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We study the Variational Sum of monotone operators, in particular its relationship with the Extended
Sum of monotone operators. First, we establish some new properties of the Variational Sum, among
them that this sum has closed graph and convex values. Then, we show that the graph of the Variational
Sum always contains the graph of the Extended Sum, and hence, it contains also the graph of the usual
sum. An example is given showing that the latter inclusions are proper in general.
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1. Introduction and Preliminaries

Throughout this article X denotes a reflexive real Banach space, X∗ its continuous dual
and 〈·, ·〉 the pairing betweenX andX∗. InX×X∗ we will consider the product topology
generated by the strong topologies in X and X∗.

For a sequence {xn} ⊂ X and x ∈ X, as usual, xn ⇀ x denotes convergence in the weak
topology.

Given a (single or set-valued) operator T : X ⇉ X∗ its inverse is the operator T−1 :
X∗

⇉ X defined by T−1(x∗) =
{

x ∈ X : x∗ ∈ T (x)
}

.

The graph of T is the set Gr(T ) :=
{

(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)
}

, and its projection
onto X is called the domain of T , denoted by DomT .

For an operator T : X ⇉ X∗, we denote by T the operator defined by T (x) = T (x),
where the notation A means the closure of the set A ⊂ X∗ with respect to the strong

topology in X∗; and by T
G
the operator whose graph is the closure of Gr(T ) in X ×X∗.

A set-valued operator T : X ⇉ X∗ is said to be monotone if it satisfies:

〈y∗ − x∗, y − x〉 ≥ 0 for every (x, x∗), (y, y∗) ∈ Gr(T ).
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Such an operator is called maximal monotone if its graph is not properly contained in
the graph of any other monotone operator from X to X∗.

Equivalently, a monotone operator T is maximal monotone if every pair (y, y∗) which
is monotonically related to Gr(T ) (i.e. 〈x∗ − y∗, x − y〉 ≥ 0 for every (x, x∗) ∈ Gr(T ))
belongs to Gr(T ). It is well known that every maximal monotone operator has convex
closed values and that its graph is closed in X ×X∗.

Recently, a particular type of monotone operator, the so-called premaximal operator, has
attracted the attention of several authors, see for example [9, 22]. A monotone operator
T : X ⇉ X∗ is called premaximal if it has a unique maximal monotone extension.

Recall that an extended real-valued function f : X → R∪{+∞} is proper if its effective
domain dom f = {x ∈ X : f(x) < +∞} is nonempty.

Given a convex lower semicontinuous function f : X → R ∪ {+∞}, the subdifferential
∂f : X ⇉ X∗ of f is defined by

∂f(x) =
{

x∗ ∈ X∗ : f(y) ≥ f(x) + 〈x∗, y − x〉 for every y ∈ X
}

,

if x ∈ dom f and ∂f(x) = ∅ elsewhere.

A classical result of R. T. Rockafellar [17, Theorem A] asserts that the subdifferential
of any proper convex lower semicontinuous function on a Banach space is a maximal
monotone operator.

We denote by J the duality mapping between X and X∗. This mapping is the subdif-
ferential of the continuous convex function 1

2
‖ · ‖2 : X → R, x 7→ 1

2
‖x‖2, and it can be

given by

J(x) =
{

x∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2
}

.

As a consequence of the result of R. T. Rockafellar mentioned above, J is a maximal
monotone operator.

The following proposition gives us an idea of the importance of J in the study of Banach
spaces.

Proposition 1.1 ([13, Proposition 2.17]). Let X be a real Banach space (not neces-
sarily reflexive). Then:

(1) The norm on X is everywhere Gateaux differentiable (except at the origin) if and
only if J is single valued.

(2) The mapping J is one-to-one (that is, J(x) ∩ J(y) = ∅ whenever x 6= y) if and
only if the norm on X is strictly convex.

(3) The surjectivity of J is equivalent to the reflexivity of X.

E. Asplund [1] showed that whenX is reflexive, there exists an equivalent norm such that
this norm and its polar norm on X∗ are both everywhere Gateaux differentiable (except
at the origin). With such norms, it is easy to see that the duality mapping J∗ between
X∗ and X is equal to J−1, so from Proposition 1.1 both norms are strictly convex. We
will assume from now on that the norms on X and X∗ have these properties.

This paper is organized as follows. In Section 2 we recall the definitions of the Extended
and Variational Sums of monotone operators, and we survey some fundamental results
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about these sums. We begin Section 3 establishing new properties of the Variational
Sum. It turns out that the graph of this operator is closed in X ×X∗ and it has convex
closed values. We also show that in the setting of Euclidean spaces, the Variational Sum
coincides with the intersection of all its maximal monotone extensions. We then state
the main result of this work, that the graph of the Extended Sum is contained in the
graph of the Variational Sum, and we provide an example showing that this inclusion
may be proper. This allows us to give a positive answer to the long-standing question
of whether the graph of the usual sum is contained in the graph of the Variational Sum.

2. The Extended and Variational Sums

2.1. The Extended Sum

Given a monotone operator T : X ⇉ X∗ and ε > 0, the ε−enlargement of T is the
operator T ε : X ⇉ X∗ defined by

T ε(x) =
{

x∗ ∈ X∗ : 〈y∗ − x∗, y − x〉 ≥ −ε for every (y, y∗) ∈ Gr(T )
}

.

It is easy to see from the definition that T ε has convex closed values.

This notion has been introduced independently by J.-E. Mart́ınez-Legaz and M. Théra
in [10], and by R. Burachik et al. in [4], and then systematically studied and extended
in a more general framework by B. F. Svaiter et al. in [5, 6, 21].

With this notion in mind, and motivated by a well known result of J.-B. Hiriart-
Urruty and R. R. Phelps [8, Theorem 2.1] dealing with ε-subdifferentails, J. Revalski
and M. Théra introduced in [16] the concept of Extended Sum.

Definition 2.1 ([16]). Let T1, T2 : X ⇉ X∗ be two monotone operators. The Extended
Sum of T1 and T2 is the operator T1+

ext

T2 : X ⇉ X∗ defined by

(T1+
ext

T2)(x) =
⋂

ε>0

T ε
1
(x) + T ε

2
(x), for every x ∈ X. (1)

Remark 2.2. The concept of Extended Sum was introduced in arbitrary Banach spaces
in [14], where the closure on the right-hand side of (1) was taken with respect to the
weak star topology in X∗.

Notice that in our setting of reflexive Banach spaces, since for any ε > 0, T ε
1
+ T ε

2
has

convex values, these two closures coincide.

It is clear from the definition that the Extended Sum is an extension of the usual one in
the sense of graph inclusion. The following theorem gives us some of the most important
properties of this sum.

Theorem 2.3. Let T1, T2 : X ⇉ X∗ be two maximal monotone operators. Then:

(i) The Extended Sum T1+
ext

T2 is a monotone operator.

(ii) If T1 + T2 is a maximal monotone operator, then T1 + T2 = T1+
ext

T2.

(iii) If f and g are two proper lower semicontinuous convex functions with dom f ∩
dom g 6= ∅, then

∂(f + g)(x) = (∂f+
ext

∂g)(x), for all x ∈ X.
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Y. Garćıa, M. Lassonde and J. Revalski have recently shown (i) in [7, Proposition 3.4],
while (ii) and (iii) were shown by J. Revalski and M. Théra in [16, Theorem 4.1 and
Theorem 4.4]. It was also shown in [7] that, in general, the Extended Sum is not a
maximal monotone operator. All these results were established for arbitrary Banach
spaces.

2.2. The Variational Sum

Remember that the norms on X and X∗ are assumed to be both Gateaux differentiable
(except at the origin), so that J : X ⇉ X∗ is bijective and ‖ · ‖ × w-continuous, i.e.,
continuous from (X, ‖ · ‖) to (X∗, w).

Given a maximal monotone operator T : X ⇉ X∗, for λ > 0, the Yosida resolvent of T
of order λ is the operator JT

λ : X → X which assigns to every x ∈ X the unique solution
xλ = JT

λ (x) of the inclusion

0 ∈ J(xλ − x) + λT (xλ). (2)

The fact that xλ exists and is unique was shown by R. T. Rockafellar in [18, Proposition
1].

The Yosida regularization of T of order λ > 0 is the operator Tλ : X → X∗ defined by

Tλ(x) =
1

λ
J(x− xλ), x ∈ X. (3)

Notice that from (2) and (3), for any λ > 0

Tλ(x) ∈ T (JT
λ x) = T

(

x− λJ−1Tλ(x)
)

, for all x ∈ X. (4)

By convention we put T0 = T .

By [18, Proposition 1] for every λ > 0, the operator Tλ is maximal monotone, single
valued, everywhere defined and ‖ · ‖ × w-continuous (see also the work of H. Brézis, M.
G. Crandall and A. Pazzy [3] for more properties of this notion).

Given two maximal monotone operators defined in an arbitrary Banach space, several
sufficient conditions for the maximality of the sum of these operators had been introduced
in the literature; see for example the works of R. R. Phelps [12], S. Simons et al. [19, 20],
M. D. Voisei [22] and the references therein.

Let us observe that, given two maximal monotone operators T1, T2 : X ⇉ X∗ and
λ, µ ≥ 0 such that λ + µ > 0, T1,λ + T2,µ is a maximal monotone operator because
at least one of the operators concerned is everywhere defined. The idea behind the
Variational Sum is to take advantage from this fact doing some kind of “approximation�
with these maximal monotone operators.

The notion of Variational Sum was introduced in the setting of Hilbert spaces by H.
Attouch, J.-B. Baillon and M. Théra in [2], and later extended to the setting of reflexive
Banach spaces by Revalski and Théra in [15].

Definition 2.4 ([2, 15]). Let T1, T2 : X ⇉ X∗ be two maximal monotone operators.
The Variational Sum of T1 and T2 is the operator T1+

v

T2 : X ⇉ X∗ whose graph is

defined by
Gr(T1+

v

T2) = lim inf
F

(T1,λ + T2,µ), (5)
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where lim infF is taken in the sense of Painlevé-Kuratowski (see [15] for details).

In other words, (x, x∗) ∈ Gr(T1+
v

T2) if and only if for every sequence

{

(λn, µn)
}

∈ I =
{

{

(λn, µn)
}

: λn, µn ≥ 0, λn + µn > 0, (λn, µn) → (0, 0)
}

,

there exists
{

(xn, x
∗

n)
}

⊂ X ×X∗ such that

(xn, x
∗

n) ∈ Gr(T1,λn
+ T2,µn

), for all n ∈ N, and

(xn, x
∗

n) → (x, x∗).

Next, we list some properties of the Variational Sum, which where established in the
context of Hilbert spaces in [2] and in the case of reflexive Banach spaces considering
Fréchet differentiable (except at the origin) norms in X and X∗ in [15, Proposition 4.6
and Theorem 5.1].

Proposition 2.5 (cfr. [2, 15]). Let T1, T2 : X ⇉ X∗ be two maximal monotone oper-
ators. Then:

(i) The Variational Sum T1+
v

T2 is a monotone operator.

(ii) Dom(T1 + T2) ⊂ Dom(T1+
v

T2).

(iii) If T1+
v

T2 is a maximal monotone operator, then Gr(T1 + T2) ⊂ Gr(T1+
v

T2).

(iv) If f and g are two proper lower semicontinuous convex functions with dom f ∩
dom g 6= ∅, then

∂(f + g)(x) = (∂f+
v

∂g)(x), for all x ∈ X.

While (i) follows directly from the definition, (ii)–(iv) will be proven later.

3. Main result

Given two maximal monotone operators T1, T2 : X ⇉ X∗ and
{

(λn, µn)
}

∈ I, for each
(x, x∗) ∈ X ×X∗ and n ∈ N, we denote by ψλn,µn

(x, x∗) = xn the unique solution of

x∗ ∈ J(xn − x) + T1,λn
(xn) + T2,µn

(xn). (6)

Lemma 3.1. Let T1, T2 : X ⇉ X∗ be two maximal monotone operators and let (y, y∗) ∈
X ×X∗. The following statements are equivalent:

(i) (y, y∗) ∈ Gr(T1+
v

T2);

(ii) for every (x, x∗) ∈ X × X∗ and
{

(λn, µn)
}

∈ I, the sequence {xn}, where xn =
ψλn,µn

(x, x∗) for each n ∈ N, is bounded and for every subsequence xnk
⇀ x

1

2
‖y − x‖2 +

〈

x∗ − y∗, x− y
〉

≥
1

2
lim sup ‖xnk

− x‖2; (7)

(iii) for every
{

(λn, µn)
}

∈ I, ψλn,µn
(y, y∗) → y.
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Proof. (i) ⇒ (ii) Let (x, x∗) ∈ X ×X∗ and
{

(λn, µn)
}

∈ I. Since (y, y∗) ∈ Gr(T1+
v

T2),

from the definition of the Variational Sum, there exists a sequence
{

(yn, y
∗

n)
}

⊂ X ×X∗

such that y∗n ∈
(

T1,λn
+ T2,µn

)

(yn) and (yn, y
∗

n) → (y, y∗). From the monotonicity of
T1,λn

+ T2,µn
and (6), we have

〈

x∗ − J(xn − x)− y∗n, xn − yn
〉

≥ 0, (8)

hence, 〈x∗ − y∗n, xn − yn〉 ≥
〈

J(xn − x), xn − yn
〉

. Since J is the subdifferential of 1

2
‖ · ‖2,

we have
〈

J(xn − x), yn − xn
〉

≤
1

2
‖yn − x‖2 −

1

2
‖xn − x‖2.

Combining the last two inequalities we obtain that

1

2
‖yn − x‖2 + 〈x∗ − y∗n, xn − yn〉 ≥

1

2
‖xn − x‖2. (9)

Since {yn} and {y∗n} are convergent sequences, we derive from (9) that there existM,K ≥
0 such that

M +K‖xn − x‖ ≥
1

2
‖xn − x‖2,

proving that {xn} is bounded. Passing to the limit in (9) with any subsequence xnk
⇀ x

we obtain (7).

(ii) ⇒ (iii) Let
{

(λn, µn)
}

∈ I. From (ii) with (x, x∗) = (y, y∗), we deduce that
the sequence {yn}, where yn = ψλn,µn

(y, y∗), is bounded and that any weak-converging
subsequence {ynk

} verifies

0 ≥
1

2
lim sup ‖ynk

− y‖2,

so ynk
→ y. This shows that in fact the whole sequence {yn} converges to y.

(iii) ⇒ (i) Let
{

(λn, µn)
}

be an arbitrary element of I. By definition of yn =
ψλn,µn

(y, y∗), there exists u∗n ∈ T1,λn
(yn) and v

∗

n ∈ T2,µn
(yn) such that

y∗ = J(yn − y) + u∗n + v∗n.

Since
∥

∥J(yn − y)
∥

∥ = ‖yn − y‖ → 0, we deduce that v∗n + u∗n → y∗. Since
{

(λn, µn)
}

is
arbitrary, this shows that (y, y∗) ∈ Gr(T1+

v

T2) by definition of the Variational Sum.

Proposition 3.2. Let T1, T2 : X ⇉ X∗ be two maximal monotone operators. Then:

(i) If
{

(yn, y
∗

n)
}

⊂ Gr(T1+
v

T2), yn → y and y∗n ⇀ y∗, then (y, y∗) ∈ Gr(T1+
v

T2).

(ii) T1+
v

T2 has closed graph and convex values.

Proof. (i) Let (x, x∗) ∈ X × X∗ and
{

(λn, µn)
}

∈ I. By Lemma 3.1(ii), {xn} where
xn = ψλn,µn

(x, x∗), is bounded and for each n ∈ N, (yn, y
∗

n) verifies

1

2
‖yn − x‖2 + 〈x∗ − y∗n, x− yn〉 ≥

1

2
lim sup ‖xnk

− x‖2,
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for every subsequence xnk
⇀ x. Passing to the limit, we get

1

2
‖y − x‖2 + 〈x∗ − y∗, x− y〉 ≥

1

2
lim sup ‖xnk

− x‖2.

By the equivalence between (ii) and (i) in Lemma 3.1, we derive that (y, y∗) ∈ Gr(T1+
v

T2).

(ii) The fact that T1+
v

T2 has closed graph follows directly from (i). Let (y, y∗i ) ∈

Gr(T1+
v

T2), i = 1, 2 and t ∈]0, 1[. Let
{

(λn, µn)
}

∈ I. Applying the equivalence between

(i) and (iii) in Lemma 3.1, for (x, x∗) =
(

y, ty∗
1
+ (1− t)y∗

2

)

we obtain

〈

ty∗
1
+ (1− t)y∗

2
− y∗i , y − y

〉

≥
1

2
lim sup ‖ynk

− y‖2, for i = 1, 2,

where yn = ψλn,µn
(y, ty∗

1
+ (1 − t)y∗

2
) and ynk

⇀ y. Multiplying the relation with i = 1
by t, the one with i = 2 by 1− t and summing up, we obtain

0 ≥
1

2
lim sup ‖ynk

− y‖2,

so ynk
→ y. This shows that in fact ψλn,µn

(y, ty∗
1
+ (1 − t)y∗

2
) → y. By the equivalence

between (i) and (iii) in Lemma 3.1,
(

y, ty∗
1
+ (1− t)y∗

2

)

∈ Gr(T1+
v

T2). Hence T1+
v

T2 has

convex values.

Proposition 3.3. Let X be an Euclidean space, and let T1, T2 : X ⇉ X∗ be two maximal
monotone operators. Then T1+

v

T2 coincides with the intersection of all its maximal

monotone extensions.

Proof. Let M be the intersection of all the maximal monotone extensions of T1+
v

T2, i.e.,

the operator whose graph is the intersection of the graphs of all the maximal monotone
extensions of T1+

v

T2.

Since Gr(T1+
v

T2) ⊂ Gr(M), it suffices to show the converse inclusion. We proceed as in

the proof of Lemma 3.1 (i) ⇒ (ii). Let (x, x∗) ∈ Gr(M) and fix
{

(λn, µn)
}

∈ I. Since we
are assuming that X is Euclidean, J is the Identity map. Then, for (y, y∗) ∈ Gr(T1+

v

T2),

(8) becomes
〈

x∗ − (xn − x)− y∗n, xn − yn
〉

≥ 0. (10)

From Lemma 3.1(ii), {xn} is bounded, so passing to the limit with any subsequence
xnk

→ x yields
〈

(x∗ + x− x)− y∗, x− y
〉

≥ 0.

Notice that (y, y∗) is an arbitrary element of Gr(T1+
v

T2), which means that the pair

(x∗ + x− x, x) is monotonically related to T1+
v

T2; hence (x
∗ + x− x, x) belongs to some

maximal monotone extension M′ of T1+
v

T2. Since (x, x∗) ∈ Gr(M′), we must have

−‖x− x‖2 =
〈

(x∗ + x− x)− x∗, x− x
〉

≥ 0.
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Therefore, x = x and it follows that the whole sequence {xn} converges to x. Since
{

(λn, µn)
}

∈ I was arbitrary, we conclude from Lemma 3.1 that (x, x∗) ∈ Gr(T1+
v

T2).

This finishes the proof.

Corollary 3.4. Let X be an Euclidean space, and let T1, T2 : X ⇉ X∗ be two maximal
monotone operators. If T1+

v

T2 is premaximal, then it is maximal.

Proof. From Proposition 3.3, T1+
v

T2 coincides with the intersection of all its maximal

monotone extensions. Since there is only one extension, the Variational Sum must be
itself a maximal monotone operator.

In order to prove the main result we need the following lemma, which is an extension of
[11, Lemma 3.1].

Lemma 3.5. Let T : X ⇉ X∗ be a maximal monotone operator. Given λ, ε ≥ 0, if
w∗ ∈ T ε(w) and u∗ ∈ Tλ(u), then

〈u∗ − w∗, u− w〉+
λ

4
‖w∗‖2 ≥ −ε. (11)

Proof. Recall that for any λ ≥ 0, u∗ ∈ Tλ(u) implies that u∗ ∈ T
(

u− λJ−1(u∗)
)

. From
the definition of ε-enlargement it follows that

〈

u∗ − w∗, u− λJ−1(u∗)− w
〉

≥ −ε.

Thus,

〈u∗ − w∗, u− w〉 ≥ λ
〈

u∗ − w∗, J−1(u∗)
〉

− ε

≥ λ
(

‖u∗‖2 − ‖w∗‖‖u∗‖
)

− ε

≥ −
λ

4
‖w∗‖2 − ε,

hence the result.

Now, we give the main result of this work.

Theorem 3.6. Let T1, T2 : X ⇉ X∗ be two maximal monotone operators. Then

Gr(T1+
ext

T2) ⊂ Gr(T1+
v

T2).

Proof. Let (y, y∗) ∈ Gr(T1+
ext

T2). The result is proved by showing that (y, y∗) verifies

Lemma 3.1(ii). Consider (x, x∗) ∈ X × X∗,
{

(λn, µn)
}

∈ I, xn = ψλn,µn
(x, x∗) and

u∗n ∈ T1,λn
(xn), v

∗

n ∈ T2,µn
(xn) such that

x∗ = J(xn − x) + u∗n + v∗n. (12)

For ε > 0, let (y, y∗
1
+y∗

2
) ∈ Gr(T ε

1
+T ε

2
) with y∗i ∈ T ε

i (y) for i = 1, 2; and ‖y∗−(y∗
1
+y∗

2
)‖ <

ε. By applying Lemma 3.5 to (y, y∗
1
), (xn, u

∗

n) and (y, y∗
2
), (xn, v

∗

n) respectively, we have

〈u∗n − y∗
1
, xn − y〉+

λn

4
‖y∗

1
‖2 ≥ −ε
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and
〈v∗n − y∗

2
, xn − y〉+

µn

4
‖y∗

2
‖2 ≥ −ε.

Summing up these inequalities, we obtain

〈

(u∗n + v∗n)− (y∗
1
+ y∗

2
), xn − y

〉

+
λn

4
‖y∗

1
‖2 +

µn

4
‖y∗

2
‖2 ≥ −2ε.

Equivalently, by (12)

〈

x∗ − J(xn − x)− (y∗
1
+ y∗

2
), xn − y

〉

+
λn

4
‖y∗

1
‖2 +

µn

4
‖y∗

2
‖2 ≥ −2ε.

Now, using the fact that
〈

J(xn − x), y − xn
〉

≤ 1

2
‖y − x‖2 − 1

2
‖xn − x‖2, it follows that

1

2
‖y − x‖2 +

〈

x∗ − (y∗
1
+ y∗

2
), xn − y

〉

+ λn
‖y∗

1
‖2

4
+ µn

‖y∗
2
‖2

4
≥

1

2
‖xn − x‖2 − 2ε. (13)

Observe first that (13) implies that the sequence {xn} is bounded. Now, consider a
subsequence {xnk

} such that xnk
⇀ x. Passing to the limit in (13) as nk → +∞, we get

1

2
‖y − x‖2 +

〈

x∗ − (y∗
1
+ y∗

2
), x− y

〉

≥ lim sup
1

2
‖x− xnk

‖2 − 2ε.

Now, passing to the limit as εց 0, we obtain

1

2
‖y − x‖2 + 〈x∗ − y∗, x− y〉 ≥ lim sup

1

2
‖x− xnk

‖2.

This shows that (y, y∗) verifies Lemma 3.1(ii). The proof is complete.

Corollary 3.7. Let T1, T2 : X ⇉ X∗ be two maximal monotone operators. Then

Gr(T1 + T2) ⊂ Gr(T1+
v

T2).

Proof. Since Gr(T1 + T2) ⊂ Gr(T1+
ext

T2), the result follows from Theorem 3.6.

Corollary 3.8. Let T1, T2 : X ⇉ X∗ be two maximal monotone operators. Then

Gr
(

T1+
ext

T2
G)

⊂ Gr(T1+
v

T2).

Proof. Recall that T
G

is the operator whose graph is the closure of Gr(T ). From
Theorem 3.6

Gr(T1+
ext

T2) ⊂ Gr(T1+
v

T2),

and from Proposition 3.2(ii), Gr(T1+
v

T2) is closed, hence the result.

Corollary 3.9. Let T1, T2 : X ⇉ X∗ be two maximal monotone operators. If T1+
ext

T2
G

is a maximal monotone operator, then

T1+
ext

T2
G
= T1+

v

T2.
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Proof. Since both the Variational and the Extended Sum are monotone operators this
result follows directly from Corollary 3.8.

Corollary 3.10 ([14, Corollary 3.7]). Let f, g : X → R∪ {+∞} be two proper lower
semicontinuous convex functions such that dom f ∩ dom g 6= ∅. Then

∂(f + g) = ∂f+
ext

∂g = ∂f+
v

∂g.

Proof. Since ∂(f+g) = ∂f+
ext

∂g, in particular the Extended sum is a maximal monotone

operator and then its graph is closed. The result now follows applying Corollary 3.9.

Corollary 3.11 ([14, Theorem 3.5]). Let T1, T2 : X ⇉ X∗ be two maximal monotone
operators. If T1 + T2 is a maximal monotone operator, then

T1 + T2 = T1+
ext

T2 = T1+
v

T2.

Proof. Since the Variational, the Extended and the usual sums are monotone and
Gr(T1 + T2) ⊂ Gr(T1+

ext

T2), this follows from Corollary 3.8.

Corollary 3.12. Let X be an Euclidean space, and let T1, T2 : X ⇉ X∗ be two maxi-
mal monotone operators. If T1+

ext

T2 (or T1 + T2) is premaximal, then its only maximal

monotone extension is T1+
v

T2.

Proof. From Theorem 3.6, we know that Gr(T1+
ext

T2) ⊂ Gr(T1+
v

T2). It follows that

T1+
v

T2 must be premaximal, thus from Corollary 3.4 the Variational Sum is maximal.

We finish giving an example which shows that in general the Extended and the Varia-
tional Sum are different.

Example 3.13 ([7, Example 3.11]). Let X be the Hilbert space l2× l2 endowed with
the usual inner product and induced norm, and let us identify X∗ with X. Let us define
DomT = D ×D, where

D =
{

{xn} ⊂ l2 : {2
nxn} ∈ l2

}

,

and T : DomT → l2 × l2 by

T
(

{xn}, {yn}
)

=
(

{2nyn},−{2nxn}
)

.

Then 〈Tu, u〉 = 0, for all u ∈ D. For T1 = T and T2 = −T it follows that:

(i) T1 and T2 are maximal monotone operators with DomT1 = DomT2 = D ×D.

(ii) Dom(T1+
ext

T2) = D ×D and (T1+
ext

T2)(u) = 0, for all u ∈ D ×D.

(iii) Dom(T1+
v

T2) = l2 × l2 and (T1+
v

T2)(u) = 0, for all u ∈ l2 × l2.
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Indeed, (i) and (ii) were established in [7]. From Theorem 3.6, Gr(T1+
ext

T2) ⊂ Gr(T1+
v

T2),

and from Proposition 3.2(ii) we know that Gr(T1+
v

T2) is closed; since D×D is dense in

X we obtain (iii).

In particular, we have T1+
ext

T2 6= T1+
ext

T2
G

= T1+
v

T2. In this case T1+
v

T2 is the zero

operator, which is maximal monotone.
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[3] H. Brézis, M. G. Crandall, A. Pazy: Perturbations on nonlinear maximal monotone sets
in Banach space, Commun. Pure Appl. Math. 23 (1970) 123–144.

[4] R. S. Burachik, A. N. Iusem, B. F. Svaiter: Enlargement of monotone operators with
applications to variational inequalities, Set-Valued Anal. 5(2) (1997) 159–180.
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