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Recently in [4] a new class of maximal monotone operators has been introduced. In this note we study
domain-range properties as well as connections with other classes and calculus rules for these operators
we called strongly-representable. While not every maximal monotone operator is strongly-representable,
every maximal monotone NI operator is strongly-representable, and every strongly-representable oper-
ator is locally maximal monotone, maximal monotone locally, strongly maximal monotone, and ANA.
As a consequence the conjugate of the Fitzpatrick function of a maximal monotone operator is not
necessarily a representative function.

1. Introduction

Let X be a non trivial (real) Banach space and X∗ its topological dual; set Z := X×X∗

which is a Banach space with respect to the norm ‖(x, x∗)‖ :=
(
‖x‖2 + ‖x∗‖2

)1/2
. We

denote by “s� the strong topology, by “ω� the weak topology onX, by “ω∗� the weak-star
topology on X∗, and by Z∗ := X∗ ×X∗∗ the dual of Z.

For z := (x, x∗) ∈ Z we set c(z) := 〈x, x∗〉 := x∗(x). For the sake of simplicity, we
use the same notation c for the coupling in Z∗, that is, c(z∗) := 〈x∗, x∗∗〉 := x∗∗(x∗) for
z∗ := (x∗, x∗∗) ∈ Z∗, since the contexts of Z or Z∗ offer no possibility of confusion for c.

Consider

F := F(Z) := {f ∈ Λ(Z) | f(z) ≥ c(z), ∀z ∈ Z} , Fs := Fs(Z) := F(Z) ∩ Γs(Z),

where for a locally convex space (E, τ), Λ(E) denotes the class of proper convex functions
f : E → R and Γτ (E) is the class of those f ∈ Λ(E) which are τ–lower semicontinuous
(lsc for short). The elements of F(Z) are called representative functions in Z.

It is known that whenever f ∈ F(Z) the set

Mf := [f ≤ c] := {z ∈ Z | f(z) ≤ c(z)} = {z ∈ Z | f(z) = c(z)} =: [f = c]
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is monotone, that is, c(z − z′) ≥ 0 for all z, z′ ∈ Mf ; this also follows from Proposition
2.1 below.

For z1 := (x1, x
∗
1), z2 := (x2, x

∗
2) ∈ Z we set

〈z1, z2〉 := z1 · z2 := 〈x1, x∗2〉+ 〈x2, x∗1〉 .

Note the following useful relations:

c(z ± z′) = c(z)± 〈z, z′〉+ c(z′), c(z) = c(−z) = 1
2
〈z, z〉 , ∀z, z′ ∈ Z.

For z = (x, x∗) ∈ Z, α > 0, and g : Z → R we denote by gz and gα the functions on Z
defined by

gz(w) := g(z + w)− c(z + w) + c(w), gα(w) := αg
(
y, α−1y∗

)
, for w := (y, y∗) ∈ Z.

Hence gz(w) = g(z + w) − z · w − c(z) for w ∈ Z, and so gz is convex as the sum of a
convex function and an affine function; moreover

gz(w)− c(w) = g(z + w)− c(z + w), ∀z, w ∈ Z, (1)

gα(w)− c(w) = α [g(wα)− c(wα)] , ∀α > 0, ∀w ∈ Z, (2)

where wα := (y, α−1y∗) for w = (y, y∗). It follows that

f ∈ F(Z) ⇒ [fα, fz ∈ F(Z), ∀α > 0, ∀z ∈ Z] ,

f ∈ Fs(Z) ⇒ [fα, fz ∈ Fs(Z), ∀α > 0, ∀z ∈ Z] ,

and
Mfz =Mf − z, Mfα = {(x, αx∗) | (x, x∗) ∈Mf} (3)

for every f ∈ F(Z), z ∈ Z, and α > 0.

In the sequel for a proper function g : Z → R, we denote by g∗ its usual (convex)
conjugate, and by ∂g its usual subdifferential, that is, g∗ : Z∗ = X∗ × X∗∗ → R and
∂g : Z ⇉ Z∗, while the pairing between Z and Z∗ is given by

〈(x, x∗), (u∗, u∗∗)〉 := 〈x, u∗〉+ 〈x∗, u∗∗〉 , ∀(x, x∗) ∈ X ×X∗, (u∗, u∗∗) ∈ X∗ ×X∗∗.

Let x̂ be the image J(x) of x ∈ X, where J : X → X∗∗ is the canonical injection of X
into X∗∗, that is, J(x)(x∗) := 〈x, x∗〉 for x∗ ∈ X∗ and x ∈ X. In the sequel we shall
use ẑ for (x∗, x̂) ∈ Z∗ when z := (x, x∗) ∈ Z. Moreover, for g : Z → R we consider
g� : Z → R defined by g�(z) := g∗(ẑ); hence g� is convex and s× ω∗–lsc.

For M ⊂ X ×X∗, its Fitzpatrick function ϕM is defined as

ϕM(z) = sup{〈z, w〉 − cM(w) | w ∈ Z} = sup{〈z, w〉 − c(w) | w ∈M},

where cM(z) := c(z), for z ∈ M and cM(z) := ∞, for z ∈ Z \ M ; in simpler words
ϕM(x, x∗) = c∗M(x∗, x̂) = c�M(x, x∗) or ϕM(z) = c∗M(ẑ) = c�M(z), for z = (x, x∗) ∈ Z.

The Penot function of a non-empty monotone set M ⊂ X ×X∗ is defined by ψM(z) =
ϕ∗
M(ẑ) = ϕ�

M(z) for z ∈ Z, and is the greatest ω × ω∗−lsc proper convex function
majorized by cM in Z.
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Let g : X ×X∗ → R be a proper function and z := (x, x∗) ∈ Z. Then

(g(x,x∗))
∗(u∗, u∗∗)

= g∗ (u∗ + x∗, u∗∗ + x̂)− 〈x, u∗〉 − 〈x∗, u∗∗〉 − 〈x, x∗〉 , ∀(u∗, u∗∗) ∈ X∗ ×X∗∗,

that is,
(gz)

∗(w∗) = g∗ (w∗ + ẑ)− c(w∗ + ẑ) + c(w∗), ∀w∗ ∈ Z∗,

or equivalently
(gz)

∗ = (g∗)ẑ,

and
∂gz(w) = {w∗ ∈ Z∗ | w∗ + ẑ ∈ ∂g(w + z)} = ∂g(w + z)− ẑ ∀w, z ∈ Z.

In particular, Im ∂gz = Im ∂g − ẑ.

For α > 0, x ∈ X, x∗, u∗ ∈ X∗, u∗∗ ∈ X∗∗, we have

(gα)
∗(u∗, u∗∗) = αg∗(α−1u∗, u∗∗),

(u∗, u∗∗) ∈ ∂gα(x, x
∗) ⇔ (α−1u∗, u∗∗) ∈ ∂g(x, α−1x∗).

Let us consider the more restrictive classes

G := G(Z) := {f ∈ F(Z) | f ∗(z∗) ≥ c(z∗), ∀z∗ ∈ Z∗} , Gs := Gs(Z) := G(Z)∩Γs(Z).

The classes Fτ (Z), Gτ (Z) are defined similarly, for any other topology τ on Z.

Using the formulas above for (gz)
∗ and (gα)

∗ we get

f ∈ Gs(Z) ⇒ [fα, fz ∈ Gs(Z), ∀α > 0, ∀z ∈ Z] . (4)

A set M ⊂ Z is called strongly-representable in Z whenever there is f ∈ Gs(Z) such that
M =Mf . In this case f is called a strong-representative of M .

It has been proven in [4, Th. 4.2] that every strongly-representable operator is maximal
monotone. In this paper we show that not every maximal monotone operator is strongly-
representable by providing the property of convexity for the closure of the range; property
that distinguishes between these two classes.

Consider

h : X ×X∗ → R, h(x, x∗) = 1
2
‖(x, x∗)‖2 = 1

2
‖x‖2 + 1

2
‖x∗‖2 , (x, x∗) ∈ X ×X∗.

Since the dual norm on X∗×X∗∗ is given by ‖(u∗, u∗∗)‖ =
(
‖u∗‖2+ ‖u∗∗‖2

)1/2
we know

that h∗(u∗, u∗∗) = 1
2
‖(u∗, u∗∗)‖2. Notice that

h ≥ ±c, h∗ ≥ ±c. (5)

Moreover,
∂h(x, x∗) = FX(x)× FX∗(x∗) ∀(x, x∗) ∈ X ×X∗,

where FX : X ⇉ X∗ is the duality mapping of X, that is,

FX(x) := ∂
(
1
2
‖·‖2

)
(x) =

{
x∗ ∈ X∗ | ‖x‖2 = ‖x∗‖2 = 〈x, x∗〉

}
, x ∈ X,
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and similarly for FX∗ . Note that

|〈z, z′〉| ≤ ‖z‖ · ‖z′‖ , |c(z)− c(z′)| ≤ 1
2
‖z − z′‖2 + ‖z′‖ · ‖z − z′‖ , ∀z, z′ ∈ Z. (6)

Taking z′ = z in the first inequality or z′ = 0 in the second we get |c(z)| ≤ 1
2
‖z‖2 for

z ∈ Z.

When there is no risk of confusion a multifunction S : E ⇉ F is identified with its graph
gphS := {(x, y) | y ∈ S(x)}; moreover, domS := PrE(gphS), ImS := PrF (gphS), and
S−1 : F ⇉ E has gphS−1 := {(y, x) | (x, y) ∈ gphS}.
When E,F are (real) linear spaces, A,B ⊂ E, and α ∈ R, we set A + B := {a +
b | a ∈ A, b ∈ B} and αA := {αa | a ∈ A} with A + ∅ := ∅ and α∅ := ∅ by
convention. For S, T : E ⇉ F and α ∈ R, the multifunctions S + T : E ⇉ F and
αS : E ⇉ F have the graphs gph(S+T ) := {(x, y + v) | (x, y) ∈ gphS, (x, v) ∈ gphT},
that is, (S + T )(x) = S(x) + T (x), and gph(αS) := {(x, αy) | (x, y) ∈ gphS}, that is,
(αS)(x) = αS(x). Hence dom(S + T ) = domS ∩ domT , Im(S + T ) ⊂ ImS + ImT ,
dom(αS) = domS, and Im(αS) = α ImS.

Generally gph(S + T ) is different from gphS + gphT and gph(αS) is different from
α gphS.

As usual, for a subset A of a normed vector space X and x ∈ X, we set d(x,A) :=
inf {‖x− u‖ | u ∈ A} with the convention that inf ∅ := +∞.

2. Domain-range properties

Proposition 2.1. Suppose that f ∈ F(Z), z1, z2 ∈ Z, and ε1, ε2 ≥ 0 are such that
f(z1) ≤ c(z1) + ε1 and f(z2) ≤ c(z2) + ε2. Then

c(z1 − z2) ≥ −2(ε1 + ε2).

Proof. Indeed,

c
(
1
2
z1 +

1
2
z2
)
≤ f

(
1
2
z1 +

1
2
z2
)
≤ 1

2
f(z1) +

1
2
f(z2) ≤ 1

2
(c(z1) + ε1) +

1
2
(c(z2) + ε2) ,

whence −1
2
(ε1 + ε2) ≤ 1

4
c(z1 − z2). The conclusion follows.

Proposition 2.2. Let f ∈ G(Z). Then:

(i) For every z ∈ Z one has

inf
w∈Z

(fz(w) + h(w)) = − min
w∗∈Z∗

[(f ∗(ẑ + w∗)− c(ẑ + w∗)) + (h∗(w∗) + c(w∗))] = 0.

(ii) For every z ∈ Z there is z∗ ∈Mf∗ such that ẑ − z∗ ∈ gph(−FX∗) and ‖ẑ − z∗‖2 ≤
2(f ∗(ẑ)− c(ẑ)). Moreover

(√
2− 1

)
‖ẑ − z∗‖ ≤ d(ẑ,Mf∗) ≤

√
2 (f ∗(ẑ)− c(ẑ)) =

√
2 (f�(z)− c(z)). (7)

(iii) For every α > 0, Im
(
(Mf∗)−1 + α(FX∗)−1

)
= X∗.



M. D. Voisei, C. Zălinescu / Strongly-Representable Monotone Operators 1015

Proof. (i) Taking into account the formulas related to fz we may (and do) assume that
z = 0. Because f ≥ c and f ∗ ≥ c, we obtain from (5) that f + h ≥ 0 and f ∗ + h∗ ≥ 0.
Since f is convex and h is finite, convex, and continuous on Z, using the Fenchel duality
theorem (see e.g. [16, Cor. 2.8.5]) we obtain

0 ≤ inf
z∈Z

[f(z) + h(z)] = − min
z∗∈Z∗

[f ∗(z∗) + h∗(−z∗)] = − min
z∗∈Z∗

[f ∗(z∗) + h∗(z∗)]

= − inf
z∗∈Z∗

[f ∗(z∗) + h∗(z∗)] ≤ 0.

The conclusion of (i) follows because fz ∈ G(Z) whenever f ∈ G(Z).
(ii) Fix z ∈ Z. We get from (i) an element z∗ ∈ Z∗ such that

[f ∗(z∗)− c(z∗)] + [h∗(z∗ − ẑ) + c(z∗ − ẑ)] = 0.

Because the terms in square brackets are non-negative, we see that f ∗(z∗) − c(z∗) = 0,
that is, z∗ ∈ Mf∗ and h∗(z∗ − ẑ) + c(z∗ − ẑ) = 0, whence ẑ − z∗ ∈ gph(−FX∗). Since
f ∗(z∗) = c(z∗) we have f ∗(ẑ) ≥ ϕMf∗

(ẑ) ≥ 〈ẑ, z∗〉 − c(z∗) (for more details see [13,
Remark 3.6]). Therefore

f ∗(ẑ)− c(ẑ) ≥ 〈ẑ, z∗〉 − c(z∗)− c(ẑ) = −c(ẑ − z∗) = h∗(z∗ − ẑ) = 1
2
‖ẑ − z∗‖2.

This yields the second inequality in relation (7) because δ := d(ẑ,Mf∗) ≤ ‖ẑ − z∗‖.
Since Mf∗ is monotone, for every w∗ ∈Mf∗ we have that

0 ≤ c (z∗ − w∗) = c(z∗ − ẑ) + 〈z∗ − ẑ, ẑ − w∗〉+ c(ẑ − w∗)

≤ − 1
2
‖ẑ − z∗‖2 + ‖z∗ − ẑ‖ · ‖ẑ − w∗‖+ 1

2
‖ẑ − w∗‖2 .

It follows that 0 ≤ −‖ẑ− z∗‖2 +2δ ‖z∗ − ẑ‖+ δ2, whence ‖ẑ− z∗‖ ≤ (1+
√
2)δ, i.e., the

first inequality in (7) holds.

(iii) If necessary, replacing f by fα, we may assume that α = 1. Let u∗ ∈ X∗. Applying
(ii) for z = (0, u∗) we get z∗ = (x∗, x∗∗) ∈ Mf∗ such that u∗ − x∗ ∈ (FX∗)−1(x∗∗). The
conclusion follows.

Remark 2.3. From assertion (i) of the preceding proposition we have that f ∈ Gs(Z)
implies f ∈ Fs(Z) and inf(fz + h) = 0 for every z ∈ Z.

Remark 2.4. The first part of assertion (ii) of the previous proposition can be inter-
preted as

Ẑ := X∗ × J(X) ⊂ gphMf∗ + gph(−FX∗), (8)

and is a generalization to non-reflexive spaces for the “−J � criterion for the maximality
of operators in reflexive spaces (see [8]); moreover, (8) can be obtained from [9, Lem. 35.5]
by taking g := h. In reflexive spaces, an operator is maximal monotone iff it is strongly-
representable, a situation that is no longer valid in the non-reflexive context in the sense
that there exist maximal monotone operators that are not strongly-representable as we
will see in the sequel. The second part of assertion (ii) extends [6, Lem. 2.3] to the
non-reflexive case.

A partial converse of Proposition 2.2 follows.
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Proposition 2.5. If f : Z → R is such that infw∈Z (fz(w) + h(w)) = 0 for every z ∈ Z
then f ≥ c; moreover, if f is convex then f ∈ F(Z) and f ∗(z∗) ≥ c(z∗) for every

z∗ ∈ Ẑ + gph(−FX∗).

Proof. The condition inf (fz + h) = 0, for every z ∈ Z implies

fz(w) + h(w) = f(z + w)− c(z + w) + h(w) + c(w) ≥ 0, ∀z, w ∈ Z.

Taking w = 0 we get f ≥ c in Z.

Assume now that f is convex. Then f ∈ Λ(Z) and so f ∈ F(Z). Again, the fundamental
duality formula yields

inf
w∈Z

(fz(w) + h(w)) = − min
z∗∈Z∗

[(f ∗(ẑ + z∗)− c(ẑ + z∗)) + (h∗(z∗) + c(z∗))] = 0,

which implies f ∗(z∗) ≥ c(z∗), for every z∗ ∈ Ẑ + gph(−FX∗), since [h∗ + c = 0] =
gph(−FX∗).

Theorem 2.6. Let f ∈ Γs(Z) be such that infw∈Z (fz(w) + h(w)) = 0, for every z ∈ Z.
Then Mf is nonempty, monotone and

d ((x, x∗),Mf ) ≤ 2
√
f(x, x∗)− 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗. (9)

Proof. From Proposition 2.5 we know that f ∈ F(Z) and so Mf is monotone. Fix
z := (x, x∗) ∈ X × X∗. If f(z) = ∞ or f(z) = c(z) there is nothing to prove. Let
ε := f(z) − c(z) ∈ (0,∞) and set ε0 := ε, z0 := z. Fix β ∈ (1,∞), γ ∈ (2,∞) and
consider a sequence (εn)n≥0 ⊂ (0,∞) satisfying

4εn + 6εn+1 ≤ γ2εn, ∀n ≥ 0 and
∑

n≥0

√
εn < β

√
ε (10)

(for example εn = ε0r
2n, n ≥ 0, where r = min{((γ2 − 4)/6)1/2, (1− β−1)/2}).

Because inf(fz0 + h) = 0, there exists z1 ∈ Z such that

fz0 (z1 − z0) + h (z1 − z0) ≤ ε1.

Using the definition of fz0 given in (1) and since f, fz0 ≥ c and h ≥ −c we get

0 ≤ f(z1)− c(z1) = fz0 (z1 − z0)− c(z1 − z0) ≤ ε1,

0 ≤ 1
2
‖z1 − z0‖2 + c(z1 − z0) ≤ ε1. (11)

Using Proposition 2.1 we obtain that c(z1 − z0) ≥ −2(ε0 + ε1), and so, by (11),

‖z1 − z0‖2 ≤ 2ε1 + 4(ε0 + ε1) = 4ε0 + 6ε1 ≤ γ2ε0,

whence
‖z1 − z0‖ ≤ γ

√
ε0.

Continuing this procedure we obtain a sequence (zn)n≥0 ⊂ Z such that

f(zn) ≤ c(zn) + εn, ‖zn+1 − zn‖ ≤ γ
√
εn, ∀n ≥ 0.
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We obtain from (10) that

∑

n≥0

‖zn+1 − zn‖ ≤ γ
∑

n≥0

√
εn < γβ

√
ε.

Since Z is complete, it follows that the sequence (zn)n≥0 is strongly convergent to some
zε ∈ Z and ‖z − zε‖ ≤ γβ

√
ε. Since f is s–lsc and εn → 0, from the inequality f(zn) ≤

c(zn) + εn we get

c(zε) ≤ f(zε) ≤ lim inf
n→∞

f(zn) ≤ lim
n→∞

(c(zn) + εn) = c(zε).

Therefore, f(zε) = c(zε), that is, zε ∈ Mf 6= ∅. Moreover, d (z,Mf ) ≤ γβ
√
ε. Since

β > 1 and γ > 2 are arbitrarily chosen, we find that d (z,Mf ) ≤ 2
√
ε, that is, (9)

holds.

As a consequence of the previous theorem, every strongly-representable operator has the
following Brøndsted–Rockafellar property. For other results of this type see [4].

Corollary 2.7. Let f ∈ Γs(Z) be such that infw∈Z (fz(w) + h(w)) = 0, for every z ∈ Z.
For every ε > 0 and every (x, x∗) ∈ X × X∗ with f(x, x∗) < 〈x, x∗〉 + ε there exists
(xε, x

∗
ε) ∈Mf such that ‖x− xε‖2 + ‖x∗ − x∗ε‖2 < 4ε.

The next result corresponds to [7, Prop. 2] (established in reflexive Banach spaces).

Corollary 2.8. Let f ∈ Gs(Z) and γ > 4. For every (x, x∗) ∈ X ×X∗ and every α > 0
there exists (xα, x

∗
α) ∈Mf such that

‖xα − x‖2 + α2 ‖x∗α − x∗‖2 ≤ γα (f(x, x∗)− 〈x, x∗〉) . (12)

Proof. If (x, x∗) /∈ dom f we can take an arbitrary (xα, x
∗
α) ∈ Mf , while if f(x, x∗) =

〈x, x∗〉 we take (xα, x
∗
α) = (x, x∗), for every α > 0.

Let (x, x∗) be such that f(x, x∗)− 〈x, x∗〉 ∈ (0,∞) and fix α > 0. By (4) we know that
fα ∈ Gs(Z) and from (2) we have

fα(x, αx
∗)− 〈x, αx∗〉 = α (f(x, x∗)− 〈x, x∗〉) ∈ (0,∞).

Applying Theorem 2.6 for fα and (x, αx∗), taking into account that γ > 4, we get
(xα, x

∗
α) ∈Mf (that is, (xα, αx

∗
α) ∈Mfα) such that (12) holds.

In the sequel we also interpret Mf as a multifunction from X to X∗, and so domMf is
PrX(Mf ) and ImMf is PrX∗(Mf ).

Corollary 2.9. Let f ∈ Gs(Z). Then

cl(domMf ) = cl (PrX(dom f)) , cl(ImMf ) = cl (PrX∗(dom f)) .

In particular cl(domMf ) and cl(ImMf ) are convex sets. Here “ cl� stands for the closure
with respect to the strong topology.
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Proof. The inclusions domMf ⊂ PrX(dom f) and ImMf ⊂ PrX∗(dom f) are obvious.
It suffices to prove the converse inclusions.

Let x∗ ∈ PrX∗(dom f), that is, (x, x∗) ∈ dom f for some x ∈ X. Applying Corollary 2.8
(with some fixed γ > 4), we get that for every α > 0, there is (xα, x

∗
α) ∈ Mf satisfying

(12). Therefore, x∗α ∈ ImMf and α ‖x∗α − x∗‖2 ≤ γ (f(x, x∗)− 〈x, x∗〉). This shows that
s–limα→∞ x∗α = x∗, from which x∗ ∈ cl(ImMf ).

Similarly, if x ∈ PrX(dom f), i.e., (x, x∗) ∈ dom f for some x∗ ∈ X∗, then, according
to Corollary 2.8, taking for every α > 0 an (xα, x

∗
α) ∈ Mf satisfying (12), we have that

xα ∈ domMf and ‖xα − x‖2 ≤ γα (f(x, x∗)− 〈x, x∗〉). Hence s–limα→0 xα = x, which
proves that x ∈ cl (domMf ).

Remark 2.10. The previous result shows that the strong closures of a strongly-represen-
table operator domain and range are convex. Since, in general, the closure of the range
of a maximal monotone operator is not necessarily convex (see e.g. [3]), this shows that
not every maximal monotone operator is strongly-representable.

Remark 2.11. Let M be a maximal monotone operator that is not strongly-represen-
table. Then M = [ϕM = c], ϕM ∈ Fs(Z) and if we assume that ϕ∗

M ≥ c in Z∗

then ϕM ∈ Gs(Z) and M would be strongly-representable; a contradiction. Hence the
inequality ϕ∗

M ≥ c fails in Z∗, that is, the conjugate of the Fitzpatrick function of a
maximal monotone operator is not necessarily a representative function.

The next result has been proved in [4, Th. 4.2] for f ∈ Gs(Z). For convenience we provide
the reader with a short proof.

Theorem 2.12. Let f ∈ Γs(Z) be such that infw∈Z (fz(w) + h(w)) = 0, for every z ∈ Z.
Then Mf is maximal monotone in Z. In particular every strongly-representable operator
is maximal monotone.

Proof. Let z0 be monotonically related to Mf . Replacing f by fz0 if necessary, we may
assume without loss of generality that z0 = 0, that is

c(z) ≥ 0, ∀z ∈Mf . (13)

Since inf(f + h) = 0, there is zn ∈ Z such that f(zn) + h(zn) < 1/n2, for every n ≥ 1.
The function f + h is coercive. Indeed, fixing some z∗ ∈ dom f ∗ we have that

f(z) + h(z) ≥ 1
2
‖z‖2 + 〈z, z∗〉 − f ∗(z∗) ≥ 1

2
‖z‖2 − ‖z‖ ‖z∗‖ − f ∗(z∗) ∀z ∈ Z.

Therefore, the sequence (zn)n≥1 is bounded. Since f ≥ c and h ≥ −c we see that
f(zn) < c(zn) + 1/n2 and h(zn) + c(zn) ≤ 1/n2. Applying Corollary 2.7 for zn, f , and
ε = 1/n2 we get wn ∈Mf such that ‖wn − zn‖ < 2/n, for n ≥ 1.

According to (13) and (6) we get

‖zn‖2 = 2h(zn) ≤ −2c(zn) + 2n−2 ≤ −2c(wn) + 2 |c(wn)− c(zn)|+ 2n−2

≤ ‖wn − zn‖2 + 2 ‖zn‖ · ‖wn − zn‖+ 2n−2 ≤ 6n−2 + 4n−1 ‖zn‖ ,

for n ≥ 1. Since (zn) is bounded we have that ‖zn‖ → 0. Letting n→ ∞ in the inequality
f(zn) < c(zn) + 1/n2 and taking into account that f ∈ Γs(Z) we get z0 = 0 ∈Mf .
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Remark 2.13. When X is a Banach space, the subdifferential ∂ϕ of a the function
ϕ ∈ Γs(X) is strongly-representable thus maximal monotone. A strong-representative
for ∂ϕ is given by f(x, x∗) = ϕ(x) + ϕ∗(x∗) for x ∈ X, x∗ ∈ X∗.

Corollary 2.14. Let f ∈ Γs(Z) be such that infw∈Z (fz(w) + h(w)) = 0, for every z ∈ Z.
Then

f ≥ cls×ω∗f = clω×ω∗f ≥ ϕMf
≥ c in Z, (14)

Mf = Mclω×ω∗f ⊂ [f� = c], and infw∈Z ((clω×ω∗f)z(w) + h(w)) = 0, for every z ∈ Z.
Here “ cls(ω)×ω∗f� stands for the greatest convex s(ω)× ω∗−lsc function majorized by f
in Z.

Proof. According to Theorem 2.12,Mf is maximal monotone. By [1, Th. 2.4], if z ∈Mf

then z ∈ ∂f(z). This implies f�(z) = c(z), for every z ∈Mf , that is,Mf ⊂ [f� = c] and
so f� ≤ cMf

. Hence f ≥ clω×ω∗f = f�� ≥ ϕMf
≥ c in Z. Therefore 0 ≤ (clω×ω∗f)z+h ≤

fz + h; whence infw∈Z ((clω×ω∗f)z(w) + h(w)) = 0, for every z ∈ Z.

From f ≥ clω×ω∗f ≥ c we get Mf ⊂ Mclω×ω∗f . Because Mf is maximal and Mclω×ω∗f is
monotone the equality ensues.

As a direct consequence of the previous corollary and Proposition 2.2 (see Remark 2.3),
the next result shows that the representative of a strongly-representable operator can be
picked to be lower semicontinuous with respect to the topology ω×ω∗ on Z. Recall that
Gω×ω∗(Z) := G(Z) ∩ Γω×ω∗(Z) = G(Z) ∩ Γs×ω∗(Z) =: Gs×ω∗(Z).

Corollary 2.15. For every f ∈ Gs(Z) one has clω×ω∗f ∈ Gω×ω∗(Z) and Mf =Mclω×ω∗f

= Mf�. In particular {Mf | f ∈ Gs(Z)} = {Mf | f ∈ Gω×ω∗(Z)}. Moreover, if f is a
strong representative of M ⊂ Z then so are clω×ω∗f and ϕM .

Proof. As previously seen in Corollary 2.14,Mf =Mclω×ω∗f ⊂ [f� = c] and from f ∗ ≥ c
we know that f� ≥ c and Mf� = [f� = c] is monotone. Since Mf is maximal monotone
the equality holds. Moreover, from (14) we get ϕ∗

Mf
≥ (clω×ω∗f)∗ ≥ f ∗ ≥ c which proves

that clω×ω∗f and ϕMf
are strong representatives of Mf .

Corollary 2.16. For every f ∈ G(Z), f := cls f ∈ Gs(Z) and Mf = Mf� is a maximal
monotone extension of Mf .

Proof. Since f ≥ c and c is continuous on Z for the strong topology we have that
f ≥ f ≥ c, Mf ⊂ Mf = M

f
� = Mf� , and f ∈ Gs(X × X∗) because f ∗ = f

∗ ≥ c and

f
�

= f�.

An immediate consequence of the preceding results is the following characterization of
strongly-representable operators. Recall that Fω×ω∗(Z) := F(Z) ∩ Γω×ω∗(Z).

Theorem 2.17. Let N ⊂ X ×X∗ be monotone. The following are equivalent:

(i) N is strongly representable,

(ii) ϕN ∈ G(X×X∗) and N is representable, that is, there is f ∈ Fω×ω∗(X×X∗) such
that N =Mf ,

(iii) N is maximal monotone and ϕ∗
N ≥ c.
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Proof. The implication (i) ⇒ (ii) follows from Corollary 2.15 with f = ϕN and Theorem
2.12.

For (ii) ⇒ (iii) it suffices to prove that N is maximal monotone. According to [13, Th.
3.4], the condition N = Mf for some f ∈ Fω×ω∗(X ×X∗) together with ϕN ≥ c imply
that N is maximal monotone.

If (iii) holds then N = MϕN
, ϕN ≥ c, and ϕ∗

N ≥ c. Therefore ϕN is a strong-
representative of N .

Recall that an operatorM : X ⇉ X∗ is called locally bounded at x ∈ cls(domM) if there
exists an s–open neighborhood V of x and K > 0 such that

‖x∗‖ ≤ K, ∀x ∈ V, ∀x∗ ∈M(x),

and it is known that every monotone operator M is locally bounded at x for every
x ∈ (co domM)i, where for a A ⊂ X we denoted by “Ai, intA� the algebraic respectively
the strong-topological interior of A (see e.g. [16, Th. 3.11.14]).

Taking Corollary 2.9, Theorem 2.12, and [16, Th. 3.11.15] into account, we realize that a
strongly-representable operator is locally bounded only inside the interior of its domain.

Corollary 2.18. Let f ∈ Γs(Z) be such that infw∈Z (fz(w) + h(w)) = 0, for every z ∈ Z.
If Mf is locally bounded at x ∈ cls(domMf ) then x ∈ int(domMf ).

3. Calculus rules for strongly-representable operators

We base our argument on the construction used in [5]. For X, Y locally convex spaces
and F : X × Y ⇉ X∗ × Y ∗ we define the multifunction G := G(F ) : X ⇉ X∗ by

gphG := {(x, x∗) ∈ X ×X∗ | ∃y∗ ∈ Y ∗ : (x, 0, x∗, y∗) ∈ gphF}.

Note that gphG is non-empty iff 0 ∈ PrY (gphF ) and as noticed in [5], G is monotone
whenever F is monotone.

In general, for a locally convex space E, we denote by M(E) the class of monotone
subsets of E × E∗ and by M(E) the class of maximal monotone subsets of E × E∗.
Also, we denote by affA and affA the affine hull and the closed affine hull of A ⊂ E,
respectively.

First consider the following slight generalization of [5, Lem. 3.1].

Lemma 3.1. Let X, Y be separated locally convex spaces.

(i) If F ∈ M(X × Y ) and Y0 ⊂ Y is a closed linear subspace such that

F (x, y) = F (x, y) + {0} × Y ⊥
0 , ∀(x, y) ∈ X × Y, (15)

then PrY (domϕF ) ⊂ y + Y0, for every y ∈ PrY (gphF ).

(ii) If F ∈ M(X × Y ), then PrY (domϕF ) ⊂ aff(PrY (gphF )).

Proof. (i) Fix y ∈ PrY (gphF ), that is, (x, y, x∗, y∗) ∈ gphF for some (x, x∗, y∗) ∈
X ×X∗ × Y ∗. By (15), we have (x, y, x∗, y∗ + v∗) ∈ gphF , for every v∗ ∈ Y ⊥

0 .
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For every y ∈ PrY (domϕF ) there exist (x, x∗, y∗) ∈ X × X∗ × Y ∗, γ ∈ R such that
ϕF (x, y, x

∗, y∗) ≤ γ. From the definition of ϕF we have

γ ≥ 〈(x, y), (x∗, y∗ + v∗)〉+ 〈(x, y), (x∗, y∗)〉 − 〈(x, y), (x∗, y∗ + v∗)〉
= 〈x− x, x∗〉+ 〈y, y∗〉+ 〈x, x∗〉+ 〈y, y∗ − y∗〉+ 〈y − y, v∗〉 ,

which provides us with
〈y − y, v∗〉 ≥ 0, ∀v∗ ∈ Y ⊥

0 .

This implies that y − y ∈ (Y ⊥
0 )⊥ = Y0. Hence PrY (domϕF ) ⊂ y + Y0.

(ii) Take Y0 := aff(PrY (gphF )) − y for y ∈ PrY (gphF ) fixed. The operator F + Φ :
X ×Y ⇉ X∗ ×Y ∗, where gphΦ := X × (y+Y0)×{0}×Y ⊥

0 , is monotone and its graph
contains the graph of the maximal monotone operator F , so it coincides with F , from
which (15) follows. We get from (i) the conclusion.

As in [5], we use the notation “riA� for the topological interior of A with respect to affA
and “icA� for the relative algebraic interior of A with respect to affA; thus riA and icA
are empty if affA is not closed and one always has riA ⊂ icA. In the sequel, we use the
facts that for C convex with icC nonempty, we have affC = aff(icC) and

icC ⊂ A ⊂ C =⇒ [affC = affA and icC = icA]. (16)

Theorem 3.2. Let X, Y be Banach spaces and f ∈ Gs(X × Y ×X∗ × Y ∗).

(i) If 0 ∈ ic(PrY (dom f)) and g : X ×X∗ → R is given by

g(x, x∗) := inf{f(x, 0, x∗, y∗) | y∗ ∈ Y ∗}, (x, x∗) ∈ X ×X∗, (17)

then g ∈ G(X ×X∗),

g∗(u∗, u∗∗) = min{f ∗(u∗, v∗, u∗∗, 0) | v∗ ∈ Y ∗}, ∀ (u∗, u∗∗) ∈ X∗ ×X∗∗, (18)

g = cls g ∈ Gs(X ×X∗) and

G(Mf ) =Mg =Mg =Mg� . (19)

Moreover, G(Mf ) is strongly representable and g is a strong representative of
G(Mf ); in particular G(Mf ) is maximal monotone.

(ii) One has

ic(PrY (dom f)) = ic(conv(PrY (Mf )))

= ic(PrY (Mf )) = ri(PrY (Mf )) =
ic(PrY (domϕMf

)).
(20)

Therefore, if 0 ∈ ic(PrY (Mf )) then G(Mf ) is maximal monotone.

Proof. (i) First observe, from their definitions, that g ≥ c and G(Mf ) ⊂ Mg. To
get (18) we follow the proof of [5, Lem. 3.2]; just observe that this time the graph of
C : X ×X∗

⇉ X × Y ×X∗ × Y ∗ given by

C(x, x∗) := {x} × {0} × {x∗} × Y ∗, (x, x∗) ∈ X ×X∗,
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is a closed linear subspace and C∗(x∗, y∗, x∗∗, y∗∗) = {(x∗, x∗∗)}, if y∗∗ = 0; C∗(x∗, y∗, x∗∗,
y∗∗) = ∅, otherwise.
Notice that g(x, x∗) = inf{f(u, v, u∗, v∗) | (u, v, u∗, v∗) ∈ C(x, x∗)}, for (x, x∗) ∈ X ×X∗

and
dom f − Im C = X × PrY (dom f)×X∗ × Y ∗,

from which 0 ∈ ic(dom f − Im C).
By the fundamental duality formula (more precisely, see [16, Th. 2.8.6 (v)]) we get (18).
Since f ∗ ≥ c, from (18), we see that g∗ ≥ c, and so g ∈ G(X ×X∗).

Since g ∈ G(X × X∗), we know, by Corollary 2.16, that Mg ⊂ Mg = Mg� and g ∈
Gs(X ×X∗). Therefore, according to Corollary 2.15 and again from (18)

Mg� = G(Mf�) = G(Mf ) ⊂Mg ⊂Mg =Mg� .

Hence (19) holds.

(ii) Set F :=Mf . We first claim that

ic(PrY (dom f)) ⊂ PrY (F ) ⊂ PrY (dom f). (21)

Indeed, let y ∈ ic(PrY (dom f)). Then 0 ∈ ic(PrY (dom f ′)) with f ′ := f(0,y,0,0) because
dom f ′ = dom f − (0, y, 0, 0). Since f ′ ∈ Gs, by (i) we get G(Mf ′) = {(x, x∗) | ∃y∗ :
(x, y, x∗, y∗) ∈ Mf} is maximal monotone; in particular G(Mf ′) is nonempty, and so
y ∈ PrY (F ). Hence the first inclusion of (21) holds while the second one is obvious.

Because f ∈ Gs, from (14) (see also Remark 2.3), we have that ϕF ≤ f ≤ conv cF . Here
“conv cF� stands for the greatest convex function majorized by cF in X × Y ×X∗ × Y ∗.

It follows that
F ⊂ convF ⊂ dom(conv cF ) ⊂ dom f ⊂ domϕF ,

whence

PrY (F ) ⊂ PrY (convF ) = conv(PrY (F )) ⊂ PrY (dom(conv cF ))

⊂ PrY (dom f) ⊂ PrY (domϕF ). (22)

This together with Lemma 3.1 (ii) yield

aff(PrY (F )) = aff(PrY (convF )) ⊂ aff(PrY (dom(conv cF ))

⊂ aff(PrY (dom f)) ⊂ aff(PrY (domϕF )) ⊂ aff (PrY (F )). (23)

If aff(PrY (convF )) (= aff(PrY (F ))) is closed, all inclusions in (23) become equalities;
hence in this case

ic(PrY (F )) ⊂ ic(PrY (convF )) ⊂ ic(PrY (dom f)) ⊂ ic(PrY (domϕF )). (24)

Assume that ic (PrY (dom f)) 6= ∅. Taking (16) and (21) into account, we know that
aff(PrY (dom f)) = aff(PrY (F )) is closed and ic(PrY (F )) = ic(PrY (dom f)). Relation
(24) provides

ic(PrY (F )) =
ic(PrY (convF )) =

ic(PrY (dom f)). (25)
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If ic(PrY (F )) 6= ∅ then aff(PrY (F )) is closed and (24) is true. Therefore ic(PrY (dom f)) 6=
∅, whence (25) holds again.

We proved that (25) is true regardless of whether or not ic(PrY (F )) is non-empty. (In-
deed, if ic(PrY (F )) 6= ∅, we have seen above that (25) holds. Assume that ic(PrY (F )) = ∅
[= ic(PrY (dom f))]. If aff(PrY (F )) is closed then (25) follows from (24); if aff(PrY (F ))
[= aff(PrY (convF ))] is not closed then ic(PrY (convF )) = ∅, and so (25) holds again.)

Since X × Y ×X∗ × Y ∗ is a Banach space and f ∈ Γs(X × Y ×X∗ × Y ∗), by [16, Prop.
2.7.2], we have ic (PrY (dom f)) = ri (PrY (dom f)). (Indeed, because epi f is closed and
the involved spaces are Banach spaces, condition H(x, x∗, y∗) holds. By the last part of
[16, Prop. 2.7.2] we get ibD = rintD, where D := PrY (dom f). If affD is not closed then
icD = ∅ = riD; if affD is closed then icD = ibD = iD and riD = rintD.) This gives

ic(PrY (F )) =
ic(PrY (convF )) =

ic(PrY (dom f)) = ri (PrY (dom f)) . (26)

From Corollary 2.15 we know that ϕF is a strong representative of F = Mf . Relation
(26) applied for ϕF states that ic(PrY (domϕF )) =

ic(PrY (F )), thereby completing the
proof of (20).

For F : X × Y ⇉ X∗ × Y ∗ and A : X → Y a continuous linear operator, we consider
FA : X × Y ⇉ X∗ × Y ∗ defined by

gphFA := {(x, y, x∗, y∗) ∈ X × Y ×X∗ × Y ∗ | (x∗ − A⊤y∗, y∗) ∈ F (x,Ax+ y)},

where A⊤ : Y ∗ → X∗ is the adjoint of A. Equivalently, FA(x, y) = B⊤FB(x, y) with
B(x, y) := (x, y + Ax), for (x, y) ∈ X × Y .

Since B : X×Y → X×Y is an isomorphism of normed vector spaces (with B⊤(x∗, y∗) =
(x∗+A⊤y∗, y∗)), if F is strongly–representable, (maximal) monotone then FA is strongly–
representable, (maximal) monotone. Moreover, if f is a (strong) representative of F then
fA := f ◦ L is a (strong) representative of FA, where L := B × (B−1)⊤. In an extended
form

fA(x, y, x
∗, y∗) = f(x, y + Ax, x∗ − A⊤y∗, y∗), (x, y, x∗, y∗) ∈ X × Y ×X∗ × Y ∗.

Note that y ∈ PrY (dom fA) iff y = y′−Ax′ for some (x′, y′) ∈ PrX×Y (dom f), (x, y, x∗, y∗)
∈MfA iff (x, y + Ax, x∗ − A⊤y∗, y∗) ∈Mf , and (Mf )A =MfA , for every f ∈ F .

Using the previous result for FA we get the next two consequences.

Corollary 3.3. Assume that X, Y are Banach spaces, f ∈ Gs (X × Y ×X∗ × Y ∗) and
A ∈ L(X, Y ). Then

ic{y − Ax | (x, y) ∈ domMf} = ic{y − Ax | (x, y) ∈ conv(domMf )}
= ic{y − Ax | (x, y) ∈ PrX×Y (dom f)}
= ri({y − Ax | (x, y) ∈ domMf}).

Assume that 0 ∈ ic{y − Ax | (x, y) ∈ PrX×Y (dom f)} (or equivalently 0 ∈ ic{y − Ax |
(x, y) ∈ domMf}). Then the multifunction G(FA) whose graph is

{(x, x∗) ∈ X ×X∗ | ∃y∗ ∈ Y ∗ : (x∗ − A⊤y∗, y∗) ∈Mf (x,Ax)}
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is strongly-representable, a strong representative is given by g, where g : X ×X∗ → R is
defined by

g(x, x∗) = inf{f(x,Ax, x∗ − A⊤y∗, y∗) | y∗ ∈ Y ∗}, ∀(x, x∗) ∈ X ×X∗;

in particular G(FA) is maximal monotone. More precisely, G(FA) = Mg = Mg = Mg�

and

g�(x, x∗) = min{f�(x,Ax, x∗ − A⊤y∗, y∗) | y∗ ∈ Y ∗}, ∀(x, x∗) ∈ X ×X∗.

Theorem 3.4. Assume that X, Y are Banach spaces, f ∈ Gs(X ×X∗), g ∈ Gs(Y × Y ∗)
and A ∈ L(X, Y ). Then

ic(domMg − A(domMf )) =
ic(conv(domMg − A(domMf )))

= ic(PrY (dom g)− A(PrX(dom f)))

= ri (domMg − A(domMf )) .

If, in addition, 0 ∈ ic(dom g−A(dom f)) (or equivalently 0 ∈ ic(domMg −A(domMf )))
then Mf + A⊤MgA is strongly representable (and maximal monotone) having as strong
representative the function k, where

k : X ×X∗ → R, k(x, x∗) := inf{f(x, x∗ − A⊤y∗) + g(Ax, y∗) | y∗ ∈ Y ∗}. (27)

Moreover, Mf + A⊤MgA =Mk =Mk =Mk� and

k�(x, x∗) := min{f�(x, x∗ − A⊤y∗) + g�(Ax, y∗) | y∗ ∈ Y ∗} ∀(x, x∗) ∈ X ×X∗.

Proof. Consider φ : X × Y ×X∗ × Y ∗ defined by φ(x, y, x∗, y∗) := f(x, x∗) + g(y, y∗).
Then φ∗(x∗, y∗, x∗∗, y∗∗) = f ∗(x∗, x∗∗) + g∗(y∗, y∗∗), and so φ ∈ Gs(X × Y × X∗ × Y ∗).
Moreover, for F := Mφ we have G(FA) = Mf + A⊤MgA. The conclusion follows using
the preceding corollary.

Taking X = Y and A = IdX in the previous theorem, the next result shows that
the Rockafellar Conjecture on the sum of maximal monotone operators is true in the
strongly-representable case.

Corollary 3.5. Let X be a Banach space and let M,N : X ⇉ X∗ be strongly repre-
sentable. Then ic(domM−domN) = ic(conv(domM)−conv(domN)) (is a convex set).
If 0 ∈ ic(domM − domN) then M + N is strongly representable; in particular M + N
is maximal monotone. Moreover, cl(dom(M +N)) and cl(Im(M +N)) are convex sets.

Remark 3.6. Since every subdifferential is strongly-representable, the previous corol-
lary together with [8, Th. 26.1] or [9, Th. 44.1] show that every strongly-representable
operator is maximal monotone locally or of type FPV (see [8, Def. 25.4], [9, Def. 36.7]).

Theorem 3.7. If X is a Banach space, M : X ⇉ X∗ is strongly representable, and
N : X ⇉ X∗ is maximal monotone with domN = X, then M+N is maximal monotone.

Proof. In order to prove that M +N is maximal monotone we wish to apply [13, Th.
3.4], that is, to show that M + N is representable and ϕM+N ≥ c. Since M + N is
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representable by [13, Cor. 5.6], we have only to prove that ϕM+N ≥ c. To this end it
suffices to prove that x ∈ dom(M + N) whenever z := (x, x∗) ∈ [ϕM+N ≤ c], i.e., z is
monotonically related to M + N (because for a monotone operator S : X ⇉ X∗ one
always has (domS)×X∗ ⊂ [ϕS ≥ c]; see e.g. [12, Prop. 2 (i)] or [13, Prop. 2.1 (d)]).

According to Corollary 2.15, we may choose f to be a strong representative for M
such that f ∈ Gs×ω∗(X × X∗). Let z = (x, x∗) be monotonically related to M + N .
Taking M0 := M − z and N0 = N − (x, 0), then gph(M + N) − z = gph(M0 + N0)
and (0, 0) is monotonically related to M0 + N0; moreover, fz ∈ Gs×ω∗(X ×X∗), fz is a
strong representative of M0 and domN0 = X. If we prove that 0 ∈ dom(M0 +N0) then
x ∈ dom(M+N). Hence, without loss of generality, we assume that z = 0 ∈ [ϕM+N ≤ c],
that is

c(u, u∗ + v∗) ≥ 0 for all u ∈ X, u∗, v∗ ∈ X∗ with (u, u∗) ∈M, (u, v∗) ∈ N. (28)

Fix (x0, x
∗
0) ∈ dom f and let [0, x0] := {tx0 | 0 ≤ t ≤ 1} and Cε := [0, x0]+ εU , for ε > 0,

where U := {x ∈ X | ‖x‖ ≤ 1}. Since N is locally bounded and [0, x0] is compact there
is ε0 > 0 such that N is bounded on Cε0 , that is, there is K > 0 such that

‖v∗‖ ≤ K, ∀v ∈ Cε0 , ∀v∗ ∈ N(v). (29)

Take C := Cε0/2 and for n ≥ 1 consider

φn(x) := ιC(x) +
n

2
‖x‖2, Φn(x, x

∗) = φn(x) + φ∗
n(−x∗), x ∈ X, x∗ ∈ X∗.

It is clear that Φn ≥ −c. Moreover,

φ∗
n(x

∗) = min
{
σC(u

∗) + 1
2n

‖x∗ − u∗‖2 | u∗ ∈ X∗
}
≥ 0, ∀x∗ ∈ X∗, (30)

and φ∗
n is finite and continuous onX∗, where for A ⊂ X and x∗ ∈ X∗, σA(x

∗) := ι∗A(x
∗) =

supx∈A 〈x, x∗〉. Since Φn is continuous at (x0, x
∗
0), f ≥ c, Φn ≥ −c, f ∗ ≥ c, and Φ∗

n ≥ −c,
applying the fundamental duality formula (as in the proof of Proposition 2.2), we get

inf
w∈X×X∗

(f(w) + Φn(w)) = 0, ∀n ≥ 1.

Therefore, for every n ≥ 1 there is zn := (xn, x
∗
n) such that f(zn) + Φn(zn) < n−2. Since

xn ∈ C, we know that ‖xn‖ ≤ ‖x0‖+ ε0/2, for every n ≥ 1.

As previously seen, f ≥ c and Φn ≥ −c imply that

Φn(zn) + c(zn) ≤ n−2, f(zn) < c(zn) + n−2, ∀n ≥ 1. (31)

From (31), Corollary 2.7 provides wn := (yn, y
∗
n) ∈ M such that ‖wn − zn‖ < 2/n, for

n ≥ 1.

Pick v∗n ∈ N(yn). For every n ≥ 4/ε0 we have that yn ∈ Cε0 , and so ‖v∗n‖ ≤ K by (29).
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Using (6) and (28), this yields

n

2
‖xn‖2 + φ∗

n(−x∗n)

= Φn(zn) ≤ −c(zn) + n−2 ≤ −c(wn) + |c(wn)− c(zn)|+ n−2

≤ − c(wn) +
1
2
‖wn − zn‖2 + ‖zn‖‖zn − wn‖+ n−2

≤ − c(wn) + 2n−1‖zn‖+ 3n−2 ≤ −c(wn) + 2n−1‖xn‖+ 2n−1‖x∗n‖+ 3n−2

= − c(yn, y
∗
n + v∗n) + c(yn, v

∗
n) + 2n−1‖xn‖+ 2n−1‖x∗n‖+ 3n−2

≤ K(‖xn‖+ 2n−1) + 2n−1‖xn‖+ 2n−1‖x∗n‖+ 3n−2

≤ K‖xn‖+ 2n−1‖x∗n‖+ Ln−1,

for n ≥ 4/ε0, where L := 2K + 2‖x0‖+ ε0 + 3. Hence, for n ≥ 4/ε0 we have

n

2
‖xn‖2 −K‖xn‖+ [φ∗

n(−x∗n)− 2n−1‖x∗n‖ − Ln−1] ≤ 0,

or equivalently

1
2
(‖nxn‖ −K)2 + [nφ∗

n(−x∗n)− 2‖x∗n‖] ≤ 1
2
K2 + L. (32)

We claim that
nφ∗

n(x
∗) ≥ 3‖x∗‖ − 18, ∀x∗ ∈ X∗, ∀n ≥ 6/ε0. (33)

Notice that nφ∗
n(x

∗) = min
{
σnC(u

∗) + 1
2
‖x∗ − u∗‖2 | u∗ ∈ X∗

}
, x∗ ∈ X∗, n ≥ 1.

The condition n ≥ 6/ε0 implies nC ⊃ 3U ; whence nσC(u
∗) = σnC(u

∗) ≥ σ3U(u
∗) =

3‖u∗‖, for every u∗ ∈ X∗.

For fixed x∗ ∈ X∗ we consider two cases: a) ‖x∗ − u∗‖ < 6 and b) ‖x∗ − u∗‖ ≥ 6.

If a) holds then ‖u∗‖ ≥ ‖x∗‖ − ‖x∗ − u∗‖ > ‖x∗‖ − 6 and so

σnC(u
∗) + 1

2
‖x∗ − u∗‖2 ≥ σnC(u

∗) ≥ 3‖u∗‖ ≥ 3‖x∗‖ − 18.

If b) holds then 1
2
‖x∗ − u∗‖2 ≥ 3‖x∗ − u∗‖ and so

σnC(u
∗) + 1

2
‖x∗ − u∗‖2 ≥ 3‖u∗‖+ 3‖x∗ − u∗‖ ≥ 3‖x∗‖.

In both cases we obtain that our claim is true. Using (33), from (32) we get

1
2
(‖nxn‖ −K)2 + ‖x∗n‖ ≤ 1

2
K2 + L+ 18, ∀n ≥ 6/ε0.

Hence necessarily ‖xn‖ → 0 and (x∗n)n is bounded. On a subnet, denoted for simplicity
by the same index, x∗n → x∗ weakly-star in X∗. Passing to limit in (31) we get (0, x∗) ∈
[f = c] =M and so x = 0 ∈ domM = dom(M +N). The proof is complete.

The previous theorem allows us to recover the result in [8, Th. 42.2] and its extension
[11, Cor. 2.9(a)] (see also [9, Th. 53.1]).

Corollary 3.8. If X is a Banach space, ϕ ∈ Γs(X) and L : X → X∗ is linear and
positive then ∂ϕ+ L is maximal monotone.

Corollary 3.9. If X is a Banach space, ϕ ∈ Γs(X) and N : X ⇉ X∗ is maximal
monotone with domN = X then ∂ϕ+N is maximal monotone.
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4. Comparison with other classes of operators

Recall that M : X ⇉ X∗ is called locally maximal monotone or of type FP (see [8, Def.
25.2], [9, Def. 36.5] and [2]) if for every open convex set U ⊂ X∗ such that U ∩ImM 6= ∅,
if z ∈ X × U is such that c(z − w) ≥ 0 for all w ∈ gphM ∩ (X × U) then z ∈ gphM .

Theorem 4.1. Every strongly-representable operator is locally maximal monotone.

Proof. Let M be a strongly-representable operator with a strong-representative f ∈
Gω×ω∗(X × X∗). Consider U ⊂ X∗ an open convex set such that U ∩ ImM 6= ∅ and
z := (x, x∗) ∈ X × U such that c(z − w) ≥ 0 for all w ∈ gphM ∩ (X × U). Doing a
translation (in fact replacing f by fz which implies that U is replaced by U − x∗) we
may (and do) assume that z = 0 ∈ X × U . Hence

c(w) ≥ 0, ∀w ∈ gphM ∩ (X × U), (34)

and we have to show that (z =) 0 ∈ gphM . Fix u∗ ∈ U ∩ ImM , u ∈ X such that
(u, u∗) ∈M , and set Cr := [0, u∗] + rUX∗ for r > 0, where UX∗ = {x∗ ∈ X∗ | ‖x∗‖ ≤ 1}.
For α ∈ R, let α+ := max(α, 0) and α− := (−α)+. For r > 0, consider

φr(x) = r‖x‖+ 〈x, u∗〉+ , Φr(x, x
∗) := φr(−x) + φ∗

r(x
∗), x ∈ X, x∗ ∈ X∗.

Then φ∗
r = ιCr

, Φr ≥ −c, and Φ∗
r ≥ −c. We know that Φr is continuous at (u, u

∗) ∈M ⊂
dom f , and from the fundamental duality formula combined with Φr ≥ −c, Φ∗

r ≥ −c, we
get, as in the proof of Proposition 2.2, that inf(f + Φr) = 0, for every r > 0.

Because [0, u∗] is a compact subset of the open set U , there exists r0 ∈ (0, 1] such that
Cr0 ⊂ U . Consider a sequence (rn)n≥1 ⊂ (0, r0/3] with rn → 0. Since inf(f + Φrn) = 0,
for every n ≥ 1 there exists zn := (xn, x

∗
n) such that f(zn) + Φrn(zn) < r4n.

Again, f ≥ c and Φrn ≥ −c imply that Φrn(zn) + c(zn) < r4n and f(zn) < c(zn) + r4n
for n ≥ 1. Corollary 2.7 provides wn := (yn, y

∗
n) ∈ M such that ‖wn − zn‖ < 2r2n,

for n ≥ 1. Since x∗n ∈ Crn and ‖x∗n − y∗n‖ < 2r2n ≤ 2rn, we find that y∗n ∈ U and
wn ∈ gphM ∩ (X × U).

Hence, according to (34), c(wn) ≥ 0, for every n ≥ 1. Taking (6) into account, we get

rn‖xn‖ ≤ rn‖xn‖+ 〈xn, u∗〉− = Φr(zn) ≤ −c(zn) + r4n ≤ −c(wn) + |c(zn)− c(wn)|+ r4n

≤ 1
2
‖wn − zn‖2 + ‖zn‖ · ‖wn − zn‖+ r4n ≤ 2r2n ‖xn‖+ 2r2n(rn + ‖u∗‖) + 3r4n,

whence
(1− 2rn) ‖xn‖ ≤ 2rn(rn + ‖u∗‖) + 3r3n, ∀n ≥ 1.

Hence xn → 0, strongly in X, as n→ ∞. Since x∗n ∈ Crn , we have that x
∗
n = tnu

∗+ rnu
∗
n

with tn ∈ [0, 1] and u∗n ∈ UX∗ . Taking a subsequence if necessary, we have that tn →
t ∈ [0, 1], and this implies x∗n → x∗ := tu∗ ∈ U , strongly in X∗. Let n → ∞ in
f(zn) < c(zn) + r4n to find (0, x∗) ∈ [f = c] =M .

In particular, we proved that whenever z := (x, x∗) ∈ X ×U is monotonically related to
MU := gphM ∩ (X × U) then there is x∗ ∈ U such that (x, x∗) ∈ MU . In other words
we showed that [ϕMU

≤ c] ⊂ (domMU) ×X∗. Since (domMU) ×X∗ ⊂ [ϕMU
≥ c] (see

e.g. [12, Prop. 2 (i)]), this implies

ϕMU
(z) = c(z), ϕMU

≥ c in X × U ;
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hence z is a local minimum point for ϕMU
− c and so ẑ ∈ ∂ϕMU

(z). Therefore ϕMU
(z) +

ϕ�

MU
(z) = z · z = 2c(z) which in turn gives ψMU

(z) = ϕ�

MU
(z) = c(z) because ϕMU

(z) =
c(z). From f ≤ cM ≤ cMU

and f ∈ Γω×ω∗(X ×X∗) we know that c ≤ f ≤ ψMU
; whence

f(z) = c(z), that is z ∈M . The proof is complete.

Using a different argument the previous result allows us to recover the convexity of the
closure for the range of a strongly-representable operator (see [2, Th. 3.5]).

Recall that M ⊂ Z := X ×X∗ is called strongly maximal monotone (see [8, Def. 25.8],
[9, Def. 36.9]) if M is monotone and whenever the non-empty convex weakly-compact
set C ⊂ X and x∗ ∈ X∗ are such that

∀(y, y∗) ∈M, ∃x ∈ C : 〈x− y, x∗ − y∗〉 ≥ 0 (35)

then C ∩M−1(x∗) 6= ∅, and, further, whenever the non-empty convex weakly-star com-
pact set C ⊂ X∗ and x ∈ X∗ are such that

∀(y, y∗) ∈M, ∃x∗ ∈ C : 〈x− y, x∗ − y∗〉 ≥ 0 (36)

then C ∩M(x) 6= ∅.
Theorem 4.2. Every strongly-representable operator is strongly maximal monotone.

Proof. Let M be a strongly-representable operator with a strong-representative f ∈
Gω×ω∗(X ×X∗) (according to Theorem 2.17).

Consider first the non-empty convex weakly-compact set C ⊂ X and x∗ ∈ X∗ such that
(35) holds. Of course, R := sup {‖x‖ | x ∈ C} <∞. Moreover,

d(x,C) = min{‖x− u‖ | u ∈ C} ≥ inf{‖x− u‖ | ‖u‖ ≤ R} = (‖x‖ −R)+. (37)

Replacing if necessary f by f(0,x∗), we may assume that x∗ = 0. Therefore (35) reduces
to

∀(y, y∗) ∈M, ∃x ∈ C : 〈y, y∗〉 ≥ 〈x, y∗〉 . (38)

For r > 0, consider φr(x) = rd2(x,C) = rmin{‖x− u‖2 | u ∈ C} for x ∈ X.

Then φ∗
r(x

∗) = σC(x
∗) + 1

4r
‖x∗‖2, x∗ ∈ X∗, and φr, φ

∗
r are continuous, for every r > 0.

As usual σC(x
∗) = supu∈C 〈u, x∗〉 for x∗ ∈ X∗.

Let Φr(x, x
∗) := φr(x) + φ∗

r(−x∗) for x ∈ X, x∗ ∈ X∗. Then Φr ≥ −c, Φ∗
r ≥ −c,

and Φr is continuous; hence allowing us to use the fundamental duality formula to get
inf(f + Φr) = 0, for every r > 0.

Consider (rn)n≥1 ⊂ (0, 1] with rn → 0. Since inf(f + Φrn) = 0, for every n ≥ 1 there
exists zn := (xn, x

∗
n) such that f(zn) + Φrn(zn) < r4n. Because f ≥ c and Φrn ≥ −c, we

get Φrn(zn) + c(zn) < r4n and f(zn) < c(zn) + r4n, for every n ≥ 1.

Corollary 2.7 provides wn := (yn, y
∗
n) ∈ M such that ‖wn − zn‖ < 2r2n for n ≥ 1. Using

(38) we know that there is x̃n ∈ C such that 〈yn, y∗n〉 ≥ 〈x̃n, y∗n〉, and so

−c(wn) = −〈yn, y∗n〉 ≤ − 〈x̃n, y∗n〉 = −〈x̃n, y∗n − x∗n〉+ 〈x̃n,−x∗n〉 ≤ 2Rr2n + σC(−x∗n),
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for every n ≥ 1. Together with (6), this yields

rnd
2(xn, C) + σC(−x∗n) + 1

4rn
‖x∗n‖2 = Φrn(zn)

≤ − c(zn) + r4n ≤ −c(wn) + |c(zn)− c(wn)|+ r4n

≤ 2Rr2n + σC(−x∗n) + 1
2
‖wn − zn‖2 + ‖zn‖ · ‖wn − zn‖+ r4n

≤ 2Rr2n + σC(−x∗n) + 2r2n(‖xn‖+ ‖x∗n‖) + 3r4n,

for every n ≥ 1. We get

rnd
2(xn, C)− 2r2n‖xn‖+ 1

4rn
‖x∗n‖2 − 2r2n‖x∗n‖ ≤ 2Rr2n + 3r4n,

and after dividing by rn we find

d2(xn, C)− 2rn‖xn‖+
(

1

2rn
‖x∗n‖ − 2r2n

)2

≤ 4r4n + 2Rrn + 3r3n, ∀n ≥ 1. (39)

Therefore the sequence
(
d(xn, C)− 2rn‖xn‖

)
n
is bounded above and, using (37), we see

that (xn)n is bounded. Hence limn→∞ rn‖xn‖ = 0 and from (39) we find subsequently
that ( 1

2rn
‖x∗n‖)n is bounded, x∗n → 0, strongly in X∗, as n→ ∞, and limn→∞ d(xn, C) =

0. Since C is weakly-compact, this shows that, at least on a subnet, denoted for simplicity
by the same index, xn → x ∈ C, weakly in X. As usual, we find that (x, 0) ∈ [f = c] =
M , that is x ∈ C ∩M−1(0), if we let n→ ∞ in f(zn) < c(zn) + r4n.

Now, consider the nonempty convex weakly-star compact set C ⊂ X∗ and x ∈ X such
that (36) holds. By a translation (f replaced by f(x,0)) we may assume that x = 0. In
this way, relation (36) spells

∀(y, y∗) ∈M, ∃x∗ ∈ C : 〈y, y∗〉 ≥ 〈y, x∗〉 . (40)

For r > 0, take φr(x) = σC(x) +
1
4r
‖x‖2, where σC(x) = maxu∗∈C 〈x, u∗〉, x ∈ X. Then

φ∗
r(x

∗) = rd2(x∗, C) for x∗ ∈ X∗, and φr, φ
∗
r are continuous.

Let Φr(x, x
∗) = φr(−x) + φr(x

∗), for (x, x∗) ∈ X × X∗ and r > 0. Then Φr ≥ −c,
Φ∗

r ≥ −c, and Φr is continuous. This allows us to apply the fundamental duality formula
to get inf(f + Φr) = 0, for every r > 0.

Consider (rn)n≥1 ⊂ (0, 1] with rn → 0. Since inf(f + Φrn) = 0, for every n ≥ 1 there
exists zn := (xn, x

∗
n) such that f(zn) + Φrn(zn) < r4n. Because f ≥ c and Φrn ≥ −c, we

get Φrn(zn) + c(zn) < r4n and f(zn) < c(zn) + r4n, for every n ≥ 1.

Corollary 2.7 provides wn := (yn, y
∗
n) ∈ M such that ‖wn − zn‖ < 2r2n, for n ≥ 1. Using

(40) we know that for wn there is x̃∗n ∈ C such that 〈yn, y∗n〉 ≥ 〈yn, x̃∗n〉, and so

−c(wn) = −〈yn, y∗n〉 ≤ − 〈yn, x̃∗n〉 = −〈yn − xn, x̃
∗
n〉+ 〈−xn, x̃∗n〉 ≤ 2Rr2n + σC(−xn)

for every n ≥ 1, where R := sup {‖x∗‖ | x∗ ∈ C} < ∞. Together with (6) this implies
that, for every n ≥ 1, we have

σC(−xn) + 1
4rn

‖xn‖2 + rnd
2(x∗n, C) = Φrn(zn)

≤ − c(zn) + r4n ≤ −c(wn) + |c(zn)− c(wn)|+ r4n

≤ 2Rr2n + σC(−xn) + 1
2
‖wn − zn‖2 + ‖zn‖ · ‖wn − zn‖+ r4n

≤ 2Rr2n + σC(−xn) + 2r2n(‖xn‖+ ‖x∗n‖) + 3r4n.
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Therefore

1

4rn
‖xn‖2 − 2r2n‖xn‖+ rnd

2(x∗n, C)− 2r2n‖x∗n‖ ≤ 2Rr2n + 3r4n,

or equivalently,

(
1

2rn
‖xn‖ − 2r2n

)2

+ d2(x∗n, C)− 2rn‖x∗n‖ ≤ 4r4n + 2Rrn + 3r3n.

As in the first part, this implies that, at least on a subnet, zn → (0, x∗) strongly ×
weakly-star in X×X∗, for some x∗ ∈ C. Again, by passing to limit in f(zn) < c(zn)+r

4
n

we find x∗ ∈ C ∩M(0). The proof is complete.

Remark 4.3. From the above considerations we see that every strongly-representable
operator isX–regular in the sense introduced in [10]. This can be deduced from Theorem
4.2 and [10, Prop. 1] or from Corollary 3.5 and [10, Th. 1]. As seen in [10, Th. 2], the
X–regularity provides a different argument for the convexity of the closure of a strongly-
representable operator domain.

Corollary 4.4. Let f ∈ Gs(Z). For every (x, x∗) ∈ X×X∗ and every ε > 0 there exists
(xε, x

∗
ε) ∈Mf such that {(xε, x∗ε) | ε > 0} is bounded and

‖x− xε‖2 + 2 〈x− xε, x
∗ − x∗ε〉+ ‖x∗ − x∗ε‖2 ≤ ε.

Proof. Replacing f by f(x,x∗) if necessary, we may assume that (x, x∗) = (0, 0). As seen
in the proof of Theorem 2.12, f + h is (strongly) coercive. Hence there exists r > 0 such
that {z ∈ Z | f(z) + h(z) ≤ 1} ⊂ rUZ , where UZ = {z ∈ Z| ‖z‖ ≤ 1}.
For ε ∈ (0, 1] take ε′ ∈ (0, ε) such that 10ε′ + 8r

√
ε′ = ε. Since inf(f + h) = 0, there

exists wε ∈ Z, such that f(wε) + h(wε) < ε′ and ‖wε‖ ≤ r. From f ≥ c and h ≥ −c it
follows that

f(wε) < c(wε) + ε′, 1
2
‖wε‖2 + c(wε) ≤ ε′.

Corollary 2.7 applied for ε′ > 0 and wε provides zε ∈Mf such that ‖wε−zε‖ < δ := 2
√
ε′.

Using (6) we get

‖zε‖2 ≤ (‖wε‖+ ‖zε − wε‖)2 ≤ ‖wε‖2 + 2r ‖zε − wε‖+ ‖zε − wε‖2 ,
c(zε) ≤ c(wε) + |c(wε)− c(zε)| ≤ c(wε) + r ‖zε − wε‖+ 1

2
‖zε − wε‖2 .

Therefore,

‖zε‖2 + 2c(zε) ≤ ‖wε‖2 + 2c(wε) + 4rδ + 2δ2 ≤ 2ε′ + 4rδ + 2δ2 = 10ε′ + 8r
√
ε′ = ε.

For ε ≥ 1 we take zε := z1 . The proof is complete.

The next result shows that every strongly-representable operator is of type ANA (for
this notion see [8, Def. 25.10], [9, Def. 36.11]).
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Corollary 4.5. Let f ∈ Gs(Z). Then for every (x, x∗) ∈ X × X∗ \Mf there exists a
bounded sequence ((xn, x

∗
n))n≥1 ⊂Mf such that xn 6= x, x∗n 6= x∗ for every n ≥ 1, and

lim
n→∞

〈xn − x, x∗n − x∗〉
‖xn − x‖ · ‖x∗n − x∗‖ = −1.

Proof. Let (x, x∗) ∈ X ×X∗ \Mf . Fix (εn)n≥1 ⊂ (0,∞) with εn → 0. Using Corollary
4.4 we get a bounded sequence ((xn, x

∗
n))n≥1 ⊂Mf such that

‖x− xn‖2 + 2 〈x− xn, x
∗ − x∗n〉+ ‖x∗ − x∗n‖2 ≤ ε2n, ∀n ≥ 1. (41)

Hence ∣∣ ‖x− xn‖ − ‖x∗ − x∗n‖
∣∣ ≤ εn, ∀n ≥ 1. (42)

There exist γ > 0 and n0 ≥ 1 such that ‖x− xn‖ ≥ 2γ for all n ≥ n0, since otherwise,
on a subsequence, xnk

→ x, strongly in X, and because of (42), x∗nk
→ x∗, strongly in

X∗. This yields the contradiction

〈x, x∗〉 < f(x, x∗) ≤ lim inf
k→∞

f(xnk
, x∗nk

) = lim
k→∞

〈
xnk

, x∗nk

〉
= 〈x, x∗〉 .

From (42) we obtain ∣∣∣∣
‖x∗ − x∗n‖
‖x− xn‖

− 1

∣∣∣∣ ≤
εn
2γ
, ∀n ≥ n0,

whence limn→∞ ‖x∗ − x∗n‖ / ‖x− xn‖ = 1.

Hence ‖x∗ − x∗n‖ ≥ γ, for every n≥ n1, for some n1 ≥ n0 and limn→∞ ‖x− xn‖/‖x∗ − x∗n‖
= 1.

From (41) we get

−2 ≤ 2 〈xn − x, x∗n − x∗〉
‖xn − x‖ · ‖x∗n − x∗‖ ≤ ε2n

2γ2
− ‖x− xn‖

‖x∗ − x∗n‖
− ‖x∗ − x∗n‖

‖x− xn‖
, ∀n ≥ n1,

whence the conclusion follows.

Recall that N ⊂ Z := X × X∗ is called NI, or of negative-infimum type (see [8, Def.
25.5], [9, Def. 36.2]), if

inf
(u,u∗)∈N

〈u∗ − x∗, û− x∗∗〉 ≤ 0, ∀(x∗, x∗∗) ∈ Z∗,

or equivalently c∗N(x
∗, x∗∗) ≥ 〈x∗, x∗∗〉, for every (x∗, x∗∗) ∈ X∗ ×X∗∗.

Proposition 4.6. Let N ⊂ X ×X∗ be maximal monotone and NI. Then N is strongly-
representable.

Proof. Since N is maximal monotone we have that cN ≥ ϕN ≥ c and N = MϕN
=

[ϕN = c]. It follows that ϕ∗
N ≥ c∗N . Since N is NI we have c∗N ≥ c, and so ϕN ∈ Gs(Z).

To conclude we see that ϕN is a strong representative of N or we use Theorem 2.17.

Corollary 2.9 allows us to recover with simple proofs the results in [15, Cors. 3.5, 3.6],
which at their turn solve [8, Problem 27.7] (see also [9, Problem 43.3]).
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Corollary 4.7. Let M : X ⇉ X∗ be a maximal monotone operator of type NI. Then
cl(domM) and cl(ImM) are convex sets.

Remark 4.8. Implicitly, from the above results, we have proved that every maximal
monotone operator of type NI is automatically maximal monotone locally, locally max-
imal monotone, strongly maximal monotone, and ANA and the closures of the domain
and range of a maximal monotone operator of type NI are convex. This answers partially
the open problem stated in [8, Problems 25.9, 25.11] and [8, Problems 36.10, 36.12].

For skew bounded operators the converse of Proposition 4.6 holds.

Corollary 4.9. Let S : X ⇉ X∗ be skew, that is, gphS is a linear subspace and
〈x, x∗〉 = 0, for all (x, x∗) ∈ gphS. Consider the conditions:

(i) S is maximal monotone and NI,

(ii) S is s× ω∗–closed in X ×X∗ and S∗ is monotone in X∗∗ ×X∗,

(iii) S is strongly-representable.

Then (i) ⇔ (ii) ⇒ (iii). If in addition S : X → X∗ has domS = X, then (iii) ⇒ (i).
Here (x∗∗, x∗) ∈ gphS∗ iff 〈u, x∗〉 = 〈u∗, x∗∗〉, for every (u, u∗) ∈ gphS.

Proof. First note that z∗ ∈ (−S∗)−1 ⊂ Z∗ iff 〈z, z∗〉= 0, for every z ∈ S. Moreover,
from its definition, (−S∗)−1 is weakly-star closed in Z∗. This implies that for L ⊂ Z
linear we have L is skew iff L ⊂ (−L∗)−1 iff cls×w∗ L is skew.

For a skew S we have

ψS = ιcls×w∗ S, ϕS = ι(−S∗)∩Z , c∗S = ι∗S = ι(−S∗)−1 .

Indeed, cS = ιS is convex, whence ψS = cls×w∗ ιS = ιcls×w∗ S and

c∗S(z
∗) = ι∗S(z

∗) = sup{〈z, z∗〉 − c(z) | z ∈ S} = sup{〈z, z∗〉 | z ∈ S} = ι(−S∗)−1(z∗)

for every z∗ ∈ Z∗. Similarly ϕS = ι(−S∗)∩Z .

Notice also that S∗ is monotone in X∗∗ ×X∗ iff ι∗S = c∗S ≥ c in Z∗ iff S is NI.

(i) ⇒ (ii) Because S is maximal monotone, S ⊂ cls×w∗ S and cls×w∗ S is monotone (being
skew), we have that S (= cls×w∗ S) is s × w∗–closed in X ×X∗. Since S is NI, as seen
above, S∗ is monotone in X∗∗ ×X∗.

For (ii) ⇒ (iii) and (ii) ⇒ (i) notice that cS = ιS is a strong-representative of S.

(iii) ⇒ (i) Assume that domS = X and let f ∈ Gs(Z) be a strong-representative of S.
Then S is maximal monotone by Theorem 2.12 and f ≥ ϕS = ι(−S∗)∩Z by Corollary
2.14. Since domS = X and S is skew, S is single-valued and for all x, y ∈ X, 0 =
〈x+y, S(x+y)〉 = 〈y, Sx〉+ 〈x, Sy〉, that is, 〈Sx, y〉 = −〈Sy, x〉; whence (−S∗)∩Z = S.
This implies f ≥ ϕS = ιS = cS and so c∗S = ι∗S = ι(−S∗)−1 ≥ f ∗ ≥ c, i.e., S is NI.
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