
Journal of Convex Analysis

Volume 16 (2009), No. 3&4, 707–711

Differentiability of Conjugate Functions and

Perturbed Minimization Principles

Jonathan Borwein∗

School of Mathematical and Physical Sciences,
University of Newcastle, Callaghan, NSW 2308, Australia

jonathan.borwein@newcastle.edu.au

Jon Vanderwerff
Department of Mathematics, La Sierra University, Riverside, CA 92515, USA

jvanderw@lasierra.edu

Dedicated to Stephen Simons on the occasion of his 70th birthday.

Received: April 28, 2008

We survey the tight connection between differentiability of conjugate functions and perturbed optimiza-
tion principles

Keywords: Convex function, conjugate, Fréchet differentability

2000 Mathematics Subject Classification: Primary 52A41; Secondary 46G05, 46N10, 49J50, 90C25

1. Introduction

The seminal paper of Asplund and Rockafellar [1] established duality results between
Fréchet differentiability and well-posedness for convex functions. In this note we focus
on what can be derived when the conjugate is differentiable, but the original function
in not necessarily assumed to be convex. Many of the results we present are known;
however, our proofs use a theorem on differentiability that is motivated by Šmulian’s
work [10], and it is our hope that this approach makes transparent the tight connection
between differentiability of conjugate functions and certain minimization principles.

We work in real Banach spaces X whose closed unit ball is denoted by BX . By a proper

function f : X → (−∞,+∞] we mean a function that is somewhere finite valued. We
use the notation ∂f(x) for the subdifferential of f at x in the domain of f , and for ε > 0
we denote the ε-subdifferential of f at x in the domain of f by ∂εf(x), that is,

∂εf(x) = {φ ∈ X∗ : φ(y)− φ(x) ≤ f(y)− f(x) + ε, y ∈ X};

when ε = 0, this is the definition of ∂f(x). The conjugate function of f : X → (−∞,+∞]
is defined for x∗ ∈ X∗ by f ∗(x∗) = supx∈X〈x

∗, x〉 − f(x). Our main tool will be the
following theorem and its variant for conjugate functions.
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Theorem 1.1. Suppose the convex function f is continuous at x0. Then f is Fréchet

differentiable at x0 if and only if φn → φ whenever φn ∈ ∂εnf(x0), φ ∈ ∂f(x0) and

εn → 0+, and necessarily φ is the Fréchet derivative at f at x0.

A proof of this theorem can be found in Zalinescu’s book [12, Theorem 3.3.2]. The
following shows for conjugate functions that one need only consider the analogous epsilon
subgradients in X.

Theorem 1.2. Suppose a conjugate function f ∗ : X∗ → (−∞,+∞] is continuous at φ0.

Then f ∗ is Fréchet differentiable at φ0 if and only if xn → Φ whenever xn ∈ ∂εnf
∗(φ0),

Φ ∈ ∂f ∗(φ0) and εn → 0+. In particular, ∇f ∗(φ0) ∈ X when f ∗ is Fréchet differentiable

at φ0.

Proof. The “only if� implication follows from the previous theorem. For the converse,
suppose f ∗ is not Fréchet differentiable at φ0. Then there exist hn ∈ SX∗ , tn → 0+ and
ε > 0 such that

f ∗(φ0 + tnhn)− f ∗(φ0)− Φ(tnhn) ≥ εtn.

Choose xn ∈ ∂εnf
∗(φ0 + tnhn) where εn = tnε/2 (note that the definition of conjugate

functions ensures ε-subdifferentials meet X). Then

(xn − Φ)(tnhn) ≥ f ∗(φ0 + tnhn)− f ∗(φ0)− Φ(tnhn)− tn
ε

2
≥ tn

ε

2
.

Consequently, xn 6→ Φ.

2. Perturbed Minimization Principles

We begin with a basic fact that we include for completeness.

Lemma 2.1. Suppose f : X → (−∞,+∞] is a proper function such that f ∗ is Fréchet

differentiable at φ and ∇f ∗(φ) = x0 ∈ X. If f is lower semicontinuous at x0, then

f ∗∗(x0) = f(x0).

Proof. Because f ∗∗|X ≤ f , it suffices to show f ∗∗(x0) ≥ f(x0). Now choose xn ∈ X
such that

φ(xn)− f(xn) ≥ f ∗(φ)− εn where εn → 0+.

Then φ(xn)−f ∗∗(xn) ≥ f ∗(φ)−εn and it follows that xn ∈ ∂εnf
∗(φ) for all n. According

to Theorem 1.1, xn → x0. In particular, φ(xn) → φ(x0). Therefore,

f ∗∗(x0) = φ(x0)− f ∗(φ) = lim
n→∞

φ(x)− [φ(xn)− f(xn)] = lim
n→∞

f(xn).

Now f is lower semicontinuous at x0, and so lim infn→∞ f(xn) ≥ f(x). Therefore,
f ∗∗(x0) ≥ f(x0) as desired.

We will say a function f attains its strong minimum at x0 ∈ X if ‖xn−x0‖ → 0 whenever
f(xn) → f(x0) and f(x0) = infX f . We next present a simple minimization principle
which can also be found in [12, Theorem 3.9.1] with a slightly different approach.

Proposition 2.2. Suppose that X is a Banach space and f : X → (−∞,+∞] is a

proper lower semicontinuous function such that f ∗ is Fréchet differentiable at φ ∈ X∗,

then
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(a) ∇(f ∗)(φ) = x0 where x0 ∈ dom f , and

(b) (f − φ) attains its strong minimum at x0.

Proof. First, Theorem 1.2 shows ∇(f ∗)(φ) = x0 ∈ X and then Lemma 2.1 shows
f ∗∗(x0) = f(x0), and the Fenchel-Young equality ensures that f ∗∗(x0) < +∞. This
shows (a), and moreover implies that f ∗(φ) = φ(x0)−f(x0). Now suppose (f−φ)(xn) ≤
(f − φ)(x0) + εn where εn → 0+. This implies xn ∈ ∂εnf

∗(φ). Because f ∗ is Fréchet
differentiable at φ, Theorem 1.1 implies ‖xn − x0‖ → 0 as desired.

Using differentiability properites of conjugate functions we obtain:

Corollary 2.3 (Fabian, see e.g. [9]). Suppose that X is a Banach space with the RNP

and that f : X → (−∞,+∞] is a lower semicontinuous function for which there exist

a > 0 and b ∈ R such that f(x) ≥ a‖x‖ + b for all x ∈ X. Then the set {x∗ ∈ aBX∗ :
f − x∗ attains its strong minimum on X} is residual in aBX∗.

Proof. The growth condition implies that f ∗(φ) ≤ −b whenever ‖φ‖ ≤ a. Therefore,
f ∗ is continuous on the interior of aBX∗ ; see e.g. [9, Proposition 3.3]. According to
Collier’s theorem [4], f ∗ is Fréchet differentiable on a dense Gδ subset G of aBX∗ . By
Proposition 2.2, f − x∗ attains its strong minimum at ∇(f ∗)(x∗) ∈ dom f for each
x∗ ∈ G.

Corollary 2.4 (Stegall [11]). Suppose C ⊂ X is a nonempty closed bounded convex

set with the RNP, and suppose that f : C → R is a lower semicontinuous function on C
that is bounded below. Then the set S = {x∗ ∈ X∗ : f−x∗ attains its strong minimum on

X} is residual in X∗.

Proof. According to a localization of Collier’s theorem (see [3]), f ∗ is Fréchet differen-
tiable on a dense Gδ subset of X∗. Hence, like the previous corollary, the result follows
from Proposition 2.2.

The approach to derive variants of Stegall’s variational principle using differentiability
was used in [6] and then refined in [8] which used a perturbed function in the dual space
rather than the conjugate function. We next show the equivalence of Stegall’s variational
principle with the localized version of Collier’s theorem just used. The key step is:

Proposition 2.5. Suppose f : X → (−∞,+∞] is a proper lower semicontinuous func-

tion with bounded domain. Then f−φ0 attains its strong minimum at x0 ∈ dom f where

φ0 ∈ X∗ if and only if f ∗ is Fréchet differentiable at φ0 with ∇f ∗(φ0) = x0.

Proof. The previous variational principle showed the “if� implication. For the “only
if� implication let M > 0 be such that M ≥ diamdom f . Now let 0 < r ≤ M be given;
because f−φ0 attains its strong minimum at x0, we choose ε > 0 so that (f−φ0)(x0+h) ≥
ε if ‖h‖ ≥ r/2. Define g(·) = ε

M
dC(·) + (f − φ0)(x0) where C = {x : ‖x − x0‖ ≤ r/2}.

Then g is a continuous convex function such that g ≤ f − φ0, and g(x0) = (f − φ0)(x0)
and f ∗∗ − φ0 ≥ g; moreover g(x) ≥ rε/(2M) whenever ‖x− x0‖ ≥ r, and so

(f ∗∗ − φ0)(x) ≥ (f ∗∗ − φ0)(x0) +
rε

2M
if ‖x− x0‖ ≥ r.
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Because 0 < r ≤ M was arbitrary, this shows (f ∗∗ − φ0)|X attains its strong minimum
at x0.

Now, x0 ∈ ∂f ∗(φ0) and we suppose xn ∈ ∂εnf
∗(φ0) where ε → 0+. Then (f ∗∗−φ0)(xn) →

(f ∗∗−φ0)(x0) and consequently ‖xn−x0‖ → 0. According to Theorem 1.2, f ∗ is Fréchet
differentiable at φ0 with ∇f ∗(φ0) = x0.

We are not aware that the preceding proposition has been noted in the literature, how-
ever, in the case when f is a proper convex lower semicontinuous function with no
restriction on its domain, it is a well-known result of Asplund and Rockafellar [1]. More-
over, Propositon 2.5 may fail without a boundedness condition on the domain of a lower
semicontinuous function. Indeed, let f(x) = min{|x|, 1}, and φ0 = 0. Then f − φ0

attains it strong minimum at 0, but its conjugate is the indicator function of {0} which
is not Fréchet differentiable at 0.

Corollary 2.6 (Characterization of perturbed minimization principles). Let X
be a Banach space, and let C ⊂ X be a closed bounded convex set. Then the following

are equivalent.

(a) Every weak∗-lower semicontinuous convex function f : X∗ → R such that f ≤ σC

is Fréchet differentiable on a dense Gδ subset of X∗.

(b) Given any proper lower semicontinuous bounded below function f : C → (−∞,+∞]
and ε > 0, there exist φ ∈ εBX∗ and x0 ∈ C such that f − φ attains its strong

minimum at x0.

Proof. (a) ⇒ (b): Suppose f : C → R is bounded below on C. Then there exists
a ∈ R so that f + a ≥ δC where δC is the indicator function of C. Consequently,
f ∗ − a = (f + a)∗ ≤ δ∗

C
≤ σC . Given ε > 0, there exists φ ∈ εBX∗ so that f ∗ − a and

hence f ∗ is Fréchet differentiable at φ. According to Proposition 2.2, f − φ attains its
strong minimum at x0.

(b) ⇒ (a): Take any weak∗-lower semicontinuous convex g ≤ σC where σC(φ) = supC φ
for φ ∈ X∗. Let f = g∗|X . Then f ≥ δC , and f ∗ = g. Now let Λ ∈ X∗ be arbitrary, then
f + Λ is bounded below on C, so f + Λ is strongly exposed by some φ ∈ εBX∗ . This
implies (f + Λ)∗ is Fréchet differentiable at φ. But (f + Λ)∗(·) = g∗(· − Λ), and so g∗ is
Fréchet differentiable at Λ + φ. Consequently, the set of points of differentiability of f
is a dense (automatically) Gδ-set.

Concluding Remarks. We should mention that one can analogously study Hölder

smooth or Lipschitz smooth points as studied by Fabian in [5] as a dual condition to min-
imization principles (naturally, these lead to a quantitative estimate in the convergence
rate). A development of this will appear in the authors’ forthcoming book [2]. Let us
also mention that Lemma 2.1 can be used to show that a proper lower semicontinuous
function f is convex when f ∗ is Fréchet differentiable at all x∗ ∈ dom(∂f ∗). Then, one
can efficiently recapture the result that a weakly closed subset of a Hilbert space is a
Chebyshev set if and only if it is convex; see, for example, [12, Section 3.9]. Additionally,
it is not difficult to formulate bornological versions of many of the results given herein; see
for example [12, Section 3.9] and [2]. Finally, we should note that the paper [7] provides
a unified approach to several variational principles using the notion of fragmentability.
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