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1. Introduction

Let us assume that E is a a reflexive Banach space over the reals, K ⊂ E is a nonempty,
closed and convex set, A : K → E∗ a map to the dual space E∗ equipped with the
weak∗ topology. The variational inequality problem (VIP) defined by K and A consists
of finding a point u ∈ K such that

〈Au, v − u〉 ≥ 0, ∀v ∈ K, (VIP)

where 〈·, ·〉 denotes the canonical pairing between E∗ and E. There are two standard
approaches to the existence of solutions of (VIP), namely with or without some mono-
tonicity requirements and in each of these two directions we have a lot of existence results.
Therefore, the aim of this paper is to analyze various existence results, disseminated in
various papers, and try to do a comparison in order to find the most general and/or the
easiest to handle. The paper is organized as follows.

In Sect. 2 we consider the existence results where the conditions imposed on A are related
merely to the kind of continuity. The main assumptions regarding the continuity are due
to Ky Fan ([13], see also [12], [14]) and to H. Brezis ([1], see also [2], [3]), who introduced
the assumption of hemicontinuity in the sense of Fan (F-hemicontinuity in short) and of
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pseudomonotonicity in the sense of Brezis (B-pseudomonotonicity), respectively. Both
these assumptions in the finite dimensional case and with K compact generalize the well
known theorem by Hartmann and Stampacchia (see Theorem 3.1), as the Example 2.8
shows. The connection between the existence results of Brezis and Ky Fan was already
recognized by Brezis which in ([1]) stated:
"Le théorème 24 et ses corollaires généralisent donc des résultats de F. Browder et de
P. Hartman and G. Stampacchia. Il sont à rapprocher des résultats de Ky-Fan".

As a matter of fact, ifK is open and dimE < ∞, the B-pseudomonotonicity is equivalent
to the continuity and the same happens for the F-hemicontinuity as Proposistions 2.9
and 2.10 prove. If dimE = ∞ and the map A is defined on the whole space E, both
the Brezis and Fan assumptions ensure that A is continuous on the finite dimensional
subspaces of E (see Proposition 2.11).

Propoposition 2.12 states the first comparison result between the Fan and Brezis as-
sumptions, namely if K is convex and closed an F-hemicontinuous map is also B-
pseudomonotone. Moreover, if E is a Hilbert space and A : E → E∗ is a linear and
continuous operator then the F-hemicontinuity is equivalent to the following property:

if un weakly converges to 0, then lim inf
n

〈Aun, un〉 ≥ 0 (Ernst-Théra)

(see Proposition 2.13). The last property is proved by E. Ernst and M. Théra ([10])
to be a necessary and sufficient condition for the existence of a solution to (VIP) when
A is linear and continuous from E to E∗ and K is an arbitrary bounded closed and
convex subset of E. Then, the F-hemicontinuity, under the above assumptions, is a
necessary condition for the existence of solution of (VIP) and it results equivalent to the
B-pseudomonotonicity.

The remaining part of Section 2 is devoted to Variational Inequalities related to merely
closed and convex subsets K of E. In this case, an additional assumption on A is
needed, namely some kind of coercivity. Proposition 2.17, shows that the coercivity
condition related to B-pseudomonotone operators is less general than the one related to
F-hemicontinuity. However, Theorem 2.18 shows that a condition firstly introduced by
Hartman and Stampacchia is sufficient to ensure the existence of a solution to (VIP)
assuming that the operator A is B-pseudomonotone or F-hemicontinuous. In Theorem
2.19 we recall an existence result in which the second condition of B-pseudomonotonicity,
namely

2.2) For each v ∈ K the function u → 〈Au, u − v〉 is lower bounded on the bounded
subset of K.

is replaced by the condition

2.2′) A is continuous on any finite dimensional subspace.

Finally we discuss a theorem due to B. Ricceri ([28]) which deals with variational in-
equalities related to operators A only weakly∗ continuous. In this case, besides the usual
assumptions on K, it is supposed that K has nonempty relative interior (that is the in-
terior of K in its convex hull), and it is shown that this assumption cannot be removed.
Then the open problem arises whether assuming that K has the quasi-relative interior
nonempty (that is the set of the points of K such that the tangent cone is a subspace)
some existence theorem can be provided under a suitable assumption of continuity on



A. Maugeri, F. Raciti / On Existence Theorems for Monotone and ... 901

A. It is worth mentioning that in the applications arising from equilibrium problems
the constraint set K has quasi-relative interior nonempty, whereas its relative interior is
empty.

Section 3 is devoted to study existence theorems for monotone Variational Inequali-
ties. We remark at first that the monotone approach is due to G. Stampacchia and
recall the famous Hartmann-Stampacchia theorem (Theorem 3.1) in which the operator
A : E → E∗ is supposed to be monotone, continuous on finite dimensional subspaces of
K, or alternatively, defined on the whole space, monotone and hemicontinuous on line
segments. The Hartmann-Stampacchia theorem has been generalized by [23] and [24]
assuming the map A : K → E∗ pseudomonotone in the sense of Karamardian and con-
tinuous on finite dimensional subspaces of E (see Theorem 3.4). However, the result of
Theorem 3.4 is in turn generalized by Theorem 3.6 in which the map A is assumed to be
Karamardian-pseudomonotone and lower hemicontinuous on line segments. This results
generalizes Theorems 3.1 and 3.4 because a monotone and lower hemicontinuous map
on K is not necessarily continuous on finite dimensional subspaces of K (see Example
3.8). Moreover, we have also taken the opportunity to quote some other kind of conti-
nuity assumptions used by [15] in order to obtain surjectivity results and an interesting
existence result in the framework of nonreflexive Banach space (see Theorem 3.9).

2. The approach without monotonicity

Various kinds of continuity are requested in the statement of existence theorems present
in the literature. In 1968 H. Brezis introduced ([1], see also [2], [3]) a kind of lower semi-
continuity which he called "pseudomonotonicity". The definition (2.1 below specificates
the general pseudomonotonicity with respect to the weak topology of Banach reflexive
space.

Definition 2.1. A map A from K to X∗ is called pseudomonotone in the sense of Brezis
(B-pseudomonotone) iff

2.1) For each sequence un weakly converging to u (in short un ⇀ u) in K and such that
lim supn〈Aun, un − u〉 ≤ 0 it results that:

lim inf
n

〈Aun, un − v〉 ≥ 〈Au, u− v〉, ∀v ∈ K.

2.2) For each v ∈ K the function u → 〈Au, u−v〉 is lower bounded on bounded subsets
of K.

Another kind of lower semicontinuity is the hemicontinuity in the sense of Ky Fan (see
[12], [13], [5]), which we call F-hemicontinuity to avoid confusion with another notion
to be introduced in the sequel and which we report in the particular case of a Banach
reflexive space.

Definition 2.2. A mapping A : K → E∗ is F-hemicontinuous iff for all v ∈ K the
function u 7→ 〈Au, u− v〉 is weakly lower semicontinuous on K.

Moreover we recall the following other kinds of continuity, which will be used together
with some kind of monotonicity assumptions:
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Definition 2.3 (Hemicontinuity along line segments (see [31], [19]). A : K →
E∗ is hemicontinuous along line segments, iff the function:

t 7→ 〈A(tu+ (1− t)v), w〉, t ∈ [0, 1]

is continuous for all u, v, w ∈ K.

Definition 2.4 (Lower hemicontinuity along line segments (see [5])). A : K →
E∗ is lower hemicontinuous along line segments, iff the function:

ξ 7→ 〈Aξ, u− v〉

is lower semicontinuous for all u, v ∈ K on the line segments [u, v].

Now we point out the well known reason why (see ([1]), ([28])) a continuity assumption
of this type is needed in order to get general existence results. It is well known that, in
the finite dimensional case, the following result due to P. Hartmann and G. Stampacchia
([19], see also [25]) holds:

Theorem 2.5. Assume that dimE < +∞ and let K be convex and compact. Let A :
K → E∗ be a continuous mapping. Then, (VIP) admits solutions.

Now, let us pass from a finite dimensional space E to a reflexive Banach space with
dimE = +∞, remaining K compact. In order to show the existence of a solution we
can proceed in the following way. Denote by U the family of all the finite dimensional
linear subspaces of E meeting K and consider U as a direct set, with the set-theoretic
inclusion, indexed by s ∈ S. Let us assume that A : K → E∗ is weakly∗ continuous.
Due to Theorem 2.5, there exists a solution us ∈ K

⋂

Us, i.e.

〈Aus, v − us〉 ≥ 0, ∀v ∈ K ∩ Us . (1)

Since K is compact, the net {us} admits some cluster point u0 in K and there exists
a sub-net of {us}, say {uα}, converging to u0. Thus, considering for each v ∈ K, the
equality

〈Auα, v − uα〉 = 〈Auα, v − u0〉+ 〈Auα, u0 − uα〉 (2)

and observing that in virtue of (1)

lim inf
α

〈Auα, v − uα〉 ≥ 0

and
lim
α
〈Auα, v − u0〉 = 〈Au0, v − u0〉,

in order to obtain our goal it is enough that

lim sup
α

〈Auα, u0 − uα〉 ≤ 0 (3)

If we look at the B-pseudomonotonicity and at the F-hemicontinuity assumptions, we
can see that these definitions involve lim inf and lim sup of the above term 〈Auα, u−uα〉.

The existence theorems in the infinite dimensional case with K weakly compact are the
following.
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Theorem 2.6 (see [1]). Let K be a nonempty convex and weakly compact subset of E
and A a B-pseudomonotone mapping from K to E∗. Then (VIP) admits solutions.

Theorem 2.7 (see [13], [14], [5]). Let K be a nonempty, convex and weakly compact
subset of E, and A : K → E∗ an F-hemicontinuous mapping. Then (VIP) admits
solutions.

Let us observe that Theorem 2.6 generalizes Theorem 2.7 when dimE < +∞. In fact,
a continuous mapping A : K → E is also B-pseudomonotone and F-hemicontinuous but
the reverse is not ensured as the following example shows:

Example 2.8. Fix a > 1 and consider the function defined on [0, 1] by

f(x) =











−1/x+ a, x ∈]1/2a, 1]

−a, x ∈]0, 1/2a]

a, x = 0

f(x) is F-hemicontinuos on [0, 1], but obviously not continuous. The point x0 = 1/a solves
the variational inequality corresponding to the function f and to the interval [0, 1].

In general a B-pseudomonotone mapping A : K → E is continuous in K if K is an
open subset of E (see Proposition 21 of [1]). Moreover we have the following results
for an F-hemicontinuous map, which easily follow from the subsequent Proposition 2.12
together with Proposition 21 of [1].

Proposition 2.9. Let A : K → E∗ be F-hemicontinuous, with K an open subset of E.
Then, if E is finite dimensional, A maps bounded sets into bounded sets.

Proposition 2.10. Let A : K → E∗ be F-hemicontinuous, with E finite dimensional
and K a nonempty, open subset of E. Then A is continuous on K.

If the mapping A acts on the whole space E the following result holds.

Proposition 2.11. Let A : E → E∗ F-hemicontinuous. Then A is continuous on the
finite dimensional subspaces of E , that is, for each finite dimensional subspace E0 ⊂ E
and for each fixed v ∈ E, the mapping:

E0 ∋ u → 〈Au, v〉 ∈ R

is continuous.

Proof. Fix v ∈ E and let E1 = {λu+ µv, λ, µ ∈ R, u ∈ E0} the linear space generated
by E0 and v. Let j : E1 → E the injection map, together with its dual map j∗ : E∗ → E∗

1
.

Because of (2.10) the map j∗Aj : E1 → E∗
1
is continuous. Since in E1 the strong and the

weak topologies coincide, this means that for each fixed w ∈ E1 the map z 7→ 〈j∗Ajz, w〉
is continuous. In particular, we can choose w = v and z ∈ E0 and the thesis follows
immediately for the fact that 〈j∗Aju, v〉 = 〈Au, v〉, ∀u, v ∈ E1.

A first comparison between B-pseudomonotonicity and F-hemicontinuity is given by the
next proposition.
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Proposition 2.12. Let A : K → E∗ an F-hemicontinuous mapping, where K is a closed
and convex subset of E. Then A is B-pseudomonotone.

Proof. Condition 2.1 of Definition 2.1 is obviously verified. By contradiction, assume
that condition 2.2 is not true. Then, there exists v∗ ∈ K and a bounded subset K∗ of K
such that the function u 7→ 〈Au, u− v∗〉 is not lower bounded on K∗. As a consequence
there exists a sequence {un}, un ∈ K∗,∀n ∈ N, such that

lim
n
〈Aun, un − v∗〉 = −∞ (4)

Since K∗ is bounded, there exists a subsequence {ukn} such that ukn converges weakly
to u∗ ∈ K, because K is convex and closed, hence weakly closed. Then, in virtue of
F-hemicontinuity we have

lim inf
n

〈Aukn , ukn − v∗〉 ≥ 〈Au∗, u∗ − v∗〉 (5)

which condradicts (4).

Another characterization of F-hemicontinuity when A is defined on a Hilbert space E is
given by the following result.

Proposition 2.13. Let E be a Hilbert space and A : E → E∗ a linear and continuous
operator. Then the following statements are equivalent:

i) A is F-hemicontinuous on E.

ii) A is such that if un ⇀ 0, then lim infn〈Aun, un〉 ≥ 0.

Proof. If A is F-hemicontinuous, it is clear that A verifies ii). Now suppose that A
verifies ii). Being A linear and continuous it follows that if un ⇀ u then limn〈Aun, w〉 =
〈Au,w〉,∀w ∈ E. Considering wn = un − u ⇀ 0, in virtue of assumption ii) we have

lim inf
n

{〈Aun, un − u〉 − 〈Au, un − u〉} ≥ 0

and also, since limn〈Au, un − u〉 = 0,

lim inf
n

〈Aun, un − u〉 ≥ 0

Then, for all v ∈ K we reach

lim inf
n

(〈Aun, un − v〉+ 〈Aun, v − u〉) ≥ 0

and, taking into account that

lim
n
〈Aun, v − u〉 = 〈Au, v − u〉

we have
lim inf

n
〈Aun, un − v〉 ≥ 〈Au, u− v〉



A. Maugeri, F. Raciti / On Existence Theorems for Monotone and ... 905

Now let us recall the very interesting result by E. Ernst and M. Théra [10].

Theorem 2.14. Let E a real Hilbert space and A a linear and continuous operator.
Then, the following statements are equivalent:

i) A is such that if un ⇀ 0, then lim infn〈Aun, un〉 ≥ 0

ii) (VIP) admits solutions for every bounded convex and closed set K.

This result together with Proposition 2.13 yields to the fact that F-hemicontinuity on
E is a necessary condition for the solvability of (VIP) on an arbitrary closed, convex
and bounded subset of E when the operator A is linear and continuous and E is a
Hilbert space. Moreover, in this case the concepts of B-pseudomonotonicity and F-
hemicontinuity are equivalent.

Now let us consider the Variational Inequality related to merely convex and closed subset
K of E. The existence theorems related to B-pseudomonotonicity and F-hemicontinuity
are the following.

Theorem 2.15 ([1]). Let A : K → E∗ be B-pseudomonotone and let K be nonempty
closed and convex. Moreover, assume that there exists u0 ∈ K such that:

lim
‖u‖→∞,u∈K

〈Au, u− u0〉

‖u‖
= +∞ (6)

Then (VIP) admits solutions.

Theorem 2.16 ([12], [14]). Let A : K → E∗ be F-hemicontinuous and let K be a
nonempty closed and convex subset of E. Moreover, let us suppose that A satisfies the
following condition

H1 ) There exist K1 ⊂ K nonempty weakly compact and K2 ⊂ K compact such that for
every v ∈ K \K1 there exists w ∈ K2 such that

〈Av, v − w〉 > 0. (7)

Then (VIP) admits solutions.

It is possible to compare assumption (6) of Theorem 2.15 with assumption H1 ) of The-
orem 2.16. In fact we can prove the next result.

Proposition 2.17. Condition (6) implies condition H1 ).

Proof. From (6) we derive that there exist two positive constants C and R, such that:

〈Au, u− u0〉 > C > 0, ∀u ∈ K \B(0, R)

Being B(0, R) = {v ∈ E : ‖v‖ ≤ R} weakly compact, condition H1 ) is verified choosing
K1 = B(0, R) and K2 = {u0}.

However, we can provide a version of Theorems 2.15 and 2.16 in which condition (6) and
H1 ) are replaced by the following one firstly considered in [19]:
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H2 ) There exist u0 ∈ K and R > ‖u0‖ such that

〈Av, v − u0〉 > 0, ∀v ∈ K ∩ {v ∈ E : ‖v‖ = R}.

In fact we have the following result

Theorem 2.18. Let A : K → E∗ be B-pseudomonotone or F-hemicontinuous, where K
is nonempty, closed and convex. Moreover, assume that H2 ) holds. Then, (VIP) admits
solutions.

Proof. Let us consider the set

KR = {v ∈ K : ‖v‖ ≤ R}

Since KR is closed, convex and bounded (and nonempty for R big enough), and A B-
pseudomonotone or F-hemicontinuous, there exists uR ∈ KR such that:

〈AuR, v − uR〉 ≥ 0, ∀v ∈ KR (8)

Now let us remark that ‖uR‖ < R. In fact, if we had ‖uR‖ = R, then assumption H2 )
written for v = uR would yield 〈AuR, uR−u0〉 > 0, which contradicts (8). To prove that
uR solves (VIP) fix arbitrarily w ∈ K and, for t ∈ [0, 1], consider the point:

vt = (1− t)uR + tw

which, for t small enough belongs to KR, hence 〈AuR, (1− t)uR + tw− uR〉 ≥ 0, namely

〈AuR, w − uR〉 ≥ 0, ∀w ∈ K

It is remarkable that condition 2.2) in the definition of B-pseudomonotonicity can be
replaced by the following:

2.2′) A is continuous on any finite dimensional subspace.

In fact, in paper [4] Brezis, Nirenberg and Stampacchia showed the following theorem

Theorem 2.19. Let K be a convex and closed subset of E and assume that A : K → E∗

verifies conditions 2.1) and 2.2′). Moreover, suppose that there exist a compact subset L
of K and u0 ∈ L such that

〈Av, v − u0〉 ≥ 0, ∀v ∈ K \ L (9)

Then (VIP) admits solutions.

The following result due to B. Ricceri (see [28]) deserves some comments.

Theorem 2.20. Assume that K is nonempty, convex and closed, that its relative inte-
rior (that is the interior of K in its convex hull) is nonempty, and that A is weakly∗

continuous. Moreover, let K1, K2 be two nonempty compact subsets of K, with K2 ⊂ K1

and and K2 finite dimensional such that for each v ∈ K \K1 there exists w ∈ K2 such
that

〈Av, v − w〉 > 0

Then (VIP) admits solutions.
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In this theorem A is supposed weakly∗ continuous but it is also supposed that the relative
interior of K is nonempty. This assumption cannot be removed as a counterexample in
[16] (see also [30]) shows. However, in many infinite dimensional variational inequalities
which model equilibrium problems (see e.g. [6], [7], [8], [9], [17], [20], [21], [22], [27], [18])
the relative interior of the constraints set K is empty, while the quasi-relative interior
is nonempty. Then the open problem arises wether assuming that the quasi-relative
interior of K is non empty (let us recall that the quasi relative interior of K is the set
of the points of K such that the tangent cone is a subspace) and replacing the weakly∗

continuity assumption on A with a less general assumption, an appropriate existence
theorem can be proved.

Before concluding this section we would like to mention that the notion of B-pseudo-
monotonicity or F-hemicontinuity can be generalized to vector variational inequalities.
In this respect we point out the paper [11] and the references therein contained for some
results in the vectorial case. Moreover, it is worth mentioning the paper [15] in which
surjectivity results for nonlinear mappings T from a Banach space X to its dual X∗ are
considered. Many kinds of assumptions on the mappings T are considered, for example
B-pseudomonotonicity, hemicontinuity, semimonotonicity, the so called condition (P )
(and others could be considered) and their mutual relations are focused in order to state
surjectivity results.

3. The monotone approach

The monotone approach is due to Hartmann and Stampacchia [19] (see also [29]) who
proved the following

Theorem 3.1. Let E be a reflexive Banach space and let K be a closed convex set in
E. Let A : K → E∗ be monotone, continuous on finite dimensional subspaces of K.
[Alternatively, let A : E → E∗ be monotone and hemicontinuous on line segments].
Then, a necessary and sufficient condition in order that a solution of (VIP) exist is that
there exists a constant R such that at least a solution of the variational inequality

uR ∈ KR, 〈AuR, v − uR〉 ≥ 0, ∀v ∈ KR

satisfies the inequality
‖uR‖ < R.

Let us recall the monotonicity assumption.

Definition 3.2. A map A : K → E∗ is called monotone if

〈Au− Av, u− v〉 ≥ 0, ∀u, v ∈ K

The reason why the assumptions of Theorem 3.1 are that A : K → E∗ is monotone,
continuous on finite dimensional subspaces of K, or alternatively, that A : E → E∗ is
monotone and hemicontinuous on line segments, reflects also here, the fact that when
A is defined on the whole space E, if it is monotone and hemicontinuous along line
segments, it is also continuous on finite dimensional subspaces of K. The role of the
monotonicity assumption is that, being

〈Au, v − u〉 ≤ 〈Av, v − u〉, ∀u, v ∈ K
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it is possible to obtain the Minty Lemma if A is hemicontinuous along line segments on
K (see the next lemma (3.5) and if vn ⇀ u in K, to get

0 ≤ lim inf
n

〈Avn, vn − u〉, ∀u ∈ K

It is surprising that Brezis, Nirenberg and Stampacchia were the first who noted that
in Theorem 3.1, instead of monotonicity of A, it is sufficient to assume that (see [4],
p. 297):

〈Au, u− v〉 ≤ 0 implies 〈Av, v − u〉 ≥ 0 for any u, v ∈ K.

Then Karamardian considered this more general concept of monotonicity, which he called
pseudomonotonicity, giving the following definition.

Definition 3.3. The map A : K → E∗ is said to be pseudomonotone in the sense of
Karamardian (K-pseudomonotone) iff for all u, v ∈ K

〈Av, u− v〉 ≥ 0 → 〈Au, u− v〉 ≥ 0

Then the authors in [24], using the K-pseudomonotonicity, showed the following Theo-
rem, close to the generalized version of Theorem 3.1.

Theorem 3.4 (see [24]). Let K be a closed convex set and A : K → E∗ a K-pseudo-
monotone map which is continuous on finite dimensional subspaces of E. Then the fol-
lowing statements are equivalent:

a) (VIP) admits solutions.

b) Condition H2 ) holds, i.e. there exists u0 ∈ K and R > ‖u0‖ such that

〈Av, v − u0〉 ≥ 0, ∀v ∈ K ∩ {v ∈ E : ‖v‖ = R}

c) There exists a point u0 ∈ K such that the set

{v ∈ K : 〈F (v), v − u0〉 < 0}.

is bounded.

In Theorem 3.4 it is requested that A is continuous on finite dimensional subspaces of E
instead ofK and it is not considered the case in which A is, alternatively, hemicontinuous
along line segments. It seems that this fact is due to the lack of the corresponding
result that a K-pseudomonotone and hemicontinuous along line segments map is also
continuous on finite dimensional subspaces. On the other hand, the Minty lemma remains
true as the next result shows.

Lemma 3.5 (see [26]). Let A : K → E∗ a K-pseudomonotone and lower hemicontin-
uous along line segments map. Then u ∈ K is a solution of (VIP) if and only if u is
solution of the Minty variational inequality problem (MVIP)

u ∈ K : 〈Av, v − u〉 ≥ 0, ∀v ∈ K (MVIP)

However, the above theorem can be generalized assuming that A is lower hemicontinuous
along line segments of K as the following result shows.
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Theorem 3.6. Let K be a closed convex set and A : K → E∗ a K-pseudomonotone
map which is lower hemicontinuous along line segments. Let us assume that condition
H2 ) holds, namely, there exists u0 ∈ K and R > ‖u0‖ such that

〈Av, v − u0〉 ≥ 0, ∀v ∈ K ∩ {v ∈ E : ‖v‖ = R}

Then (VIP) admits solutions.

Proof. Let us consider the set

KR = {v ∈ K : ‖v‖ ≤ R}

Being A a K-pseudomonotone map which is lower hemicontinuous along line segments,
in virtue of Corollary 5.1 iii) of [5], there exists a solution uR ∈ KR such that

〈Aur, v − uR〉 ≥ 0, ∀v ∈ KR

Then, proceeding as in the last part of Theorem 2.18 we achieve that uR is a solution of
(VIP) on K.

Some interesting consequences follow from Theorem 3.6. If K is bounded we obtain the
following generalization of Theorem 3.1:

Corollary 3.7. If K is convex, closed and bounded and A is K-pseudomonotone and
lower hemicontinuous along line segments, then (VIP) admits solutions.

Moreover, Theorem 3.6 generalizes Theorem 3.4 because A is lower hemicontinuous along
line segments on K, whereas in Theorem 3.4 A is requested to be continuous on finite
dimensional subspaces of E. On the other hand a K-pseudomonotone and lower hemi-
continuous map in general is not continuous on finite dimensional subspaces as the next
example shows:

Example 3.8. Fix a > 1 and consider the function defined on [0, 1] by

f(x) =











−1/x+ a, x ∈]1/2a, 1[

−a, x ∈ [0, 1/2a]

a, x = 1

It is easy to verify that f(x) is monotone, the function ξ → 〈f(ξ), u − v〉 is lower
semicontinuous for all u, v ∈ [0, 1] on the line segment [u, v], but f(x) is not continuous.

Before concluding this section it is worth mentioning some results which generalize our
setting of monotone variational inequalities along various directions.

A. Domokos and J. Kolumbán (see e.g. [11]) consider an approach for the theory of
variational inequalities which includes variational inequalities defined on nonreflexive
Banach spaces as well as generalized vector variational inequalities defined on topological
vector spaces. An example of existence results on nonreflexive Banach spaces is given
by the following theorem (see [11]).
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Theorem 3.9. Let Ω ⊂ R
n be a bounded domain, F : Ω× R → R a function such that

F (·, r) is measurable for all r ∈ R
n, F (ω, ·) is continuous for almost every ω ∈ Ω, F (·, r)

is monotone nodecreasing for all r ∈ R
n, F (·, r) ∈ L1(Ω) for all r ∈ R

n. Let us introduce
the Nemitski operator defined by F, namely:

T (f)(ω) = F (ω, f(ω)),

which maps L∞ into L1 and is continuous, bounded and monotone. Let K ⊂ L∞ =
(L1(Ω))∗ be a closed, convex, bounded set. Now let us consider the following variational
inequality.

Find f0 ∈ K such that:

〈f − f0, T (f0)〉 =

∫

Ω

F (ω, f0(ω))(f(ω)− f0(ω) )dω ≥ 0, ∀f ∈ K. (10)

Then, Variational Inequality (10) admits solutions.
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analysis of the paper and his useful suggestions.
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[29] G. Stampacchia: Formes bilinéaires sur les ensembles convexes, C. R. Acad. Sci., Paris 258
(1964) 4413–4416.

[30] N. D. Yen: On a problem of B. Ricceri on Variational Inequalities, in: Fixed Point The-
ory and Applications. Vol. 5 (Masan/China, 2001), Y. J. Cho et al. (ed.), Nova Science,
Hauppauge (2004) 163–173.

[31] E. Zeidler: Nonlinear Functional Analysis and its Applications. II/B. Nonlinear Monotone
Operators, Springer, New York (1990).


