
Journal of Convex Analysis

Volume 16 (2009), No. 3&4, 973–986

Positive Sets, Conservative Sets

and Dissipative Sets

Jean-Paul Penot

Laboratory of Applied Mathematics, Faculty of Sciences,
University of Pau, UMR CNRS 5142, BP 1155, 64013 Pau Cedex, France

jean-paul.penot@univ-pau.fr

Dedicated to Stephen Simons on the occasion of his 70th birthday.

Received: April 24, 2008
Revised manuscript received: June 19, 2009

We look for a simple general framework which would encompass the notion of symmetric self-dual spaces
introduced by S. Simons and the notion of self-paired product space proposed by the author in [28]. Such
a framework is appropriate for the study of a notion generalizing the concept of monotone operator.
The representation of such operators by functions is the main purpose of the study.

Keywords: Balanced space, conservative set, dissipative set, Fitzpatrick function, monotone operator,
positive set, Simons space

2000 Mathematics Subject Classification: 47H05, 47H06, 47B44, 47A07, 11E05

1. Introduction

Mathematics and strip tease have several commun features: both are exciting and both
lead to maximal bareness. For what concerns mathematics, the sole subject of interest
here, the aim is to reach a generality and simplicity as great as possible. The simple
examples of the concepts of group, normed vector space, topological space, differential
manifold, fiber bundle show that useful, general notions emerged with difficulties. Still,
the advantages of simple models are twofold: first, proofs are likely to be more direct
when they do not use specific features or heavily structured frameworks and second, such
models may be detected in unexpected cases.

After several attempts of representations of maximal monotone operators by convex
functions made by several authors [2]–[6], [8], [10], [13]–[19], [24], [25], [29], [34]–[35],
S. Simons introduced the notion of symmetric self-dual space, in brief SSD-space [34].
We call it here S-space or Simons space. It consists in a pair (Z, b) in which Z is a
nonzero real vector space and b : Z × Z → R is a symmetric bilinear form. We denote
by q the associated quadratic form defined by

q(z) := (1/2)b(z, z), z ∈ Z.

A subset A of Z satisfying q(a − a′) ≥ 0 for all a, a′ in A is called a positive subset.
Among the most important examples of Simons spaces are Hilbert spaces, Lorentz spaces
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which are products W ×R, where W is a Hilbert space, on which one takes the bilinear
form given by b((w, r), (w′, r′)) = (w | w′) − rr′ for (w, r), (w′, r′) ∈ Z := W × R. A
generalization of these examples consists of products of pairs (V ×W, b) where V, W are
Hilbert spaces and b is given by b((v, w), (v′, w′)) := (v | v′)− (w | w′); then the positive
subsets are the graphs of nonexpansive maps from a subset of V to W. Another class of
examples is described below.

On the other hand, the author introduced in [28] a notion of self-paired product space,
SPP-space. It consists in a triple (X, Y, c) formed by two sets X, Y paired by a coupling
function c : X×Y → R−∞ := R∪{−∞}. Then, the product set Z := X×Y is endowed
with the map b : Z × Z → R−∞ given by

b(z, z′) := c(x, y′) + c(x′, y) (1)

for z := (x, y), z′ := (x′, y′), which is obviously symmetric and such that c(z) = q(z) :=
(1/2)b(z, z) for all z ∈ Z. Thus Z has no linear structure (so that the notion of positive
subset has no meaning) but Z is a product space. This product structure enables one
to study the so-called c-monotone operators which are the multimaps (or operators)
M : X ⇉ Y from X into Y which satisfy the relation

c(x, y′) + c(x′, y) ≤ c(x, y) + c(x′, y′)

for all x, x′ ∈ X, y ∈ M(x), y′ ∈ M(x′). When X is a normed vector space and Y is
the dual space X∗ of X, c being the usual pairing 〈·, ·〉, such c-monotone multimaps are
just usual monotone operators. When X and Y are real linear spaces and c is bilinear,
the space Z := X × Y endowed with b given by (1) becomes a Simons space and the
graphs of c-monotone maps are just the positive subsets of (Z, b). However, several
examples of self-paired product spaces are displayed in [28] which are not of that type;
in particular, accretive operators on a reflexive Banach space can be studied by taking for
c the derivative of half the square of a smooth norm. Another example is of importance
in mechanics (see [5] and its references): it is the case in which X and Y are normed
vector spaces in duality and Z := X × Y is provided with a bipotential, i.e. a function
p : X × Y → R := R ∪ {−∞,+∞} which is convex and lower semicontinuous in each
argument, which satisfies p ≥ 〈·, ·〉 and is such that for every (x, y) ∈ X × Y one has

y ∈ ∂p(·, y)(x) ⇔ p(x, y) = 〈x, y〉 ⇔ x ∈ ∂p(x, ·)(y).

Then the set Mp represented by p, i.e. such that Mp := {(x, y) ∈ Z : p(x, y) = 〈x, y〉} is
the subject of the study of [5]. We shall see below that when p is jointly convex, the set
Mp is monotone.

The purpose of the present paper is to devise a framework which encompasses both the
notion of Simons space and the notion of self-paired product space. Our interest remains
the study of a special class of subsets of such spaces which generalizes the class of (graphs
of) monotone operators.

2. Balanced spaces

The notion we introduce now fulfills the objective mentioned in the introduction. It is
so general it encompasses the notion of metric space.
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Definition 2.1. A balanced space is a pair (Z, b), where Z is a set and b : Z×Z → R−∞

is a symmetric map.

Thus, when (Z, b) is a Simons space, i.e. when Z is a vector space and b is bilinear
and separates points, one has a balanced space. On the other hand, when (X, Y, c) is a
self-paired product space, the set Z := X × Y is a balanced space for the map b given
by (1).

For every balanced space (Z, b), one can introduce the map q : Z → R−∞ given by

q(z) := (1/2)b(z, z). (2)

When (Z, b) is a Simons space, q coincides with the quadratic form q introduced above.
When (X, Y, c) is a self-paired product space and b is given by (1), q(·) = (1/2)b(·, ·)
coincides with the given coupling function c. When (Z, d) is a metric space and c : Z →
R−∞ is a function on Z, setting

b(w, z) := c(w) + c(z) + d(w, z), (3)

one gets q = c and one also can recover b from q. In general, b cannot be recovered from
q, as it is the case with S-spaces (by the familiar polarization identity) and SPP-spaces
(for which c = q). Nonetheless, one can introduce a notion of conservative subset of
a balanced space (Z, b) which encompasses the notion of positive set and the notion of
c-monotone subset.

Definition 2.2. A subset S of a balanced space (Z, b) is said to be conservative if for
every z, z′ ∈ S one has

q(z) + q(z′) ≥ b(z, z′). (4)

It is said to be maximal conservative if there is no conservative subset of Z which contains
it properly.

If (Z, b) is a Simons space, then a subset S of Z is positive if, and only if, it is conservative.
This assertion follows from the fact that for any z, z′ ∈ Z one has

b(z − z′, z − z′) ≥ 0 ⇐⇒ b(z, z) + b(z′, z′) ≥ 2b(z, z′).

On the other hand, when (X, Y, c) is a self-paired product space, a multimapM : X ⇉ Y
is c-monotone if, and only if, its graph S := {(x, y) ∈ X×Y : y ∈ M(x)} is a conservative
subset of the balanced space (Z, b), where Z := X × Y and b is given by (1). Such an
assertion is an immediate consequence of the definitions and of relation (1).

Example. Let (X, Y, c) be a self-paired product space, and let f : X → R∞ := R ∪
{+∞} be an arbitrary function. The subdifferential of f (with respect to c) is the
multimap M : X ⇉ Y whose graph S is given by

S := {(x, y) : x ∈ f−1(R),∀u ∈ X f(u) + c(x, y) ≥ f(x) + c(u, y)}.

Then S is a conservative subset of (Z, b), with b given by b((u, v), (x, y)) := c(x, v)+c(u, y)
as in (1).
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One can extend the concept of monotone polarity introduced in [18] to the framework
of balanced spaces. Given a subset S of a balanced space (Z, b), we introduce its con-
servative polar Sγ by

Sγ := {z ∈ Z : ∀w ∈ S q(w) + q(z) ≥ b(w, z)}.

Clearly, S 7→ Sγ is a polarity, i.e. satisfies the relation

(
⋃

i∈I

Si

)γ

=
⋂

i∈I

Sγ
i

for any family (Si)i∈I of subsets of Z. In the case (Z, b) is the balanced space associated
with a self-paired product space (X, Y, c), the polarity S 7→ Sγ coincides with the polarity
S 7→ Sµ defined in [28] which extends the polarity introduced to us by Mart́ınez-Legaz
(see [18]).

As in the classical case, the conservative polarity is devised in order to get the equivalence

S is conservative ⇐⇒ S ⊂ Sγ

and one has the properties

S ⊂ T =⇒ T γ ⊂ Sγ,

S ⊂ Sγγ := (Sγ)γ,

Sγγγ = Sγ.

Proposition 2.3. A subset S of Z is maximal conservative if, and only if, one has
S = Sγ.

Proof. Suppose S is maximal conservative, i.e. is conservative and not properly con-
tained in a conservative subset. Then S is contained in Sγ and, since for all z ∈ Z one
has 2q(z) = b(z, z), for any z ∈ Sγ the set T := S ∪ {z} is conservative, hence T = S
and z ∈ S, so that Sγ ⊂ S and equality holds. Conversely, when S = Sγ, the set S
is conservative and even maximal conservative since for any z ∈ Z\S there exists some
z′ ∈ S such that q(z′) + q(z) < b(z, z′), so that S ∪ {z} is not conservative.

3. Correspondences between conservative sets and functions

A special means to get conservative subsets of a balanced space occurs when Z is provided
with a map m : Z × Z → Z such that for all (z, z′) ∈ Z × Z one has

q(m(z, z′)) ≥
1

4
q(z) +

1

4
q(z′) +

1

4
b(z, z′). (5)

Such a relation is satisfied when (Z, b) is a Simons space and m(z, z′) = (1/2)z+(1/2)z′,
as easily seen. Slightly modifying a calculation made in [17], [23] and [28, Lemma 1], given
an m-convex function, i.e. a function g satisfying g(m(z, z′)) ≤ (1/2)g(z) + (1/2)g(z′)
for all z, z′ ∈ Z, we get a simple construction.
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Proposition 3.1. Suppose (Z, b) is a balanced space endowed with a map m satisfying
(5), q being finitely valued. Then if g : Z → R is an m-convex function satisfying g ≥ q,
the set Mg given by Mg := {z ∈ Z : g(z) = q(z)} is conservative.

Proof. Let z, z′ ∈ Mg. Our assumptions yield

1

2
q(z) +

1

2
q(z′) =

1

2
g(z) +

1

2
g(z′) ≥ g(m(z, z′)) ≥ q(m(z, z′))

≥
1

4
q(z) +

1

4
q(z′) +

1

4
b(z, z′).

Simplifying, we get q(z) + q(z′) ≥ b(z, z′).

Remark. The conclusion also holds when q is arbitrary but g takes its values in R∞,
since then q is finite on Mg.

Let us describe a more general means to associate a conservative subset of a balanced
space (Z, b) to a function f : Z → R := R∪{−∞,+∞} on Z. For such a purpose, we
define the Fenchel transform f b : Z → R of f by

f b(z) := − inf{f(w)− b(w, z) : w ∈ Z}, z ∈ Z, (6)

with the convention r − s = r + (−s) for r, s ∈ R, and (−∞) − (−∞) = +∞. Such a
transform keeps many of the properties of the classical Fenchel transform. In particular,
it is a conjugacy, i.e, it is such that (f + r)b = f b − r for all r ∈ R and it satisfies the
following relation for any family (fi)i∈I of functions on Z :

(inf
i∈I

fi)
b = sup

i∈I

f b
i .

Moreover, one has qb ≥ q, as noted in [28, Lemma 4] in the special case of self-paired
product spaces. The proof in the case of a balanced space (Z, b) is similar: given z ∈ Z,
plugging w := z in relation (6) with f := q, we get qb(z) ≥ −(q(z)− b(z, z)) = q(z) since
for all r ∈ R−∞ one has r − 2r = −r. When (Z, b) is a Simons space, one can say more:
if q is a nonnegative quadratic form (a not interesting case since any subset is positive)
one has qb = q; otherwise qb = +∞ since picking some z0 ∈ Z such that q(z0) < 0, for
all z ∈ Z one has

qb(z) = sup
w∈Z

(b(w, z)−
1

2
b(w,w)) ≥ sup

t∈R

(tb(z0, z)−
1

2
t2b(z0, z0)) = +∞.

Proposition 3.2. For any function f : Z → R the set M := {z ∈ Z : f(z) ≤
q(z), f b(z) ≤ q(z)} is conservative.

Proof. Given z, z′ ∈ M one has

q(z) ≥ f b(z) ≥ −(f(z′)− b(z, z′)) ≥ −(q(z′)− b(z, z′)).

In view of the implication
s ≥ −(r − t) =⇒ r + s ≥ t

for r, s, t in R−∞ (see [28, Lemma 1]), we get relation (4).
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Corollary 3.3. Let f : Z → R be such that f ≥ f b. Then Mf := {z ∈ Z : f(z) = q(z)}
and M≤

f := {z ∈ Z : f(z) ≤ q(z)} are conservative subsets of Z.

Proof. For all z ∈ Mf or even z ∈ M≤

f , one has z ∈ M as defined in the preceding

proposition. Thus Mf and M≤

f are conservative.

Corollary 3.4. Let f : Z → R be such that f b ≥ f . Then Mfb := {z ∈ Z : f b(z) =

q(z)} and M≤

f := {z ∈ Z : f b(z) ≤ q(z)} are conservative subsets of Z.

Proof. For all z ∈ Mfb or even z ∈ M≤

fb , one has z ∈ M as defined in the preceding

proposition. Thus Mfb and M≤

fb are conservative.

In order to introduce a generalization of the representations introduced in [8], [10] and
[25], let us recall that the indicator function ιS of a subset S of Z is the function given
by ιS(z) := 0 if z ∈ S, ιS(z) = +∞ if z ∈ Z\S.

Definition 3.5. For any subset S of the balanced space (Z, b) the function fS := qbS
where qS := q + ιS is called the Fitzpatrick function of S.

The predominant function of S is the function gS := qbbS := f b
S.

In the classical case, the terminology (but not the notation) for the Fitzpatrick function
is widely accepted. The terminology for the predominant function gS stems from the
domination property detected in [25]. Such a property is still valid in the framework of
balanced spaces: for any subset S of the balanced space (Z, b), gS is greater than any
function f on Z such that f bb = f and f ≤ q on S (since f bb ≤ qbbS when f ≤ qS). When
the closure operation ϕ 7−→ ϕbb is simple, the passage from qS to gS is rather intuitive
while the passage from qS to fS requires solving the maximization problem

fS(z) = sup
w∈S

−(q(w)− b(w, z)).

In the classical case in which Z := X ×X∗, where X is a n.v.s. with dual X∗ and b is
given by

b((x, y), (u, v)) := 〈x, v〉+ 〈u, y〉,

the Fitzpatrick function of S ⊂ Z is given by the optimization problem

fS(x, y) = sup
(u,v)∈S

(〈x, v〉+ 〈u, y〉 − 〈u, v〉),

while gS is simply obtained through convexification and closure of the epigraph of qS
when cl(co(qS)) is proper.

Proposition 3.6. For every subset S of Z, its Fitzpatrick function fS := qbS satisfies
fS ≥ q on S.

Proof. Given z ∈ S, taking w := z in relation (6) with f := qS, we get fS(z) := qbS(z) ≥
−(q(z)− b(z, z)) = q(z) as above.
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Let us note that S is conservative if, and only if, fS(z) ≤ q(z) for every z ∈ S, or,
equivalently, in view of the preceding proposition, if, and only if, fS(z) = q(z) for every
z ∈ S. Other characterizations generalizing [25, Prop. 4] and using the function gS := qbbS
introduced there in the special case just mentioned are presented in the next proposition.

Proposition 3.7. For any subset S of a balanced space (Z, b) the following assertions
are equivalent:

(a) S is conservative;

(b) fS ≤ q on S;

(b′ ) fS = q on S;

(c) fS ≤ qS;

(d) fS ≤ gS;

(e) gS(w) + gS(z) ≥ b(w, z) for every w, z ∈ Z.

Proof. The implication (a) ⇒ (b) stems from the implication r + s ≥ t ⇒ s ≥ −(r− t)
for every r, s, t ∈ R−∞, so that for all w, z ∈ S, one deduces from the relation q(z) +
q(w) ≥ b(w, z) the inequality q(z) ≥ − inf{q(w) − b(w, z) : w ∈ S} := qbS(z) = fS(z).
The equivalence (b) ⇔ (b′) is a consequence of the preceding proposition, while the
equivalence (b) ⇔ (c) is obvious. The implication (c) ⇒ (d) stems from the fact that the
conjugacy f 7→ f b is antitone. For (d) ⇒ (e) we observe that, since fS = qbS = qbbbS = gbS,
the relation gS ≥ fS can be written gS(z) ≥ −(gS(w) − b(w, z)) for every w, z ∈ Z.
Since for r, s, t ∈ R−∞ the implication s ≥ −(r − t) ⇒ r + s ≥ t holds, the preceding
inequality can be written as in (e). To prove the implication (e) ⇒ (a) we note that
since qS ≥ qbbS = gS, for w, z ∈ S, we have

q(w) + q(z) = qS(w) + qS(z) ≥ gS(w) + gS(z) ≥ b(w, z),

so that S is conservative.

Using (d) and taking w = z in (e) one gets 2gS(z) ≥ b(z, z) = 2q(z) and the first assertion
of the next corollary, mentioned in [28, Corollary 1] (with a misprint) in the case Z is a
self-paired product space. The second assertion follows from the relation qS ≥ qbbS = gS.

Corollary 3.8. For any conservative subset S of a balanced space (Z, b) one has gS ≥ f
and gS ≥ q. Moreover fS and gS coincide with q on S.

When S is maximal conservative, one has another property, similar to the one detected
in [10] and [25, Thm. 5].

Theorem 3.9. If S is a maximal conservative subset of a balanced space (Z, b) for which
b is finite, one has gS ≥ fS ≥ q. Moreover

S = {z ∈ Z : fS(z) = q(z)} = {z ∈ Z : gS(z) = q(z)}.

Proof. We already know that fS = q on S. Now a conservative subset S is maximal
conservative if, and only if, for all z ∈ Z\S there exists some w ∈ S such that q(w) +
q(z) < b(w, z). When that occurs, since b(w, z) is finite, one has q(w)− b(w, z) < −q(z)
hence fS(z) > q(z). Thus {z ∈ Z : fS(z) = q(z)} ⊂ S and equality holds. Since
gS ≥ fS ≥ q, one has

{z ∈ Z : gS(z) = q(z)} ⊂ {z ∈ Z : fS(z) = q(z)} ⊂ S
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and since gS coincides with q on S by Corollary 3.8, the second equality follows.

Let us give a converse to the preceding theorem.

Theorem 3.10. Let S be a subset of a balanced space (Z, b) such that fS ≥ q and
S = {z ∈ Z : fS(z) = q(z)}. Then S is maximal conservative.

Proof. Since fS and q coincide on S, S is conservative by Proposition 3.7. Let w ∈ Z be
such that T := S∪{w} is conservative. Then for all z ∈ S one has q(w)+q(z) ≥ b(w, z),
and since the implication r+s ≥ t ⇒ s ≥ −(r− t) holds for every r, s, t ∈ R−∞, one gets
q(w) ≥ −(q(z) − b(w, z)) for all z ∈ S, hence q(w) ≥ fS(w). Since fS ≥ q one obtains
w ∈ {z ∈ Z : fS(z) = q(z)} = S. Thus S is maximal conservative.

Although a balanced space has no product structure and no linear structure, one can
introduce a notion of dissipative set. This notion has an interest when b is finitely
valued, or, more generally, when one is given a function b on Z which takes its values
in R∞ := R ∪ {+∞}; then we say that (Z, b) is a twisted balanced space: (Z,−b) is a
balanced space. Again, one defines q by q(z) := (1/2)b(z, z).

Definition 3.11. A subset S of a twisted balanced space (Z, b) is said to be dissipative
if for every w, z ∈ S one has

q(w) + q(z) ≤ b(w, z).

Such a definition incites to introduce an adapted conjugacy. Thus, for a function f on
Z, we denote by f−b the function given by

f−b(z) := − inf
w∈Z

(f(w) + b(w, z)).

Such a conjugacy satisfies the usual rules of conjugacies. We associate to a subset S of Z
the function q̃S := (−q)S = −q+ ιS and the twisted Fitzpatrick function and the twisted
predominant function on Z respectively by

f̃S = q̃S
−b, g̃S := q̃S

−b−b := (q̃S
−b)−b = f̃−b

S .

Since relation (2) is still valid when b is changed into −b and q is changed into −q, one
can derive analogues of the preceding results.

Proposition 3.12. For any subset S of a twisted balanced space (Z, b) the following
assertions are equivalent:

(a) S is dissipative;

(b) f̃S ≤ q̃ := −q on S;

(b′ ) f̃S = −q on S;

(c) f̃S ≤ q̃S;

(d) f̃S ≤ g̃S;

(e) g̃S(w) + g̃S(z) ≥ −b(w, z) for every w, z ∈ Z.

Using (d) and taking w = z in (e) one gets 2g̃S(z) ≥ −b(z, z) = −2q(z) and the next
corollary.
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Corollary 3.13. For any dissipative subset S of a twisted balanced space (Z, b) one has

g̃S ≥ f̃S, g̃S ≥ −q. Moreover f̃S and g̃S coincide with −q on S.

When S is maximal dissipative, one has another property, similar to the one detected in
[10] and [25, Thm. 5].

Theorem 3.14. If S is a maximal dissipative subset of a twisted balanced space (Z, b)

one has g̃S ≥ f̃S ≥ −q. Moreover S = {z ∈ Z : f̃S(z) = −q(z)} = {z ∈ Z : g̃S(z) =
−q(z)}.

Conversely, let S be a dissipative subset of a twisted balanced space (Z, b) such that

f̃S ≥ −q and S = {z ∈ Z : f̃S(z) = −q(z)}. Then S is maximal dissipative.

4. Topological balanced spaces

We consider now the benefit one can draw from an adapted topology on a balanced
space.

Definition 4.1. A topological balanced space is a balanced space (Z, b) endowed with
a topology T for which the mapping b is finitely valued, separately continuous and q is
continuous. The weakest topology on Z satisfying these properties is called the natural
topology.

In [27], given a self-paired product space formed by the product of a n.v.s.X with its dual
space Y and the canonical coupling 〈·, ·〉, we defined the natural topology on Z := X×Y
as the weakest topology for which the functions (x, y) 7→ 〈x, v〉 (v ∈ Y ), (x, y) 7→ 〈u, y〉
(u ∈ X) and (x, y) 7→ 〈x, y〉 are continuous. Then, for every w := (u, v) ∈ Z, the partial
mappings

z := (x, y) 7→ b(w, z) := 〈x, v〉+ 〈u, y〉,

z := (x, y) 7→ b(z, w) := 〈u, y〉+ 〈x, v〉

and the map q are continuous. Conversely, if these maps are continuous, then, for all
w := (u, v) ∈ Z, the functions (x, y) 7→ 〈x, v〉, (x, y) 7→ 〈u, y〉 and (x, y) 7→ 〈x, y〉 are
continuous since 〈x, v〉 = b((0, v), (x, y)), 〈u, y〉 = b((x, y), (u, 0)) and 〈x, y〉 = q(x, y).
Therefore, the definition we give here coincides with the one given in [27] in the case of
a self-paired product space built as above. Albeit the natural topology does not give the
structure of a topological vector space to Z := X ×Y , the translations and the dilations
of Z are continuous and the dual of Z (i.e. the set of linear forms which are continuous
for the natural topology) coincides with Z.

The framework of topological balanced spaces suffices to get an extension of [27, Prop.
3].

Proposition 4.2. The closure S of a conservative subset S of a topological balanced
space (Z, b, T ) is conservative. In particular, the natural closure of S (i.e. the closure of
S for the natural topology) is conservative.

Proof. Let w, z ∈ S and let (wi)i∈I , (zj)j∈J be nets in S converging to w and z respec-
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tively. Passing to the limit on I and then to the limit on J we get

b(w, zj) = lim
i∈I

b(wi, zj) ≤ lim
i∈I

q(wi) + q(zj) = q(w) + q(zj),

b(w, z) = lim
j∈J

b(w, zj) ≤ q(w) + lim
j∈J

q(wj) = q(w) + q(z),

so that S is conservative.

Corollary 4.3. If S is a maximal conservative subset of a topological balanced space
(Z, b, T ), then S is closed. In particular, S is closed in the natural topology.

5. A decomposition property

In the sequel, we are given a topological balanced space (Z, b, T ). For the sake of
simplicity, we assume b takes only finite values. We denote by Ab(Z) the set of b-affine
functions on Z, i.e. the set of functions of the form z 7→ b(w, z) + r for some w ∈ Z,
r ∈ R, and we denote by Γb(Z) the set of suprema of families of elements of Ab(Z)
which are proper, i.e. which do not take the value −∞ and take at least one finite value.
We observe that the elements of Γb(Z) are lower semicontinuous (l.s.c.) for the natural
topology on Z. Let us denote by β : Z → Ab(Z) ⊂ R

Z the map z 7→ b(z, ·) and write
Lb(Z) for the linear space generated by the image of β.

Let us introduce the following sandwich property. Here, for a function h : Z → R, we
set domh := {z ∈ Z : h(z) < +∞}. We say that the topological balanced space (Z, b, T )
satisfies the sandwich property if the following condition holds:

(S) for every f ∈ Γb(Z), g ∈ Γ−b(Z) such that R+(β(dom f)− β(dom g)) = Lb(Z) and
f ≥ −g there exist some z ∈ Z, r ∈ R such that f ≥ b(·, z) + r ≥ −g.

Such a condition is inspired by the Attouch-Brézis condition of convex analysis since it
is satisfied whenever X is a Fréchet space and Z := X ×X∗ with the natural coupling.
Note that we use −b because b(·,−z) has no meaning in a balanced space. In a Simons
space one has Γ−b(Z) = Γb(Z) and condition (S) takes a more familiar form. Condition
(S) yields a rough form of the decomposition result of [34, Thm. 19.5]. It has links with
general duality properties (see [11], [12] and their references). As above, for a function
h on Z, we set

Mh := {z ∈ Z : h(z) = q(z)}.

Proposition 5.1. Suppose (Z, b, T ) satisfies the sandwich property. Let f ∈ Γb(Z), g ∈
Γ−b(Z) be such that R+(β(dom f)− β(dom g)) = Lb(Z) and f b ≥ f ≥ q, g−b ≥ g ≥ −q.
Then one has Mf ∩M−g 6= ?.

Proof. In view of our assumption, we have f ≥ q ≥ −g and since the Attouch-Brézis
type qualification condition holds, we get some z ∈ Z and r ∈ R such that f ≥ b(·, z) +
r ≥ −g. Then we have −r ≥ f b(z) and r ≥ g−b(z). Therefore −r ≥ f(z) ≥ q(z)
and q(z) ≥ −g(z) ≥ −g−b(z) ≥ −r and these inequalities are equalities. Thus z ∈
Mf ∩M−g.

When (Z, b) is a Simons space, the preceding result is a crucial step towards a decompo-
sition of Z into Mf −M−g ([34, Thm. 19.16]). In turn, such a result entails an important
criterion for maximality of a conservative (or positive) subset. For reaching such aims, a
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richer structure on a balanced space is required. Here, instead of a vector space structure
of Z and the linearity of b as in a Simons space, we suppose that Z operates on itself.
That means that we suppose that a map t : Z ×Z → Z is given; we set tw(z) := t(w, z)
but we do not suppose (tw)w∈Z is a group of transformations, although t can be imagined
as a generalization of translations in the case Z is vector space or a group. Instead, we
assume a compatibility between b and these transformations. Namely, we suppose that
for every a, w, z ∈ Z one has

b(ta(w), ta(z)) ≥ b(w, z) + b(w, a) + b(a, z) + b(a, a), (7)

q(ta(z)) ≤ q(z) + q(a) + b(a, z). (8)

Note that taking w = z in (7) yields the opposite inequality in (8), so that (8) does
express a certain compatibility between b and the “translations� ta.

Lemma 5.2. Given a ∈ Z such that ta(Z) = Z and a function g on Z such that g−b ≥ g,
let h be the function given by h(z) := g(ta(z)) + b(z, a) + q(a). If (7) holds, then one has
h−b ≥ h. If moreover one assumes that g ≥ −q and (8) holds, then one has h ≥ −q and
ta(M−h) ⊂ M−g.

Proof. Since ta(Z) = Z, for all v ∈ Z one can find w ∈ Z such that ta(w) = v so that
equality holds between the second and the third lines below:

−h−b(z) = inf
w∈Z

{b(w, z) + g(ta(w)) + b(w, a) + q(a)}

≤ inf
w∈Z

{b(ta(w), ta(z))− b(z, a)− b(a, a) + g(ta(w)) + q(a)}

= inf
v∈Z

{b(v, ta(z)) + g(v)− b(z, a)− q(a)}

= −g−b(ta(z))− b(z, a)− q(a)

≤ −(g(ta(z)) + b(z, a) + q(a)) = −h(z).

The relation h ≥ −q is a direct consequence of the definition of h, of the relation g ≥ −q
and of (8). Now, given z ∈ M−h one has

g(ta(z)) = h(z)− b(z, a)− q(a) = −q(z)− b(z, a)− q(a) ≤ −q(ta(z))

hence ta(z) ∈ M−g since g ≥ −q.

Now suppose that for all z ∈ Z the transformation tz is invertible and that the following
relation holds for all w, z ∈ Z :

w = ta(z) ⇐⇒ a = t−1
z (w). (9)

Corollary 5.3. Suppose the transformations (tz)z∈Z are invertible and satisfy relations
(7) and (8) and (Z, b, T ) satisfies the sandwich property. Let f ∈ Γb(Z), g ∈ Γ−b(Z)
be such that dom g = Z and f b ≥ f ≥ q, g−b ≥ g ≥ −q. Then for all a ∈ Z, one has
ta(Mf ) ∩M−g 6= ?.

If moreover (9) is satisfied, then for all a ∈ Z there exist w ∈ M−g and z ∈ Mf such
that a = t−1

z (w).
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Proof. Given a ∈ Z, let us apply Proposition 5.1 with g replaced by h as defined in the
preceding lemma. We can do so because domh = t−1

a (dom g) = Z. Taking z ∈ Mf∩M−h,
we know that w := ta(z) ∈ M−g. When (9) holds, we get a = t−1

z (w).

Theorem 5.4. Let (Z, b) be a Simons space endowed with a topology T for which b is
continuous and the sandwich property holds. Let F (resp. G) be a maximal conservative
(resp. dissipative) subset of Z. Suppose the twisted Fitzpatrick function g of G is finite.
Then

Z = F −G.

Proof. For w, z ∈ Z let us set tz(w) = w + z. Then tz is invertible and t−1
z (v) = v − z;

moreover (9) holds. The bilinearity of b ensures that relations (7) and (8) are satisfied.
Let f be the Fitzpatrick function of F and let g be the twisted Fitzpatrick function of G.
Since dom g = Z and f b ≥ f ≥ q, g−b ≥ g ≥ −q, the conclusion of the preceding corollary
holds. It reads: for every a ∈ Z there exist w ∈ G, z ∈ F such that a = w − z.

Note that the sandwich property holds when β : Z → Z∗ is surjective and T is locally
convex. In particular, we get the following well known property.

Corollary 5.5. Let X be a reflexive Banach space with dual space Y. Let G be the graph
of −J, where J is the duality mapping of X and let F be the graph of a maximal monotone
operator. Then

X × Y = F +G.

Proof. Let j := (1/2) ‖·‖2 , so that J = ∂j. By [1, Prop. 2.1] the Fitzpatrick function of
J satisfies

fJ(x, y) ≤ j(x) + j∗(y).

Since j∗ = (1/2) ‖·‖2, the Fitzpatrick function fJ of J and the twisted Fitzpatrick func-

tion g := f̃G of G are everywhere finite, as f̃G(x, y) = fJ(x,−y). Moreover, J(−x) =
−J(x) and G = −G, as easily checked.

Although we have used strong assumptions to get this Minty decomposition, the bare-
ness of the concept of balanced space may enable one to detect crucial properties of
conservative subsets and to consider new situations in which classes of functions sharing
with convex functions some properties play some role, as it is the case with submodu-
lar functions. Detecting more links with duality in general spaces may also be of some
interest (see [11], [12], [20], [21], [22], [26] for instance).

Acknowledgements. The author is grateful to two anonymous referees for their remarks.
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[19] J. E. Martinez-Legaz, M. Théra: A convex representation of maximal monotone operators,
J. Nonlinear Convex Anal. 2 (2001) 243–247.

[20] J.-J. Moreau: Inf-convolution, sous-additivité, convexité des fonctions numériques, J.
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