Remark 3.6]). Therefore

12 =c(®) 2 (2,27) —c(z") —c(B) = —c(Z=2") = 1" (2" = 2) = 5[|Z - "||.
This yields the second inequality in relation (7) because 0 := d(2, M) < ||Z— 2*||.

Since M- is monotone, for every w* € My« we have that

0<c(zr—w)=c(z"=2)+ (" =2, 2 —w") +c(zZ —w")

~ ~ ~ ~ 2
< —llE=2P A+l =2 2w + 5 12— w

It follows that 0 < —||Z — 2*||? + 26 ||z* — Z|| + 62, whence ||Z — 2*|| < (1 +/2)d, i.c., the
first inequality in (7) holds.

(i) If necessary, replacing f by f., we may assume that « = 1. Let u* € X*. Applying
(ii) for z = (0,u*) we get 2* = (x*, 2**) € My« such that u* — z* € (Fx-)"'(a**). The
conclusion follows. O]

Remark 2.3. From assertion (i) of the preceding proposition we have that f € G,(2)
implies f € Fy(Z) and inf(f, + h) = 0 for every z € Z.

Remark 2.4. The first part of assertion (iz) of the previous proposition can be inter-

preted as R
7 := X* x J(X) C gph My« + gph(—Fx-), (8)

and is a generalization to non-reflexive spaces for the “—J 7 criterion for the maximality
of operators in reflexive spaces (see [8]); moreover, (8) can be obtained from [9, Lem. 35.5]
by taking g := h. In reflexive spaces, an operator is maximal monotone iff it is strongly-
representable; a situation that is no longer valid in the non-reflexive context in the sense
that there exist maximal monotone operators that are not strongly-representable as we
will see in the sequel. The second part of assertion (i) extends [6, Lem. 2.3] to the
non-reflexive case.

A partial converse of Proposition 2.2 follows.
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Proposition 2.5. If f: Z — R is such that inf,cz (f.(w) 4+ h(w)) = 0 for every z € Z
then f > c¢; moreover, if [ is convex then f € F(Z) and f*(2*) > c(z*) for every

eZ+ gph(—Fx+).
Proof. The condition inf (f, + h) = 0, for every z € Z implies
fo(w) + h(w) = f(z+w) — c(z +w) + h(w) + c(w) >0, Vz,we Z.

Taking w =0 we get f > cin Z.
Assume now that f is convex. Then f € A(Z) and so f € F(Z). Again, the fundamental
duality formula yields

inf (f2(w) +h(w)) = = min [(F(Z+27) = eF+2) + (0 (") + e(=")] = 0,

ez
which implies f*(z*) > c(z*), for every z* € Z + gph(—Fy.), since [h* + ¢ = 0] =

Theorem 2.6. Let f € T'y(Z) be such that infycz (f.(w) + h(w)) =0, for every z € Z.
Then My is nonempty, monotone and

d((z, %), My) <2/ f(z,2*) — (x,2*), V(v,2") € X x X*. (9)

Proof. From Proposition 2.5 we know that f € F(Z) and so My is monotone. Fix
z = (z,2%) € X x X*. If f(2) = o0 or f(z) = c¢(z) there is nothing to prove. Let
e = f(z) —c(z) € (0,00) and set gy := ¢, 29 := 2. Fix f € (1,00), v € (2,00) and
consider a sequence (g,),>0 C (0, 00) satisfying

4e, + 6eni1 < Ve, Yn >0 and Z Ven < Bye (10)

n>0
(for example ¢, = £97?", n > 0, where r = min{((y% — 4)/6)'/%, (1 — 71)/2}).
Because inf(f,, + h) = 0, there exists z; € Z such that
fao (21— 20) + h (21 — 20) < €.

Using the definition of f., given in (1) and since f, f,, > c and h > —c we get

0 < f(21) — c(z1) = fa (21 — 20) — c(21 — 20) < ey,

0< 1z — 2ol + e(z — 20) < ey (11)

Using Proposition 2.1 we obtain that ¢(z; — z9) > —2(g¢ + £1), and so, by (11),

|21 — 20]|* < 261 + 4(g + £1) = 4eg + 651 < 7%,

whence
121 — 2ol < vv/0-

Continuing this procedure we obtain a sequence (2,), -, C Z such that

f(zn) < c(zn) +€n, N2nt1 — zall < 7V/ER, Yn 2 0.
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We obtain from (10) that

S lznes — zall 737 Ve <18V,

n>0 n>0

Since Z is complete, it follows that the sequence (Zn)nZO is strongly convergent to some
ze € Z and ||z — z.|| < yB/e. Since f is s-lIsc and &,, — 0, from the inequality f(z,) <
c(zn) + €, we get

c(ze) < f(z) < liminf f(z,) < lim (¢(2z,) + €,) = ¢(z:).

n—oo n—oo

Therefore, f(z:) = ¢(z.), that is, z. € My # 0. Moreover, d(z, My) < vf/e. Since
f > 1 and v > 2 are arbitrarily chosen, we find that d(z, M) < 24/e, that is, (9)
holds. ]

As a consequence of the previous theorem, every strongly-representable operator has the
following Brendsted—Rockafellar property. For other results of this type see [4].

Corollary 2.7. Let f € I's(Z) be such that inf,ez (f.(w) + h(w)) =0, for every z € Z.
For every ¢ > 0 and every (x,z*) € X x X* with f(z,2*) < (x,2*) + € there ezists
(ze, %) € My such that ||z — x> + ||o* — 22]]? < 4e.

The next result corresponds to [7, Prop. 2] (established in reflexive Banach spaces).

Corollary 2.8. Let f € Gi(Z) and v > 4. For every (z,x2*) € X x X* and every a > 0
there exists (xq,x}) € My such that

lza — 2[* + a® |, — 2*|* < va (fla,a%) = (z,27)). (12)

Proof. If (z,2") ¢ dom f we can take an arbitrary (x,,x}) € My, while if f(z,2*) =

(x,z*) we take (x4, %) = (x,2%), for every a > 0.

Let (z,2*) be such that f(z,2*) — (x,2*) € (0,00) and fix & > 0. By (4) we know that
fo € Gs(Z) and from (2) we have

folz,ax®) — (z,ax*) = a(f(z,2") — (z,2")) € (0,00).

Applying Theorem 2.6 for f, and (z,az*), taking into account that v > 4, we get
(o, xk) € My (that is, (z4, ax}) € My, ) such that (12) holds. O

In the sequel we also interpret My as a multifunction from X to X, and so dom M/ is
Prx(My) and Im M; is Pry-(Mjy).

Corollary 2.9. Let f € Gi(Z). Then
cl(dom My) = cl (Prx(dom f)), cl(Im My) = cl (Prx«(dom f)) .

In particular cl(dom My) and cl(Im My) are convex sets. Here “cl” stands for the closure
with respect to the strong topology.
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Proof. The inclusions dom M; C Prx(dom f) and Im M; C Pry-(dom f) are obvious.
It suffices to prove the converse inclusions.

Let 2* € Pry+(dom f), that is, (z,2*) € dom f for some z € X. Applying Corollary 2.8
(with some fixed v > 4), we get that for every a > 0, there is (z,,2}) € M/ satisfying
(12). Therefore, ¥ € Im M; and o ||z% — 2*||> < v (f(z,2*) — (x,2*)). This shows that
s-lim, . & = x*, from which z* € cl(Im Mjy).

Similarly, if x € Prx(dom f), i.e., (z,2*) € dom f for some z* € X* then, according
to Corollary 2.8, taking for every o > 0 an (z,,z},) € M/ satistying (12), we have that
To € dom My and ||zo — z||> < va (f(x,2*) — (z,2*)). Hence s-lim, oz, = &, which
proves that x € cl (dom Mjy). O

Remark 2.10. The previous result shows that the strong closures of a strongly-represen-
table operator domain and range are convex. Since, in general, the closure of the range
of a maximal monotone operator is not necessarily convex (see e.g. [3]), this shows that
not every maximal monotone operator is strongly-representable.

Remark 2.11. Let M be a maximal monotone operator that is not strongly-represen-
table. Then M = [py = ¢], ou € Fs(Z) and if we assume that ¢, > ¢ in Z*
then ¢y € G4(Z) and M would be strongly-representable; a contradiction. Hence the
inequality ¢}, > c fails in Z*, that is, the conjugate of the Fitzpatrick function of a
maximal monotone operator is not necessarily a representative function.

The next result has been proved in [4, Th. 4.2] for f € G,(Z). For convenience we provide
the reader with a short proof.

Theorem 2.12. Let f € I's(Z) be such that inf,cz (f.(w) + h(w)) = 0, for every z € Z.
Then My s maximal monotone in Z. In particular every strongly-representable operator
15 mazximal monotone.

Proof. Let z, be monotonically related to M. Replacing f by f., if necessary, we may
assume without loss of generality that zy = 0, that is

c(z) >0, Vze M. (13)

Since inf(f + h) = 0, there is z, € Z such that f(z,)+ h(z,) < 1/n?, for every n > 1.
The function f 4+ h is coercive. Indeed, fixing some z* € dom f* we have that

f(2)+h(2) 2 5ll2l° + (2,27 = £ 2 521 = =0 1=z = f7(z) Ve ez

Therefore, the sequence (z,)n,>1 is bounded. Since f > ¢ and h > —c we see that
f(zn) < c(zp) +1/n? and h(z,) + c(z,) < 1/n% Applying Corollary 2.7 for z,, f, and
e =1/n? we get w,, € M; such that |w, — z,| < 2/n, for n > 1.

According to (13) and (6) we get
||zn||2 = 2h(z,) < —2¢(z,) + 2 < —2¢(wy) + 2 |e(wy,) — e(z,)] + on 2
< wn = 2al* + 2|20l - [lwn — 2l + 2072 < 6072 + 407" |2,

for n > 1. Since (z,) is bounded we have that ||z, || — 0. Letting n — oo in the inequality
f(zn) < ¢(2,) + 1/n? and taking into account that f € I's(Z) we get zo =0€ My. [
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Remark 2.13. When X is a Banach space, the subdifferential dp of a the function
¢ € T'y(X) is strongly-representable thus maximal monotone. A strong-representative
for Oy is given by f(z,z*) = p(x) + ¢*(z*) for x € X, z* € X*.

Corollary 2.14. Let f € I's(Z) be such that inf,cz (f.(w) + h(w)) =0, for every z € Z.
Then

[ = clsxorf = cluxerf = 00, 2 ¢ in Z, (14)
My = MClew ; C P =, and infuez ((clyxwf):(w) + h(w)) = 0, for every z € Z.
Here “clywyxwef7 stands for the greatest convex s(w) X w*—Isc function majorized by f

n Z.

Proof. According to Theorem 2.12, M is maximal monotone. By [1, Th. 2.4], if z € M;
then 2z € 9f(z). This implies f2(2) = ¢(2), for every z € My, that is, M; C [fZ = ¢] and
so fH < ey, Hence f 2> clywe f = A8 > ¢m; > cin Z. Therefore 0 < (cloxwf).+h <
f» + h; whence inf,cz ((clyxw+f):(w) + h(w)) = 0, for every z € Z.

From f > clyxe-f > ¢ we get My C Mg, .r. Because My is maximal and M., . s is
monotone the equality ensues. Il

As a direct consequence of the previous corollary and Proposition 2.2 (see Remark 2.3),
the next result shows that the representative of a strongly-representable operator can be
picked to be lower semicontinuous with respect to the topology w x w* on Z. Recall that

gwxw*(Z) = g(Z) N waw* (Z) = g(Z) N stw*<Z) = gsxw* (Z)

Corollary 2.15. For every f € Gi(Z) one has clyxw~f € Goxw(Z) and My = Ma . ¢
= Mo. In particular {My | f € Go(Z)} = {My | f € Guxwr(Z)}. Moreover, if f is a
strong representative of M C Z then so are clyxo~f and @ay.

Proof. As previously seen in Corollary 2.14, My = Mg . C [fF = c] and from f* > ¢
we know that f2 > ¢ and Mo = [f~ = ¢] is monotone. Since M is maximal monotone
the equality holds. Moreover, from (14) we get P, 2 (clyxwf)* > f* > ¢ which proves
that cl,«.+f and ¢ M, are strong representatives of My. ]

Corollary 2.16. For every f € G(Z), f :=cl, f € Gs(Z) and M7 = Mo is a mazimal
monotone extension of M.

Proof. Since f > ¢ and ¢ is continuous on Z for the strong topology we have that
f>f>c My C My = MD Mo, and f € G,(X x X*) because f* = f > ¢ and
—0

=" 0

An immediate consequence of the preceding results is the following characterization of
strongly-representable operators. Recall that Fx,«(Z) := F(Z) N [yuwr (2).

Theorem 2.17. Let N C X x X* be monotone. The following are equivalent:

(i) N is strongly representable,

(ii) on € G(X X X*) and N is representable, that is, there is f € Foyxop+ (X X X*) such
that N = Mf,

(#i) N is mazimal monotone and ¢y > c.
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Proof. The implication (i) = (éi) follows from Corollary 2.15 with f = ¢ and Theorem
2.12.

For (ii) = (i17) it suffices to prove that N is maximal monotone. According to [13, Th.
3.4], the condition N = My for some f € Fxp+ (X x X*) together with ¢n > ¢ imply
that N is maximal monotone.

If (#34) holds then N = M,,, ¢n > ¢, and ¢} > c. Therefore ¢y is a strong-
representative of N. O

Recall that an operator M : X = X* is called locally bounded at x € cls(dom M) if there
exists an s—open neighborhood V of x and K > 0 such that

|lz*|| < K, Vx eV, Va* e M(z),

and it is known that every monotone operator M is locally bounded at x for every
z € (codom M)?, where for a A C X we denoted by “A’, int A” the algebraic respectively
the strong-topological interior of A (see e.g. [16, Th. 3.11.14]).

Taking Corollary 2.9, Theorem 2.12, and [16, Th. 3.11.15] into account, we realize that a
strongly-representable operator is locally bounded only inside the interior of its domain.

Corollary 2.18. Let f € I's(Z) be such that inf,cz (f.(w) + h(w)) =0, for every z € Z.
If My is locally bounded at x € cls(dom My) then x € int(dom Mjy).

3. Calculus rules for strongly-representable operators
We base our argument on the construction used in [5]. For X,Y locally convex spaces
and F': X XY = X* x Y* we define the multifunction G := G(F) : X = X* by

gph G = {(z,2") e X x X* | Jy* € Y : (x,0,2%,y") € gph F'}.

Note that gph G is non-empty iff 0 € Pry(gph F') and as noticed in [5], G' is monotone
whenever F' is monotone.

In general, for a locally convex space E, we denote by M(FE) the class of monotone
subsets of £/ x E* and by 9M(F) the class of maximal monotone subsets of £ x E*.
Also, we denote by aff A and affA the affine hull and the closed affine hull of A C E,

respectively.
First consider the following slight generalization of [5, Lem. 3.1].
Lemma 3.1. Let X,Y be separated locally convex spaces.

(i) IfFeM(X XxY)andYy CY is a closed linear subspace such that
F(z,y) = F(z,y) + {0} x Y5", V(z,y) € X x Y, (15)

then Pry(dom ¢p) C y + Yy, for every y € Pry(gph F').
(ii) IfF € M(X xY), then Pry(dom ¢r) C aff(Pry(gph F)).

Proof. (i) Fix y € Pry(gph F), that is, (z,y,2*,y*) € gph F for some (z,z* y*) €
X x X* x Y*. By (15), we have (z,y,x*,y* + v*) € gph F, for every v* € Y;-.
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For every y € Pry(domgp) there exist (Z,7°,7") € X x X* x Y* ~ € R such that
or(Z,7,T",7") <. From the definition of ¢z we have

v

Y <(f7y)7 (ZL‘*, y* + U*)> + <(I7 y)v (E*7y*)> - <($7 y)’ (I*7y* + U*)>
which provides us with

(y—7y,v")y >0, Yo" e YOL.
This implies that 7 — y € (Y5H)*+ = Y;. Hence Pry(dom ¢r) C y + Y.

(i1) Take Yy := aff(Pry(gph F)) — 3 for y € Pry(gph F) fixed. The operator F + & :
X xY = X* xY* where gph® := X x (y+Yj) x {0} x Yj', is monotone and its graph
contains the graph of the maximal monotone operator F', so it coincides with F', from
which (15) follows. We get from (7) the conclusion. O

As in [5], we use the notation “ri A” for the topological interior of A with respect to affA
and ““A” for the relative algebraic interior of A with respect to affA; thus ri A and “A
are empty if aff A is not closed and one always has ri A C “A. In the sequel, we use the
facts that for C' convex with “C nonempty, we have aff C' = aff(*C') and

“C'CACC = [affC = aff A and “C = “A]. (16)

Theorem 3.2. Let X, Y be Banach spaces and f € Go(X XY x X* x Y*).
(i) If0 € ®(Pry(dom f)) and g : X x X* — R is given by

g(x,z") = 1inf{f(x,0,2%,y") | y" € Y}, (x,2") € X x X7, (17)
then g € G(X x X*),
g" (v, u™) = min{ f*(u*, 0", ™, 0) | v* € Y}, V(u"u™) e X" x X (18)
g=clyg € Gs(X x X*) and
G(My) = My = My = M. (19)

Moreover, G(M;y) is strongly representable and G is a strong representative of
G(Mjy); in particular G(My) is mazimal monotone.
(i)  One has
“(Pry (dom f)) = “(conv(Pry (M;)))

. ‘ . (20)
= “(Pry(My)) = ri(Pry (My)) = "“(Pry(dompas,)).
Therefore, if 0 € “(Pry(My)) then G(My) is maximal monotone.

Proof. (i) First observe, from their definitions, that ¢ > ¢ and G(M;) C M,. To
get (18) we follow the proof of [5, Lem. 3.2]; just observe that this time the graph of
C: X x X" X XY x X*xY* given by

Clx,z*) :={z} x {0} x {2} x Y™, (x,2") € X x X*,
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is a closed linear subspace and C*(z*, y*, 2™, y™*) = {(z*, ™)}, if y** = 0; C*(z*, y*, ™,
y*™) = 0, otherwise.

Notice that g(z,z*) = inf{ f(u, v, u*,v*) | (u,v,u*,v*) € C(x,z*)}, for (z,z*) € X x X*
and
dom f —ImC = X X Pry(dom f) x X* x Y™,

from which 0 € “(dom f — ImC).

By the fundamental duality formula (more precisely, see [16, Th. 2.8.6 (v)]) we get (18).
Since f* > ¢, from (18), we see that ¢g* > ¢, and so g € G(X x X*).

Since g € G(X x X*), we know, by Corollary 2.16, that M, C My = M, and g €
Gs(X x X*). Therefore, according to Corollary 2.15 and again from (18)
Mo = G(Mfm) =G(My) C M, C My = M.

Hence (19) holds.
(1) Set F':= M;. We first claim that

Z'C(Pry(dom 1)) C Pry(F) C Pry(dom f). (21)

Indeed, let y € “(Pry(dom f)). Then 0 € *“(Pry(dom f’)) with f" := f0,400) because
dom f' = dom f — (0,y,0,0). Since f" € G,, by (i) we get G(Myp) = {(x,z*) | Iy* :
(x,y,2*,y*) € My} is maximal monotone; in particular G(My) is nonempty, and so
y € Pry(F). Hence the first inclusion of (21) holds while the second one is obvious.

Because f € G, from (14) (see also Remark 2.3), we have that pr < f < convcp. Here
“conv cp” stands for the greatest convex function majorized by cp in X x Y x X* x Y™,

It follows that
F C conv F' C dom(convep) C dom f C dom pp,

whence

Pry (F) C Pry(conv F') = conv(Pry (F)) C Pry(dom(convcr))
C Pry(dom f) C Pry(dom ¢p). (22)

This together with Lemma 3.1 (i) yield

aff(Pry (F')) = aff(Pry(conv F)) C aff(Pry (dom(convcp))
C aff(Pry(dom f)) C aff(Pry(dom ¢r)) C aff (Pry(F)). (23)

If aff(Pry (conv F)) (= aff(Pry(F'))) is closed, all inclusions in (23) become equalities;
hence in this case

“(Pry(F)) C "“(Pry(conv F)) C “(Pry(dom f)) C “(Pry (dom ¢r)). (24)

Assume that  (Pry(dom f)) # 0. Taking (16) and (21) into account, we know that
aff(Pry (dom f)) = aff(Pry(F)) is closed and “(Pry(F)) = “(Pry(dom f)). Relation
(24) provides

“(Pry(F)) = "“(Pry(conv F)) = "“(Pry(dom f)). (25)
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If “(Pry (F)) # () then aff(Pry (F)) is closed and (24) is true. Therefore “(Pry (dom f)) #
(), whence (25) holds again.

We proved that (25) is true regardless of whether or not “(Pry (F)) is non-empty. (In-
deed, if ““(Pry (F)) # (), we have seen above that (25) holds. Assume that ““(Pry (F)) = ()
[= “(Pry(dom f))]. If aff(Pry(F)) is closed then (25) follows from (24); if aff(Pry(F))
[= aff(Pry (conv F))] is not closed then “(Pry(conv F')) = ), and so (25) holds again.)

Since X x Y x X* x Y* is a Banach space and f € I';(X x Y x X* x Y*), by [16, Prop.
2.7.2], we have “ (Pry(dom f)) = ri (Pry(dom f)). (Indeed, because epi f is closed and
the involved spaces are Banach spaces, condition H(x,z*,3*) holds. By the last part of
[16, Prop. 2.7.2] we get D = rint D, where D := Pry(dom f). If aff D is not closed then
D = () =1i D; if aff D is closed then ©“D = ®D =D and ri D = rint D.) This gives

“(Pry (F)) = “(Pry(conv F)) = “(Pry(dom f)) = ri (Pry(dom f)). (26)

From Corollary 2.15 we know that ¢p is a strong representative of I = M. Relation
(26) applied for pp states that “(Pry(dom pr)) = “(Pry(F)), thereby completing the
proof of (20). O

For F: X xY = X*xY*and A: X — Y a continuous linear operator, we consider
Fy: X xY = X* x Y" defined by

gph Fy = {(z,y,2%,y") e X x Y x X* xY* | (2" — ATy*, y*) € F(z, Az +y)},
where AT : Y* — X* is the adjoint of A. Equivalently, F4(z,y) = B'FB(z,y) with
B(z,y) = (z,y + Ax), for (x,y) € X x Y.

Since B : X XY — X xY is an isomorphism of normed vector spaces (with BT (z*, y*) =
(z*+ATy*, y*)), if F is strongly-representable, (maximal) monotone then F is strongly—
representable, (maximal) monotone. Moreover, if f is a (strong) representative of F' then
fa = folLis a (strong) representative of F, where L := B x (B~!)". In an extended
form

fA(xvyvx*’y*> = f(xvy + A[L‘7.I'* - ATy*ay*>7 (m7y7x*ay*) S X XY x X* X Y*

Note that y € Pry(dom f,) iff y = ¢/ — Az’ for some (2/,y') € Prxyy(dom f), (x,y, z*, y*)
€ My, iff (z,y+ Az, z* — ATy*,y*) € My, and (My)4 = My,, for every f € F.
Using the previous result for 4y we get the next two consequences.
Corollary 3.3. Assume that X,Y are Banach spaces, f € G5 (X xY x X* x Y*) and
Ae L(X,Y). Then

“fy — Az | (z,y) € dom M;} = "“{y — Az | (z,y) € conv(dom M)}

=Ly — Az | (x,y) € Pry,y(dom f)}
=r1i({y — Az | (v,y) € dom M;}).

Assume that 0 € “{y — Az | (z,y) € Prxyy(dom f)} (or equivalently 0 € “{y — Ax |
(z,y) € dom My} ). Then the multifunction G(F4) whose graph is

{(z,2") € X x X* |y € Y*: (% — ATy, y") € My(z, Ax)}
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is strongly-representable, a strong representative is given by G, where g : X x X* — R is
defined by

glx,2*) = inf{f(z, Az, 2" — ATy* y*) | y* € Y*}, V(z,2*) € X x X*;

in particular G(Fa) is mazimal monotone. More precisely, G(Fa) = My, = Mg = M o
and

g7z, 2*) = min{ fP(z, Az, 2* — ATy* y") |y €Y'}, V(z,27) € X x X*.

Theorem 3.4. Assume that X,Y are Banach spaces, f € Gs(X x X*), g € G,(Y x V™)
and A € L(X,Y). Then

“(dom M, — A(dom My)) = *(conv(dom M, — A(dom M;)))
= “(Pry(dom g) — A(Prx(dom f)))
= ri (dom M, — A(dom My)) .

If, in addition, 0 € “(dom g — A(dom f)) (or equivalently 0 € “(dom M, — A(dom M;)))
then My + AT M,A is strongly representable (and mazimal monotone) having as strong
representative the function k, where

E: X x X* =R,  k(z,z%) :=inf{f(v, 2" — ATy") + g(Az,y") |y* € Y} (27)
Moreover, My + AT M,A = M}, = My = Mo and
k9 (2, %) = min{ (@, 2" — ATy*) + g7 (Az,y") |y € Y} V(z,27) € X x X,

Proof. Consider ¢ : X x Y x X* x Y* defined by ¢(z,y, z*,y*) := f(z,z*) + gy, y*).
Then ¢*(x*, y*, ™, y*™*) = f (2", ™) + ¢"(v*,y™), and so ¢ € G4(X x Y x X* x Y*).
Moreover, for F' := My we have G(F4) = M; + A" M,A. The conclusion follows using
the preceding corollary. O]

Taking X = Y and A = Idx in the previous theorem, the next result shows that
the Rockafellar Conjecture on the sum of maximal monotone operators is true in the
strongly-representable case.

Corollary 3.5. Let X be a Banach space and let M, N : X = X* be strongly repre-
sentable. Then *(dom M —dom N) = “(conv(dom M) —conv(dom N)) (is a convez set).
If 0 € ®“(dom M — dom N) then M + N is strongly representable; in particular M + N
is mazimal monotone. Moreover, cl(dom(M + N)) and cl(Im(M + N)) are convex sets.

Remark 3.6. Since every subdifferential is strongly-representable, the previous corol-
lary together with [8, Th. 26.1] or [9, Th. 44.1] show that every strongly-representable
operator is maximal monotone locally or of type FPV (see [8, Def. 25.4], [9, Def. 36.7]).

Theorem 3.7. If X is a Banach space, M : X == X* is strongly representable, and
N : X = X* is mazximal monotone with dom N = X, then M + N is mazimal monotone.

Proof. In order to prove that M + N is maximal monotone we wish to apply [13, Th.
3.4], that is, to show that M + N is representable and ¢y ny > ¢. Since M + N is
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representable by [13, Cor. 5.6], we have only to prove that ¢y n > ¢. To this end it
suffices to prove that T € dom(M + N) whenever zZ := (T,7*) € [pyan < ¢, Le., Z is
monotonically related to M + N (because for a monotone operator S : X =% X* one
always has (dom S) x X* C [pg > ¢]; see e.g. [12, Prop. 2 (i)] or [13, Prop. 2.1 (d)]).
According to Corollary 2.15, we may choose f to be a strong representative for M
such that f € Geyor(X x X*). Let Z = (Z,Z*) be monotonically related to M + N.
Taking My := M —Z and Ny = N — (Z,0), then gph(M + N) —Z = gph(M, + Np)
and (0,0) is monotonically related to My + Np; moreover, fr € Gy (X X X¥), f5is a
strong representative of My and dom Ny = X. If we prove that 0 € dom(My + Ny) then
T € dom(M+ N). Hence, without loss of generality, we assume that Z =0 € [py v < (],
that is

c(u,u" +v*) >0 forall w e X, u*,v" € X* with (u,u") € M, (u,v") € N. (28)

Fix (xg,xf) € dom f and let [0, zo] := {tzo | 0 <t < 1} and C. := [0, z0] + €U, for e > 0,
where U := {z € X | ||z|| < 1}. Since N is locally bounded and [0, x¢] is compact there
is g > 0 such that N is bounded on C,,, that is, there is K > 0 such that

€09

vl < K, YveC,, Yv" € N(v). (29)
Take C' := C,/» and for n > 1 consider
bn(x) = 10(x) + g||x||2, D, (x,2") = ¢p(z) + o5 (—2"), z€ X, 2" e X"

It is clear that ®,, > —c. Moreover,

¢} (%) = min {oc(u*) + 5= [l2* — T R RTAS X*} >0, Va* e X, (30)

n

and ¢, is finite and continuous on X*, where for A C X and z* € X*, o4(2*) := ) (z*) =
SUp,c 4 (@, 2*). Since ®,, is continuous at (zg, z), f > ¢, ®, > —¢, f* > ¢, and ¢} > —c,
applying the fundamental duality formula (as in the proof of Proposition 2.2), we get

inf (f(w)+ ®,(w)) =0, Vn>1.

weX X X*

Therefore, for every n > 1 there is z, := (2, %) such that f(z,)+ ®,(z,) < n~2. Since
xn € C, we know that ||z, || < ||zo|| + €0/2, for every n > 1.

As previously seen, f > ¢ and ®,, > —c imply that

D, (20) +clzn) <n72 flzn) <clzn) +n72 Vn > 1. (31)

From (31), Corollary 2.7 provides w,, := (yn,vy)) € M such that [|w, — z,| < 2/n, for
n > 1.

Pick v} € N(y,). For every n > 4/eq we have that y,, € C.,, and so |[v}|| < K by (29).
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Using (6) and (28), this yields

n * *

L
=0, (2,) < —c(2) + 172 < —c(wy) + |c(wn) — c(zn)] +n"2
— c(wn) + 3llwn — 2ol + lzallll 20 — wall + 072
— c(wy) 4 207 |z || + 3072 < —c(wn) + 207 2| + 207 2 || + 307
— (yn Yy +05) + (g, v)) + 207 s || + 2072 || + 372
K(lzall 4+ 207" + 207 2| + 207 |2 || + 3072
< Kllapl| + 207 || + Lo,

IAINA

IN

for n > 4/eg, where L := 2K + 2||x¢|| + o + 3. Hence, for n > 4/e, we have
n * * — * —
S lanll® = Kllzall + [0, (=23) = 207 ag | = Ln™'] <0,

or equivalently

s(Inzall = K)* + [ngy,(—27,) — 2]l ]l] < K7 + L. (32)

We claim that
ner (z*) > 3||z*|| — 18, Va* € X, Vn > 6/¢o. (33)
Notice that ng}(z*) = min {o,c(u*) + 1 [|l2* — u|)? | ur e X}areX ,n>1

The condition n > 6/¢y implies nC' O 3U; whence noc(u*) = o,c(u*) > osp(u’) =
3||u*||, for every u* € X*.

For fixed 2* € X* we consider two cases: a) ||z* — u*|| < 6 and b) ||z* — u*|| > 6.
If a) holds then ||[u*|| > ||z*|| — ||Jz* — w*|| > ||z*|] — 6 and so

ono(u”) + gllo" — u||* = onc(u”) 2 3[|u”]| = 3]|2"| - 18.

If b) holds then |lz* — u*||* > 3||z* — u*|| and so
one () + 3lla" — u|* = Blur|| + 3[la” — w*| = 3|27

In both cases we obtain that our claim is true. Using (33), from (32) we get
LInz,|| — K)* + ||z < 1K*+ L+ 18, Vn > 6/z,.

Hence necessarily ||z,| — 0 and (z}), is bounded. On a subnet, denoted for simplicity
by the same index, =} — x* weakly-star in X*. Passing to limit in (31) we get (0,2*) €
[f=¢ =M andsoT=0¢€ domM = dom(M + N). The proof is complete. O

The previous theorem allows us to recover the result in [8, Th. 42.2] and its extension
[11, Cor. 2.9(a)] (see also [9, Th. 53.1]).

Corollary 3.8. If X is a Banach space, p € I's(X) and L : X — X* is linear and
positive then Op + L is maximal monotone.

Corollary 3.9. If X is a Banach space, ¢ € I'y(X) and N : X = X* is mazimal
monotone with dom N = X then Op + N is maximal monotone.
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4. Comparison with other classes of operators

Recall that M : X = X* is called locally mazimal monotone or of type FP (see [8, Def.
25.2], [9, Def. 36.5] and [2]) if for every open convex set U C X* such that UNIm M # (),
if z € X x U is such that ¢(z —w) > 0 for all w € gph M N (X x U) then z € gph M.

Theorem 4.1. FEvery strongly-representable operator is locally maximal monotone.

Proof. Let M be a strongly-representable operator with a strong-representative f &
Guxw (X x X*). Consider U C X* an open convex set such that U N Im M # ) and
z = (z,x*) € X x U such that ¢(z — w) > 0 for all w € gph M N (X x U). Doing a
translation (in fact replacing f by f, which implies that U is replaced by U — z*) we
may (and do) assume that z =0 € X x U. Hence

c(w) >0, YwegphM N (X xU), (34)

and we have to show that (z =) 0 € gph M. Fix v* € UNImM, u € X such that
(u,u*) € M, and set C, := [0, u*] + rUx« for r > 0, where Ux~ = {z* € X* | ||z*|| < 1}.
For a € R, let vy := max(«,0) and a_ := (—a). For r > 0, consider

or(x) = rllz|| + (x,u*)+, O, (x,2") = ¢ (—z) + @ (z¥), z€ X, ¥ e X"

Then ¢} = i¢,., ®, > —c, and ¢ > —c. We know that ®, is continuous at (u,u*) € M C
dom f, and from the fundamental duality formula combined with ®, > —c, ®; > —c, we
get, as in the proof of Proposition 2.2, that inf(f + ®,) = 0, for every r > 0.

Because [0, u*] is a compact subset of the open set U, there exists ry € (0, 1] such that
C,, C U. Consider a sequence (1,)n,>1 C (0,7¢/3] with r, — 0. Since inf(f + ®,,) =0,
for every m > 1 there exists z, := (x,,z) such that f(z,) + @, (z,) < ri.

Again, f > c and ®,, > —c imply that @, (2,) + c(2,) < r} and f(z,) < c(2,) + 7l
for n > 1. Corollary 2.7 provides w, = (Yn,y)) € M such that |w, — z,| < 2r2,
for n > 1. Since z} € C,, and ||z} —y:| < 2r2 < 2r,, we find that y; € U and
wy, € gph M N (X x U).

Hence, according to (34), c(w,) > 0, for every n > 1. Taking (6) into account, we get

Tn”xn” < TonnH + <xan*>f =®,(z,) < _C(Zn) + Ti < —c(wn) + [e(2n) — c(wn)| + 7’;41

< 5 llwn = zall* + 2l - [l = 2all 475 < 205 flall + 205 (r + ) + 31,

whence
(1 =2r) l&nll < 2rp(ra + |lu*[]) + 37y, Vn > 1.,

Hence z,, — 0, strongly in X, as n — oo. Since z, € C,. , we have that x} = t,u* +r,u
with ¢, € [0,1] and ! € Ux-. Taking a subsequence if necessary, we have that ¢, —
t € [0,1], and this implies 2 — T* := tu* € U, strongly in X*. Let n — oo in
f(zn) < c(zy) + 7 to find (0,7%) € [f =] = M.

In particular, we proved that whenever z := (z,2*) € X x U is monotonically related to
My = gph M N (X x U) then there is 7* € U such that (z,7*) € My. In other words
we showed that [, < ¢] C (dom My) x X*. Since (dom My) x X* C [pny, > ¢ (see
e.g. [12, Prop. 2 (i)]), this implies

omy, (2) = c(2), omy > ¢ in X x U,
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hence z is a local minimum point for ¢y, — ¢ and so Z € 9y, (2). Therefore py, (2) +
O, (2) = z - 2 = 2¢(z) which in turn gives ¢y, (2) = ¢, (2) = ¢(z) because @i, () =
c(z). From f < ey < cp, and f € Ty (X X X*) we know that ¢ < f < 4byy,,; whence
f(2) =c¢(z), that is z € M. The proof is complete. O

Using a different argument the previous result allows us to recover the convexity of the
closure for the range of a strongly-representable operator (see [2, Th. 3.5]).

Recall that M C Z := X x X* is called strongly maximal monotone (see [8, Def. 25.8],
9, Def. 36.9]) if M is monotone and whenever the non-empty convex weakly-compact
set C C X and z* € X* are such that

V(y,y") e M, Jx € C : (x —y, " —y*) >0 (35)

then C' N M~1(z*) # 0, and, further, whenever the non-empty convex weakly-star com-
pact set C' C X* and x € X* are such that

Yiy,y* ) e M, Jz* € C : (x—y, 2" —y") >0 (36)

then C'N M (x) # 0.

Theorem 4.2. Every strongly-representable operator is strongly mazximal monotone.

Proof. Let M be a strongly-representable operator with a strong-representative f &
Guxw (X x X*) (according to Theorem 2.17).

Consider first the non-empty convex weakly-compact set C' C X and z* € X* such that
(35) holds. Of course, R :=sup {||z|| | z € C'} < co. Moreover,

d(z,C) = min{||z —ul| | v e C} = inf{|lz —ull | lu]] < B} = (||z| = R)y. ~ (37)

Replacing if necessary f by f(o.+), we may assume that 2* = 0. Therefore (35) reduces
to
V(y,y*) e M, Jx € C : (y,y*) > (x,y"). (38)

For r > 0, consider ¢,(z) = rd*(z,C) = rmin{||z — u||* | u € C} for z € X.

Then ¢ (z*) = oc(x*) + & |l2*||?, 2* € X*, and ¢,, ¢} are continuous, for every r > 0.
As usual o¢(2*) = sup,c (u, 2*) for 2* € X*.

Let @, (z,2*) = ¢.(x) + ¢5(—2*) for € X, ¥ € X*. Then &, > —¢, O} > —c,
and @, is continuous; hence allowing us to use the fundamental duality formula to get
inf(f + ®,) =0, for every r > 0.

Consider (r,)n,>1 C (0,1] with r, — 0. Since inf(f + ®,,,) = 0, for every n > 1 there
exists z, = (z,,z}) such that f(z,) + @, (z,) < rl. Because f > c and @, > —c, we

n

get @, (z,) + c(2,) < rtand f(z,) < c(z,) + 7, for every n > 1.

Corollary 2.7 provides wy, := (y,y}) € M such that ||w, — z,|| < 2r2 for n > 1. Using
(38) we know that there is Z,, € C such that (y,,vy’) > (Z,,y}), and so

*

—c(wn) = = (Yn Yn) < = (Fnsy) = — (@n, ¥ — ) + (Tn, —23) < 2R + 00(—a7),
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for every n > 1. Together with (6), this yields
rad? (2, C) + oc(—x,) + ﬁ”x;”Q =, (2,)
< —c(z) + 1 < —clwn) +le(zn) — clwn)| + 77,
< 2Rry + oo(=}) + 5 [lwn — zal* + |20l - llwn = 2l + 75
< 2Rr; + oc(=a;,) + 2r, ([lza]l + ||z} 1) + 37y,
for every n > 1. We get

rad*(@n, C) = 2 lwnll + gl 1 = 203l |l < 2Rrg + 3r,

4,

and after dividing by r,, we find

2
d* (2, O) — 21|z + (%szu - 27{3) < drt +2Rr, +3r2, ¥n > 1. (39)
Therefore the sequence (d(xy, C') — 2ry||2,||), is bounded above and, using (37), we see
that (x,), is bounded. Hence lim,, . 7,||z,|| = 0 and from (39) we find subsequently
that (ﬁ”xi“)n is bounded, z} — 0, strongly in X*, as n — oo, and lim,,_, d(z,,C) =
0. Since C'is weakly-compact, this shows that, at least on a subnet, denoted for simplicity
by the same index, x, — x € C, weakly in X. As usual, we find that (z,0) € [f =] =
M, that is z € C N M~0), if we let n — oo in f(z,) < c(2,) + .

Now, consider the nonempty convex weakly-star compact set C C X* and x € X such
that (36) holds. By a translation (f replaced by f(,;0)) we may assume that x = 0. In
this way, relation (36) spells

Y(y,y*) € M, Iz* € C : (y,y") > (y,z"). (40)
For r > 0, take ¢,(z) = oc(z) + +||z||%, where oc(z) = max,-ec (z,u*), x € X. Then
o (x*) = rd*(x*,C) for x* € X*, and ¢,., ¢} are continuous.

Let @,.(z,z*) = ¢.(—2) + ¢ (x*), for (z,2%) € X x X* and r > 0. Then ¢, > —c,
®* > —c, and P, is continuous. This allows us to apply the fundamental duality formula
to get inf(f + ®,) = 0, for every r > 0.

Consider (r,)n,>1 C (0, 1] with r,, — 0. Since inf(f + ®,,) = 0, for every n > 1 there
exists z, := (z,,x}) such that f(z,)+ ®,, (2,) < rl. Because f > c and ®, > —c, we

n

get @, (2,) + c(z,) <7l and f(z,) < c(z,) + 1, for every n > 1.

Corollary 2.7 provides w,, := (Yn, ) € M such that |w, — z,|| < 2r?, for n > 1. Using
(40) we know that for w, there is Z} € C such that (y,,v}) > (yn, Z5), and so

_C(wn) = - <yn7 y;:) S - <yn7-%;kz> = - <yn - l'n,f*> + <_$na j;> S QRTEL + UC(_xn)

for every n > 1, where R := sup {||z*|| | z* € C'} < oo. Together with (6) this implies
that, for every n > 1, we have

oc(—xn) + ﬁ”ffnﬂz + TndQ(aj:w C) =, (2)
< —c(zn) +1E < —c(wy) + |e(zn) — c(wy)| + 72

< QRTEL +oc(—n) + % |, — Zn||2 + Hzn” Nwn — 2| + Ti
< 2RrE + oo(—xn) + 202 (||z,]| + ||l2E]]) + 32
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Therefore

1
4—||93n|!2 — 2r2 ||| + rad?(z), C) = 202 |||l < 2Rrl, + 31y,
T

or equivalently,

1 2
(2—||xn|| — 27’2) + dz(a::;, C) = 2r,||z]| < 4rﬁ +2Rr,, + 37"2.
T'n

As in the first part, this implies that, at least on a subnet, z, — (0,2*) strongly x
weakly-star in X x X*, for some z* € C. Again, by passing to limit in f(2,) < c(z,)+7}
we find z* € C'N M(0). The proof is complete. O

Remark 4.3. From the above considerations we see that every strongly-representable
operator is X-regular in the sense introduced in [10]. This can be deduced from Theorem
4.2 and [10, Prop. 1] or from Corollary 3.5 and [10, Th. 1]. As seen in [10, Th. 2], the
X-regularity provides a different argument for the convexity of the closure of a strongly-
representable operator domain.

Corollary 4.4. Let f € Gs(Z). For every (x,z*) € X x X* and every ¢ > 0 there exists
(we,xk) € My such that {(xe, x%) | € > 0} is bounded and

|z — 2?4+ 2 (@ — 2o, 2" — 22 + 2" — 2|* < e.

Proof. Replacing f by f(5.+) if necessary, we may assume that (z,2*) = (0,0). As seen
in the proof of Theorem 2.12, f + h is (strongly) coercive. Hence there exists r > 0 such
that {z € Z | f(2) + h(z) <1} CrUyz, where Uz = {z € Z| ||z|| < 1}.

For ¢ € (0,1] take ¢’ € (0,¢) such that 10¢’ + 8rv/e = ¢. Since inf(f + h) = 0, there
exists w. € Z, such that f(w.) + h(w.) < ¢’ and |Jw.|| < r. From f > cand h > —c it
follows that

flw:) < c(w:) + €', % ||wg||2 + c(w.) < €.

Corollary 2.7 applied for ¢’ > 0 and w, provides z. € M such that ||w.—z|| < § := 2V/e.
Using (6) we get

l2el® < (lwell + 12 = well)® < flewell® + 27 flze = well + llze — we]|*,

c(ze) < c(we) + |e(we) — c(ze)] < e(we) + 7 ||lze — wel| + % l2e — wEH2-
Therefore,
ll2e]|” + 2¢(z) < |Jwe||” + 2¢(w,) + 478 + 202 < 2’ + 416 + 262 = 10’ + 8rVe' = ¢.

For € > 1 we take z. := 21 . The proof is complete. Il

The next result shows that every strongly-representable operator is of type ANA (for
this notion see [8, Def. 25.10], [9, Def. 36.11])).
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Corollary 4.5. Let f € G(Z). Then for every (x,xz*) € X x X*\ My there exists a
bounded sequence ((zn,},)), s, C My such that x, # x, x}, # x* for every n > 1, and
(xy —x, 28 — %)

lim . . = —1.
n—oo ||z, — x| - ||y, — 2]

Proof. Let (z,2%) € X x X*\ M;. Fix (¢,)n>1 C (0, 00) with €, — 0. Using Corollary
4.4 we get a bounded sequence ((x,,},)),»; C My such that

||x—xn||2+2<x—xn,x*—arfl)+ ||:1:*—x;‘l||2 < si, Vn > 1. (41)
Hence
‘ |z — xn|| — [|J2" — 2} ]| ‘ <e,, Vn>1. (42)

There exist v > 0 and ng > 1 such that ||z — z,|| > 27 for all n > ng, since otherwise,
on a subsequence, x,, — z, strongly in X, and because of (42), 2}, — 2*, strongly in
X*. This yields the contradiction

(z,2%) < f(z,2") < liminf f(2,,, ), ) =

. * *
1m <fL’ T > ={r,Tr ).
k—oo k—o0 T g, < ’ >

From (42) we obtain

* *
—||x zall _ 1] < 5—”, Vn > ny,
[l — | T2y N
whence lim,,_ [|[2* — %] / ||z — z,]| = 1.

Hence ||z* — x| > 7, for every n > ny, for some ny > ng and lim,, . ||z — z,|| / ||z* — 2} ||
=1.

From (41) we get

_ * % 2 _ * ok
I e N S LTt NN ot VR
|wn =l - [lay, —2*|| = 292 fla* —ap|l |l — 2l
whence the conclusion follows. O

Recall that N C Z := X x X* is called NI, or of negative-infimum type (see [8, Def.
25.5], [9, Def. 36.2]), if

inf (u*—a"u—2") <0, V(") e 2",
(u,u*)eN

or equivalently ¢y (z*, 2**) > (a*, x*™), for every (z*,2™) € X* x X**.

Proposition 4.6. Let N C X x X* be maximal monotone and NI. Then N 1is strongly-
representable.

Proof. Since N is maximal monotone we have that cy > ¢n > cand N = M, =
[on = ¢]. It follows that ¢} > cy. Since N is NI we have ¢y > ¢, and so gy € Gs(Z).
To conclude we see that ¢y is a strong representative of N or we use Theorem 2.17. [

Corollary 2.9 allows us to recover with simple proofs the results in [15, Cors. 3.5, 3.6],
which at their turn solve [8, Problem 27.7] (see also [9, Problem 43.3]).
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Corollary 4.7. Let M : X = X* be a mazximal monotone operator of type NI. Then
cl(dom M) and cl(Im M) are convez sets.

Remark 4.8. Implicitly, from the above results, we have proved that every maximal
monotone operator of type NI is automatically maximal monotone locally, locally max-
imal monotone, strongly maximal monotone, and ANA and the closures of the domain
and range of a maximal monotone operator of type NI are convex. This answers partially
the open problem stated in [8, Problems 25.9, 25.11] and [8, Problems 36.10, 36.12].

For skew bounded operators the converse of Proposition 4.6 holds.

Corollary 4.9. Let S : X == X* be skew, that is, gphS is a linear subspace and
(x,x*) =0, for all (z,2*) € gph S. Consider the conditions:

(i) S is mazimal monotone and NI,

(i) S is s X w*—closed in X x X* and S* is monotone in X** x X*,

(ii) S is strongly-representable.

Then (i) < (i1) = (ii1). If in addition S : X — X* has dom S = X, then (iii) = (i).
Here (x**,x*) € gph S* iff (u,x*) = (u*,x™), for every (u,u*) € gph S.

Proof. First note that 2* € (—=S*)~! C Z* iff (z,2*)= 0, for every z € S. Moreover,
from its definition, (—S*)~! is weakly-star closed in Z*. This implies that for L C Z
linear we have L is skew iff L C (—L*)71 iff clyyqpe L is skew.

For a skew S we have

* *
s = L, - S5 Ps = L(—5)NZ> Cg = Lg = L(—5*)-1-

Indeed, cg = 15 is convex, whence g = clyyyw= ts = ta,, . s and
cg(2") = 15(2") = sup{(z,2") —c(2) | z € S} =sup{(2,2") | 2 € S} = 1(_g+)-1(2")

for every 2* € Z*. Similarly 5 = 1(_g+)nz.
Notice also that S* is monotone in X** x X* iff 15 = cg > cin Z* iff S is NL

(1) = (ii) Because S is maximal monotone, S C clgxq,« S and clgy,+ S is monotone (being
skew), we have that S (= clgxy+ S) is s X w*—closed in X x X*. Since S is NI, as seen
above, S* is monotone in X** x X*.

For (ii) = (4i7) and (i7) = (i) notice that cg = vg is a strong-representative of S.

(17i) = (i) Assume that dom S = X and let f € G4(Z) be a strong-representative of S.
Then S is maximal monotone by Theorem 2.12 and f > ¢g = ¢(_s+)nz by Corollary
2.14. Since domS = X and S is skew, S is single-valued and for all z,y € X, 0 =
(x+y,S(x+y)) = (y,Sz)+ (x, Sy), that is, (Sz,y) = —(Sy, z); whence (—S*)NZ = S.
This implies f > pg = 15 = cs and so ¢§ = 15 = t(_g-)1 > f* > ¢, ie., Sis NL O]
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