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We extend the general decomposition scheme of [32], which is based on the hybrid inexact proximal
point method of [38], to allow the use of variable metric in subproblems, along the lines of [23]. We show
that the new general scheme includes as special cases the splitting method for composite mappings [25]
and the proximal alternating directions method [13, 17] (in addition to the decomposition methods of
[10, 42] that were already covered by [32]). Apart from giving a unified insight into the decomposition
methods in question and openning the possibility of using variable metric, which is a computationally
important issue, this development also provides linear rate of convergence results not previously available
for splitting of composite mappings and for the proximal alternating directions methods.
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1. Introduction

We consider the classical problem of finding a zero of a maximal monotone operator
T : Rn

⇉ R
n, i.e., find z ∈ R

n such that

0 ∈ T (z). (1)

As is well known, a wide variety of problems such as convex optimization, min-max
problems, and monotone variational inequalities over convex sets, fall within this general
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framework, see, e.g., [31]. Our central interest in this paper is the situation when the
given operator T has some separable structure. In such cases, decomposition methods
come into play. Many of those methods (e.g., [20, 40, 12, 41, 43, 32, 22]) are explicitly or
implicitly derived from the proximal point algorithm (e.g., [21, 30, 18]) for solving (1).

Given zk ∈ R
n, the current approximation to a solution of (1), the proximal point method

obtains the new iterate as the solution of the subproblem

0 ∈ ckT (z) + z − zk,

which can be stated as
{

v ∈ T (z),

0 = ckv + z − zk,

where ck > 0 is the regularization parameter. To handle approximate solutions, which is
a typical practical requirement, it is useful to relax both the inclusion and the equation in
the above system, and to employ constructive relative error criteria to control the quality
of approximation. One development in this direction is the Hybrid Inexact Proximal
Point Method (HIPPM) [38] (see also related methods in [35, 34] and applications of
HIPPM to Newton, bundle, and decomposition methods in [33, 37, 36, 39, 32, 22, 5]).
In order to get more efficient algorithms, it is also attractive to allow for the use of a
variable metric (or preconditioning), see [2, 26, 19, 9] for the special case where T is the
subdifferential of a convex function, and [6, 7, 8, 23] for the general case. The variable
metric HIPPM (VMHIPPM) of [23] combines both the use of variable metric and of
relative error tolerance, and it is the following procedure.

Consider the generalized proximal subproblem

0 ∈ ckMkT (z) + z − zk, (2)

where Mk is a symmetric positive definite matrix (it is sometimes convenient to keep
separated the ck parameter). Given the error tolerance (relaxation) parameter σk ∈ [0, 1),
an iteration of VMHIPPM consists in finding vk ∈ R

n, zk ∈ R
n and εk ≥ 0 such that

{

vk ∈ T εk(zk),

δk = ckMkv
k + zk − zk,

(3)

and
‖δk‖2

M−1

k

+ 2ckεk ≤ σ2
k

(

‖ckMkv
k‖2

M−1

k

+ ‖zk − zk‖2
M−1

k

)

, (4)

where by ‖ · ‖M we denote the norm induced by a symmetric positive definite matrixM ,
i.e.,

‖z‖M =
√

〈z,Mz〉,
and the inclusion in (3) is relaxed by using the ε-enlargement of a maximal monotone
operator T (see, e.g., [3, 4]), defined as

T ε(z) := {v ∈ R
n | 〈w − v, y − z〉 ≥ −ε, ∀y ∈ R

n, ∀w ∈ T (y)}, ε ≥ 0.

The enlargement above can be seen as an outer approximation of T , as it holds that
T 0 ≡ T and T (z) ⊆ T ε(z), for any z ∈ R

n and any ε ≥ 0. If f is a proper closed convex
function, then ∂εf(z) ⊆ (∂f)ε(z), where ∂εf is the usual ε-subdifferential of f .
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Note that if σk = 0 is chosen in (4) then the exact solution of (2) is obtained. Also, it
should be noted that one can check the approximation criterion (4) without having to
invert the matrix Mk, see [23].

Having computed the objects satisfying (3) and (4), the next iterate is then obtained by

zk+1 = zk − τkakMkv
k, τk ∈ (0, 2), ak =

〈vk, zk − zk〉 − εk
‖Mkvk‖2M−1

k

. (5)

If the approximation rule (4) is replaced by the more stringent one:

‖δk‖2
M−1

k

+ 2ckεk ≤ σ2
k‖zk − zk‖2

M−1

k

, (6)

then there exists τk ∈ (0, 2) such that τkak = ck ([23, Proposition 3.1]), and we can take
the next iterate as

zk+1 = zk − ckMkv
k.

Convergence of the method outlined above to an element of T−1(0) 6= ∅ is guaranteed
under some mild conditions imposed on the choice of the matricesMk [23, Theorem 4.2].
Moreover, if T−1 satisfies a certain Lipschitzian property at zero (a condition which does
not imply uniqueness of the solution) then the linear rate of convergence is obtained
[23, Theorem 4.4]. The advantage of employing variable metric was illustrated in [23]
in the context of a proximal Newton method. In this paper, introducing variable metric
will also allow us to treat splitting of composite mappings [25] and proximal alternating
directions algorithms [13, 17].

Let us now go back to the discussion of variational inclusions with structure. Operators
of the form

T (x, y) = F (x, y)× [G(x, y) +H(y)],

where F : Rn×R
m

⇉ R
n and H : Rm

⇉ R
m are maximal monotone, and G : Rn×R

m →
R

m is Lipschitz-continuous, have been considered in [42, 32]. The decomposition scheme
presented in [32] is the following iterative procedure, which is derived from HIPPM (i.e.,
from the inexact proximal method outlined above, with the choice of Mk = I). Given
(xk, yk) ∈ R

n×R
m, first a forward-backward splitting step (e.g., [20, 41, 11]) is performed

with the x-part fixed:

yk =
(

I + ck[H(·) +Gk
1(·)]

)−1 (
I − ck[G(x

k, ·)−Gk
1(·)]

)

(yk), (7)

where Gk
1 is some adequate Lipschitz-continuous splitting function. To clarify the nature

of this step and some options concerning the choice of Gk
1, suppose that H is the normal

cone mapping associated to a closed convex set C ⊂ R
m. In that case, (7) gives

yk = PC

(

yk − ck(G
k
1(y

k)−Gk
1(y

k) +G(xk, yk))
)

.

If we take Gk
1 ≡ 0, then

yk = PC

(

yk − ckG(x
k, yk)

)

,

which is the standard projection step. If we take Gk
1 ≡ G(xk, ·), then

yk = PC

(

yk − ckG(x
k, yk)

)

,
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which is an implicit (proximal) step. Inbetween there are various intermediate (in terms
of computational cost) choices of Gk

1. Which particular Gk
1 should be used depends on

the structure of G(xk, ·) and of H(·), see [42] for a more detailed discussion and examples.

The forward-backward splitting step is followed by a hybrid inexact proximal step with
the y-part fixed, that consists in finding a triplet (uk, xk, εk) ∈ R

n × R
n × R+ such that

{

uk ∈ F εk(xk, yk),

rk = cku
k + xk − xk,

where the enlargement F εk is in x for yk fixed, and

‖rk‖2 + ‖sk‖2 + 2ckεk ≤ σ2
k

(

‖ckuk‖2 + ‖ck wk‖2 + ‖xk − xk‖2 + ‖yk − yk‖2
)

,

with wk = G(xk, yk) + hk and sk = ck w
k + yk − yk, where hk is the element of H(yk)

computed in the forward-backward splitting step. The next iterates are obtained by
setting

xk+1 = xk − τkaku
k,

yk+1 = yk − τkak w
k,

where

ak =
〈(uk, wk), (xk − xk, yk − yk)〉 − εk

‖uk‖2 + ‖ wk‖2 , τk ∈ (0, 2).

The decomposition framework outlined above contains some instances of the scheme
described in [42], as well as the proximal-based decomposition for convex minimization
of [10], which we state next as an example that can be helpful for clarifying the nature
of the general scheme. We refer the reader to [32] for justification of the relation in
question. Consider the problem

minimize f1(x1) + f2(x2)
subject to Ax1 −Bx2 = 0,

(8)

where f1 and f2 are closed proper convex functions on R
n and R

m, respectively, and A :
R

n → R
l, B : Rm → R

l are linear operators (matrices of appropriate dimensions). The
method of [10] applies proximal point iterations to the subdifferential of the Lagrangian
function L(x1, x2, y) = f1(x1) + f2(x2) + 〈y, Ax1 −Bx2〉, alternately fixing the variables
or the multipliers. Specifically, given some (xk1, x

k
2, y

k) ∈ R
n × R

m × R
l, the method

performs the following updates:

yk = yk + ck
(

Axk1 −Bxk2
)

,

xk+1
1 = arg min

x1∈Rn

{

f1(x1) + 〈A⊤yk, x1〉+
1

2ck
‖x1 − xk1‖2

}

,

xk+1
2 = arg min

x2∈Rm

{

f2(x2)− 〈B⊤yk, x2〉+
1

2ck
‖x2 − xk2‖2

}

,

yk+1 = yk + ck
(

Axk+1
1 −Bxk+1

2

)

.

(9)
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This method has some nice features not shared by previous decomposition algorithms,
when the latter are applied to (8). In particular, the minimization is carried out sepa-
rately in the spaces Rn and R

m, and the two minimization problems decompose further
according to the separable structure of the functions f1 and f2. Other methods do not
achieve such a fine degree of decomposition for the given problem, see [42] for a more
detailed discussion.

In this paper, we combine the ideas of decomposition from [32] with the use of variable
metric from [23]. We emphasize that this development is worthwhile for a number of
reasons. Apart from variable metrics and preconditioning being important in practice, we
note that in this context it appears useful also for theoretical considerations. Specifically,
splitting of composite mappings [25] and proximal alternating directions methods [13, 17]
could not be analyzed within the previous decomposition framework of [32] (i.e., without
introducing variable metric). Among other things, this analysis allows us to obtain
rate of convergence results for the methods in consideration, which were not available
previously, and to present a unified view of those seemingly different techniques. As an
additional enhancement with respect to [32], we shall allow inexact computation in the
forward-backward step.

We next introduce our notation. By Mn
++ we denote the space of symmetric positive

definite matrices, with the partial order � given by

A � B ⇔ B − A is a positive semidefinite matrix.

For M ∈ Mn
++, λmin(M) and λmax(M) stand for the minimal and the maximal eigen-

values of M , respectively. For any A � B, it holds that ‖z‖A ≤ ‖z‖B. In particular,
if

0 < λl ≤ λmin(M) ≤ λmax(M) ≤ λu,

then for any x ∈ R
n it holds that

λl‖x‖2 ≤ ‖x‖2M ≤ λu‖x‖2,
1

λu
‖x‖2 ≤ ‖x‖2M−1 ≤ 1

λl
‖x‖2. (10)

By 〈x, y〉 we denote the usual inner product between x, y ∈ R
n. For a matrixM ∈ Mn

++,
we denote 〈x, y〉M = 〈Mx, y〉. For a closed convex set Ω ⊆ R

n and a matrix M ∈ Mn
++,

the “skewed� projection operator onto Ω under the matrix M is given by

PΩ,M(z) = argmin
x∈Ω

1

2
〈x− z,M(x− z)〉 = argmin

x∈Ω

1

2
‖x− z‖2M ,

i.e., it is the projection operator with respect to the norm ‖·‖M . The associated distance
from z ∈ R

n to Ω is defined as

dist(z,Ω)M = ‖z − PΩ,M(z)‖.

2. Variable Metric Hybrid Proximal Decomposition Method

Consider problem (1), where T has the following structure:

T : Rn × R
m

⇉ R
n × R

m, T (z) = F (x, y)× [G(x, y) +H(y)], (11)

F : Rn×R
m

⇉ R
n, G : Rn×R

m → R
m, H : Rm

⇉ R
m, and we set z = (x, y) ∈ R

n×R
m.

We make the following standing assumptions:
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A1 G is a (single-valued) continuous function.

A2 H is maximal monotone.

A3 The mapping (x, y) 7→ F (x, y)×G(x, y) is maximal monotone.

A4 domH ⊂ rint{y ∈ R
m | ∃x ∈ R

n s.t. F (x, y)×G(x, y) 6= ∅}.
Under the stated assumptions, it follows from [28] that T is maximal monotone, and
further that the mapping x→ F (x, y) is also maximal monotone for any fixed y ∈ domH
[42, Lemma 2.1].

We are now in position to present our algorithm. In essence, it is the hybrid proximal
decomposition method of [32], already explained above, with the following extensions.
Variable metric is introduced in both the forward-backward splitting and proximal steps,
and the former (in addition to the latter) is also allowed to be computed inexactly. We
note that in general, in decomposition methods of this nature the regularization parame-
ter ck has to be sufficiently small, see [10, 42, 32]. The value of ck is either determined by
a suitable linesearch procedure or set according to some heuristic considerations. This
is accounted for by the comment at the end of the proximal step of Algorithm 2.1 – if
solution of the proximal subproblem does not satisfy the required criteria, the value of
ck has to be reduced. In the variable metric inexact setting of Algorithm 2.1, there also
other parameters that affect the quality of solution of the proximal subproblem (specif-
ically, the chosen metric Qk and the error in the forward-backward splitting step ek).
Adjusting those may be enough without decreasing ck. In any case, Theorem 2.2 below
shows that appropriate values of ck guarantee solution with the needed properties.

Algorithm 2.1 (VMHPDM).
Initialization: Choose (x0, y0) ∈ R

n × R
m and θ ∈ (0, 1). Set k := 0.

Inexact Forward-Backward Splitting Step: Choose a continuous monotone func-
tion Gk

1 : Rm → R
m, a scalar ck > 0 and a symmetric m × m positive definite matrix

Qk. Compute yk ∈ R
m, hk ∈ R

m and εyk ≥ 0 such that

{

hk ∈ (Hε
y
k +Gk

1)(y
k),

ek = ckQk
hk + yk −

(

yk − ckQk

[

G(xk, yk)−Gk
1(y

k)
])

.
(12)

Inexact Proximal Step: Choose the error tolerance parameter σk ∈ (0, 1) and a sym-
metric n × n positive definite matrix Pk. Compute xk ∈ R

n, uk ∈ R
n and εxk ≥ 0 such

that
{

uk ∈ F εxk(xk, yk)

rk = ckPku
k + xk − xk,

(13)

where the enlargement F εxk is in x for yk fixed, and

‖rk‖2
P−1

k

+ ‖sk‖2
Q−1

k

+ 2ck(ε
x
k + εyk)

≤ σ2
k

(

‖ckPku
k‖2

P−1

k

+ ‖ckQk w
k‖2

Q−1

k

+ ‖xk − xk‖2
P−1

k

+ ‖yk − yk‖2
Q−1

k

)

,
(14)

with

wk = G(xk, yk) + hk −Gk
1(y

k), sk = ckQk w
k + yk − yk.
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(If the proximal subproblem (13) is solved to “maximal possible precision� but (14) is not
satisfied, decrease ck or choose a new matrix Qk to decrease ‖Qk‖, and/or compute yk in
the Inexact Forward-Backward Splitting Step with more accuracy and repeat the
Inexact Proximal Step with this new yk.)

Iterates Update: Stop if xk = xk and yk = yk. Otherwise, choose τk ∈ (1− θ, 1 + θ)
and define

xk+1 = xk − τkakPku
k,

yk+1 = yk − τkakQk w
k,

(15)

where

ak =
〈(uk, wk), (xk − xk, yk − yk)〉 − (εxk + εyk)

‖Pkuk‖2P−1

k

+ ‖Qk wk‖2
Q−1

k

.

Set k := k + 1 and go to Inexact Forward-Backward Splitting Step.

We recall that if the stronger than (14) approximation is used, i.e.,

‖rk‖2
P−1

k

+ ‖sk‖2
Q−1

k

+ 2ck(ε
x
k + εyk) ≤ σ2

k

(

‖xk − xk‖2
P−1

k

+ ‖yk − yk‖2
Q−1

k

)

, (16)

then in (15) we can use the stepsize τkak = ck.

Apart from our ability to satisfy condition (14), which requires a proof, the other parts of
the method are easily seen to be well-defined. Indeed, since Gk

1 is a monotone continuous
function, it follows that H+Gk

1 is maximal monotone. Thus yk in the forward-backward
splitting step is well-defined and yk ∈ domH. As already noted above, for any yk ∈
domH, the mapping x → F (x, yk) is maximal monotone under the stated assumptions.
Thus the proximal point step is also well-defined. Furthermore, the stepsize choice of ak
is well-defined whenever uk 6= 0 or wk 6= 0. Now, if it were the case that uk = 0 and
wk = 0, then it would follow that rk = xk − xk and sk = yk − yk. But (14) then implies
that xk = xk and yk = yk (because σk ∈ (0, 1)), so that the stopping rule would have
been activated (as will be shown in Theorem 2.2, in this case (xk, yk) is a solution of the
problem).

Before proceeding to the convergence analysis we make one final assumption:

A5 It holds that

u ∈ F εx(x, y)
w ∈ G(x, y) +Hεy(y)

}

⇒ (u,w) = v ∈ T εx+εy(z), z = (x, y),

where F εx(x, y) is the ε-enlargement of F (·, y) at x with the y-part fixed.

This assumption is redundant if in VMHPDM we set εxk = εyk = 0 for all k. Furthermore,
in [32] it is shown that A5 always holds for (set-valued) monotone variational inequalities
with linear constraints. We shall refer to Assumption A5 with εy = 0 as Assumption
A5x, and to Assumption A5 with εx = 0 as Assumption A5y .

Theorem 2.2. Suppose that T−1(0) 6= ∅, where T is given by (11), and that Assump-
tions A1–A4 hold. Suppose further that either in Algorithm 2.1 we set εxk = εyk = 0 for
all k, or we set εyk = 0 and Assumption A5x holds, or we set εxk = 0 and Assumption
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A5y holds, or that Assumptions A5 holds. Let G be Lipschitz-continuous and Gk
1 be

Lipschitz-continuous uniformly in k.

Suppose that
0 < σl ≤ lim inf

k→∞
σk ≤ lim sup

k→∞

σk ≤ σu < 1,

and the matrix sequences {Pk}, {Qk} satisfy the conditions

0 < λl ≤ lim inf
k→∞

λmin(Pk) ≤ lim sup
k→∞

λmax(Pk) ≤ λu,

0 < λl ≤ lim inf
k→∞

λmin(Qk) ≤ lim sup
k→∞

λmax(Qk) ≤ λu,

1

1 + ηk
Qk � Qk+1,

1

1 + ηk
Pk � Pk+1, ηk > 0 ∀ k,

∞
∑

k=0

ηk < +∞. (17)

Then there exists cu > 0 such that if

0 < cl ≤ lim inf
k→∞

ck ≤ lim sup
k→∞

ck ≤ cu

and the forward-backward step is computed with sufficiently accuracy, then the sequence
{(xk, yk)} generated by Algorithm 2.1 is well-defined and converges to an element of
T−1(0).

If, in addition, T−1 is Lipschitzian at zero, i.e., there exist L1 > 0 and L2 > 0 such that

T−1(v) ⊂ T−1(0) + L1‖v‖B ∀v ∈ L2B, (18)

where B is the unit ball in R
n, then the algorithm parameters can be chosen to obtain

the linear rate of convergence.

Finally, for any choice of the parameters 0 < σl ≤ σu < 1, and 0 < cl ≤ cu, we can
choose the parameters 0 < λl ≤ λu such that if the matrices {Pk}, {Qk} satisfy, in
addition to (17), the conditions

Qk+1 � (1 + ηk)Qk, Pk+1 � (1 + ηk)Pk, (19)

then there exists an index k0 such that the convergence rate is linear in the norm induced
by M−1

k0
, where

Mk =

(

Pk 0
0 Qk

)

.

Proof. From (12) we obtain

yk − yk = ckQk

[

Gk
1(y

k)−G(xk, yk)− hk
]

+ ek,

so that

sk = ckQk w
k + yk − yk

= ckQk

[

G(xk, yk) + hk −Gk
1(y

k)
]

+ yk − yk

= ckQk

[

Gk
1(y

k)−Gk
1(y

k) +G(xk, yk)−G(xk, yk)
]

+ ek.
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Suppose that the forward-backward splitting step is computed with sufficient accuracy,
so that the following two conditions are satisfied:

‖ek‖ ≤ ckL‖Qk‖‖yk − yk‖, εyk ≤
ckL

2‖Qk‖2
2λmin(Qk)

‖yk − yk‖2,

where L > 0 is the modulus of Lipschitz-continuity of G and Gk
1. Then

‖sk‖ ≤ ckL‖Qk‖(‖yk − yk‖+ ‖(xk, yk)− (xk, yk)‖) + ‖ek‖
≤ ckL‖Qk‖(2‖yk − yk‖+ ‖(xk, yk)− (xk, yk)‖)
≤ 3ckL‖Qk‖‖(xk, yk)− (xk, yk)‖.

It follows that

‖sk‖2
Q−1

k

+ 2ckε
y
k

≤ 1

λmin(Qk)
‖sk‖2 + c2kL

2‖Qk‖2
λmin(Qk)

‖yk − yk‖2

≤ 10c2kL
2λmax(Qk)

2

λmin(Qk)
(‖xk − xk‖2 + ‖yk − yk‖2)

≤ 10c2kL
2λmax(Qk)

2

λmin(Qk)

(

λmax(Pk)‖xk − xk‖2
P−1

k

+ λmax(Qk)‖yk − yk‖2
Q−1

k

)

≤ 10cuL
2λ3u

λl

(

‖xk − xk‖2
P−1

k

+ ‖yk − yk‖2
Q−1

k

)

.

Hence, if we choose cu > 0 such that

10cuL
2λ3u

λl
≤ σ2

l ,

then condition (14) can always be satisfied (it is enough to note that the exact solution
of the proximal system (13), corresponding to rk = 0 and εxk = 0, satisfies (14)). This
concludes the proof of the claim that Algorithm 2.1 is well-defined.

Since uk ∈ F εxk(xk, yk) and wk = G(xk, yk) + hk − Gk
1(y

k), with hk − Gk
1(y

k) ∈ Hε
y
k(yk),

Assumption A5 guarantees that (uk, wk) ∈ T εk(xk, yk) for εk = εxk + εyk. The same inclu-
sion is satisfied also if εyk = 0 and Assumption A5x holds, or if εxk = 0 and Assumption
A5y holds, or if εxk = εyk = 0.

It now follows that with the identifications

zk = (xk, yk), zk = (xk, yk), vk = (uk, wk), δk = (rk, sk), Mk =

(

Pk 0
0 Qk

)

,

Algorithm 2.1 falls within the VMHIPPM framework. The announced convergence re-
sults then essentially follow adapting [23, Theorems 4.2–4.4]. For the sake of complete-
ness, and to take care of some necessary details, we include a streamlined proof.

From (3), by re-arranging terms, it is easy to see that (4) is equivalent to

〈vk, zk − zk〉 − εk ≥
1− σ2

k

2ck

(

‖ckMkv
k‖2

M−1

k

+ ‖zk − zk‖2
M−1

k

)

. (20)
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By the definition of ak, after some algebraic transformations, we obtain that

ak ≥
1− σ2

k

2ck

(‖ckMkv
k‖2

M−1

k

+ ‖zk − zk‖2
M−1

k

‖Mkvk‖2M−1

k

)

≥ (1− σ2
k)ck

1 +
√

1− (1− σ2
k)

2
. (21)

And, since
(

‖ckMkv
k‖M−1

k
− ‖zk − zk‖M−1

k

)2

≥ 0, it holds that

ak‖Mkv
k‖M−1

k
≥ (1− σ2

k)‖zk − zk‖M−1

k
. (22)

It is only necessary to consider the case when the right-hand side in (20) is positive (if
it is zero, (3) and (4) imply that zk ∈ T−1(0) and the method stops). If the right-hand
side in (20) is positive then zk is not contained in the closed halfspace

Hk = {z ∈ R
n | 〈vk, z − zk〉 − εk ≤ 0}.

Since vk ∈ T εk(zk), it holds that for any z∗ ∈ T−1(0) we have 〈vk − 0, zk − z∗〉 ≥ −εk.
In particular, z∗ ∈ Hk. By the properties of the skewed projection onto Hk, we have

z̄ := PHk,M
−1

k
(zk) = zk − 〈vk, zk − zk〉 − εk

‖Mkvk‖2M−1

k

Mkv
k = zk − akMkv

k,

z̄ − zk+1 = (τk − 1)akMkv
k, and 〈z∗ − z̄, vk〉 ≤ 0.

Using these relations (after adding and subtracting adequate terms), we obtain

‖z∗ − zk+1‖2
M−1

k

≤ ‖z∗ − zk‖2
M−1

k

− (1− (1− τk)
2)a2k‖Mkv

k‖2
M−1

k

≤ ‖z∗ − zk‖2
M−1

k

− (1− θ2)‖akMkv
k‖2

M−1

k

.
(23)

Condition (17) implies thatM−1
k+1 � (1+ηk)M

−1
k forall k, and that

∏∞

k=0(1+ηk) = p <∞.
Hence, from (10) and (23),

λ−1
u ‖z∗ − zk+1‖2 ≤ ‖z∗ − zk+1‖2

M−1

k+1

≤ (1 + ηk)‖z∗ − zk‖2
M−1

k

− (1− θ2)‖akMkv
k‖2

M−1

k

.

Applying this inequality consecutively, we obtain that

λ−1
u ‖z∗ − zk+1‖2 ≤

k
∏

i=0

(1 + ηi)‖z∗ − z0‖2
M−1

0

− (1− θ2)
k
∑

i=0

‖aiMiv
i‖2

M−1

i

, (24)

and, for any k,

‖z∗ − zk‖2 ≤ λu

k−1
∏

i=0

(1 + ηi)‖z∗ − z0‖2
M−1

0

≤ pλu
λl

‖z∗ − z0‖2, (25)

which shows that the sequence {zk} is bounded. Therefore, it has some accumulation
point, say z̃ ∈ R

n. Passing onto the limit when k → ∞ in these inequalities, we obtain
that

∞
∑

k=0

‖akMkv
k‖2 ≤ λu

∞
∑

k=0

‖akMkv
k‖2

M−1

k

≤ pλu
1− θ2

‖z∗ − z0‖2
M−1

0

<∞,



P. A. Lotito, L. A. Parente, M. V. Solodov / A Class of Variable Metric ... 867

and, as a consequence, we have

lim
k→∞

‖akMkv
k‖ = 0, lim

k→∞
‖Mkv

k‖ = 0 and lim
k→∞

‖zk − zk‖ = 0.

Since the matrices Mk are uniformly positive definite, we also have that limk→∞ vk = 0.
And, since εk ≤ 〈vk, zk − zk〉, it follows that limk→∞ εk = 0.

Let {zkj} be any subsequence converging to z̃. It then holds that zkj → z̃. For any
z ∈ R

n and any u ∈ T (z), 〈u− vkj , z − zkj〉 ≥ −εkj . Hence,

〈u− 0, z − zkj〉 ≥ 〈vkj , z − zkj〉 − εkj ,

and passing onto the limit when j → ∞ we obtain

〈u− 0, z − z̃〉 ≥ 0.

As z ∈ R
n and u ∈ T (z) were arbitrarily chosen, and T is maximal monotone, the

above relation shows that 0 ∈ T (z̃), i.e., z̃ is a solution. The proof of uniqueness of the
accumulation point is standard.

Assume now the Lipschitzian property (18) of T−1. Let ξk, ψk ∈ T (ξk) be the exact
solution of the proximal system ψ ∈ T (ξ), 0 = bkMkψ + ξ − zk, where bk = τkak. Since
vk ∈ T εk(zk), by [23, Lemma 4.3], by the definitions of ψk, vk and ak, and (22), it follows
that

‖ξk − zk‖2
M−1

k

+ ‖ξk − zk+1‖2
M−1

k

= ‖ξk − zk‖2
M−1

k

+ b2k‖Mkv
k −Mkψ

k‖2
M−1

k

≤ ‖zk − zk‖2
M−1

k

+ (τ 2k − 2τk)‖akMkv
k‖2

M−1

k

≤
(

τ 2k − 2τk +
1

(1− σ2
k)

2

)

‖akMkv
k‖2

M−1

k

. (26)

Since vk → 0, the first inequality in (26) implies that ψk → 0. Hence, there exists k1 ∈ N

such that ‖ψk‖ < L2 for all k > k1. By (18), we then have that

dist(ξk, T−1(0)) ≤ L1‖ψk‖ ∀k > k1.

Therefore, for k > k1,

dist(ξk, T−1(0))2
M−1

k

≤ L2
1

λ2l
‖ψk‖2Mk

=
L2
1

λ2l b
2
k

‖zk − ξk‖2
M−1

k

. (27)

Let ξ̄k := PT−1(0),M−1

k
(ξk). Then, for k > k1, by combining the Cauchy-Schwarz inequality

with (21), (22) and (23), we have that

dist(zk+1, T−1(0))M−1

k

≤ ‖zk+1 − ξ̄k‖M−1

k

≤ ‖zk+1 − ξk‖M−1

k
+ dist(xk, T−1(0))M−1

k

≤ ‖zk+1 − ξk‖M−1

k
+

L1

λlbk

(

‖ξk − zk‖M−1

k
+ ‖zk − zk‖M−1

k

)

,

≤ µk‖akMkv
k‖M−1

k
, (28)
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where

µk :=
√

α2
k + 1

√

β2
k − 1 + αkβk, (29)

with

αk :=
L1

(

1 +
√

1− (1− σ2
k)

2
)

λlck(1− σ2
k)(1− θ)

≤
L1

(

1 +
√

1− (1− σ2
u)

2
)

λlcl(1− σ2
u)(1− θ)

=: α. (30)

and βk :=
1

1− σ2
k

≤ 1

1− σ2
u

=: β. (31)

Let z̄k := PT−1(0),M−1

k
(zk). From (23) and (28), we obtain

dist(zk, T−1(0))2
M−1

k

≥ dist(zk+1, T−1(0))2
M−1

k

+ (1− θ2)‖akMkv
k‖2

M−1

k

≥
(

1 +
1− θ2

µ2
k

)

dist(zk+1, T−1(0))2
M−1

k

. (32)

Therefore,

dist(zk+1, T−1(0)) ≤ µk

√
λu

√

λl(µ2
k + 1− θ2)

dist(zk, T−1(0)). (33)

Let γ > 1. By the definitions (30) and (31), taking ck sufficiently large we can make αk

arbitrarily small, and by taking σk sufficiently small we can make βk arbitrarily close to
one, so we can make µk sufficiently small to satisfy

µk
√

µ2
k + 1− θ2

<
1

γ
.

Now note that by choosing 0 < σl < σu, cu > cl > 0, λu ≥ λl > 0 such that
√

λu/λl < γ, λu ≤ σl/(Lγ
√
10cu),

we satisfy the condition in the part of the proof that shows that the method is well-
defined. In addition, (33) now establishes that {dist(zk, T−1(0))} converges linearly to
zero. For Fejér-monotone sequences, this is equivalent to the linear convergence rate of
{zk} to its limit (see, e.g., [1]).

Assume now that the additional conditions (19) hold. Then,

1

(1 + ηk)
dist(z, T−1(0))2

M−1

k

= inf
y∈T−1(0)

1

(1 + ηk)
‖z − y‖2

M−1

k

(34)

≤ inf
y∈T−1(0)

‖z − y‖2
M−1

k+1

≤ inf
y∈T−1(0)

(1 + ηk) ‖z − y‖2
M−1

k

= (1 + ηk) dist(z, T
−1(0))2

M−1

k

. (35)

Define µ =
√
α2 + 1

√

β2 − 1 + αβ. Note that µ > µk for all k.
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Since
∏∞

i=0(1 + ηi) <∞, there exists k2 ∈ N such that

∞
∏

i=k2

(1 + ηi) <

√

µ2 + 1− θ2

µ
.

From (32), applying (34) consecutively, for any k ≥ k0 := max{k1, k2}, we have that

dist(zk+1, T−1(0))M−1

k0

≤ ν dist(zk, T−1(0))M−1

k0

,

where

ν :=
µ

√

µ2 + 1− θ2

∞
∏

i=k0

(1 + ηi) < 1,

as claimed.

3. Applications

We next show that in addition to decomposition methods of [10] and [42], already covered
by the scheme of [32], the proposed variable metric framework also includes splitting of
composite mappings [25] and proximal alternating directions methods [13, 17]. This
provides a unified view of all those techniques, some of which are seemingly unrelated,
as well as adds some new convergence rate results.

3.1. Splitting Method for Composite Mappings

Consider the following variational inclusion in the composite form: Find x ∈ R
n such

that
0 ∈ A⊤ΓA(x), (36)

where A : Rn → R
m is a linear operator (a matrix of appropriate dimensions), and

Γ : Rm
⇉ R

m is a maximal monotone (set-valued) operator. Problems of this form arise
frequently in applications [31, 27, 24]. For example, for a composite function f ◦A, where
f is convex, under appropriate regularity conditions it holds that ∂(f ◦ A) = A⊤∂fA.
Also, a sum of operators T1 + T2 is a special case corresponding to taking Ax = (x, x)
and Γ(x1, x2) = T1(x1) × T2(x2), so that A⊤(y1, y2) = y1 + y2 and, hence, A⊤ΓA(x) =
T1(x) + T2(x). (It should be noted that the converse is also true, i.e., a composite map
can be reformulated as a sum, e.g., [16].) However, unlike for sums of operators for
which a wealth of splitting methods have been proposed (e.g., [20, 41, 12, 11, 14, 43, 5]),
decomposition of inclusions in the composite form appears to be much less developed.
The first proposal in this direction seems to be the method of [25], which is derived as an
application of the Method of Partial Inverses [40], with the decomposition of the space
R

m = rgeA⊕ kerA⊤.

Let A† be the pseudo-inverse of A, i.e., for each y ∈ R
m it gives the minimal-norm

solution of the least-squares problem minx ‖Ax− y‖2. We next state the method of [25]
(we note that in [25] the more general setting of Hilbert spaces is considered).

Algorithm 3.1.

1. Choose some y01 ∈ rgeA and y02 ∈ kerA⊤. Set k := 1.
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2. Compute yk1 such that

0 ∈ Γ(yk1) + yk1 − (yk1 + yk2).

3. Set

xk+1 = A†(yk1),

yk+1
1 = A(xk+1),

yk+1
2 = yk2 + yk+1

1 − yk1 .

Set k := k + 1, and go to Step 2.

The above is indeed an attractive splitting method for solving the composite inclusion
(36), as it achieves a full decomposition between A and Γ: one computes proximal steps
for Γ and solves least-squares problems for A. We refer the reader to [25] for a detailed
discussion and some applications.

We next show that the splitting Algorithm 3.1 is a special case in the VMHPDM frame-
work of Section 2. Among other things, this gives rate of convergence results for Algo-
rithm 3.1 that were not available previously.

We first define the appropriate mappings H, G and F , that put the inclusion with
composite structure (36) in the form of finding a zero of T given by (11).

Fix some ν > 2 and define

H : Rm × R
m → R

m × R
m, H

(

y1
y2

)

=

(

Γ(y1)
0

)

,

G : Rn × R
m × R

m → R
m × R

m, G





x
y1
y2



 =

(

−y2 + ν−1(y1 − Ax)
y1 − Ax

)

,

F : Rn × R
m × R

m → R
n, F





x
y1
y2



 = A⊤y2 + ν−1A⊤(Ax− y1).

We claim that, with the definitions above, the problem

0 ∈ T (z) = T (x, y1, y2) = F (x, y1, y2)× [G(x, y1, y2) +H(y1, y2)]

is equivalent to the composite inclusion (36). Indeed, for z = (x, y1, y2) ∈ T−1(0) it holds
that

0 = y1 − Ax ⇒ y1 = Ax ∈ rgeA, A⊤(Ax− y1) = 0,

0 = A⊤y2 + ν−1A⊤(Ax− y1) = A⊤y2 ⇒ y2 ∈ kerA⊤,

0 ∈ Γ(y1)− y2 + ν−1(y1 − Ax) = Γ(y1)− y2 ⇒ y2 ∈ Γ(y1).

Combining these relations, we obtain that

A⊤ΓA(x) = A⊤Γ(y1) ∋ A⊤y2 = 0.
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Conversely, if x ∈ R
n verifies 0 ∈ A⊤ΓA(x), there must exist y1 ∈ rgeA and y2 ∈ kerA⊤

such that y1 = Ax and 0 ∈ Γ(y1)−y2. It is easily seen that 0 ∈ T (x, y1, y2). We conclude
that the two problems are equivalent.

Furthermore, the Assumptions A1, A2 and A4 of Section 2 hold trivially. We next show
that Assumption A3 holds as well. As F×G is single-valued and continuous, it is enough
to prove its monotonicity. To this end,

〈





x− x′

y1 − y′1
y2 − y′2



 ,





A⊤(y2 − y′2) + ν−1A⊤(A(x− x′)− (y1 − y′1))
y′2 − y2 + ν−1(y1 − y′1 − A(x− x′))

y1 − y′1 − A(x− x′)





〉

= ν−1(‖A(x− x′)‖2 − 2〈y1 − y′1, A(x− x′)〉+ ‖y1 − y′1‖2)
= ν−1‖A(x− x′)− (y1 − y′1)‖2 ≥ 0.

Thus, the chosen operator T satisfies all the assumptions of Section 2.

Next note that A⊤A is a symmetric positive semidefinite matrix, which is positive definite
if kerA = {0}. If kerA 6= {0}, we can make the decomposition R

n = kerA × (kerA)⊥

and write

A⊤A =

(

R 0
0 0

)

, (37)

where R is a symmetric positive definite matrix that acts on (kerA)⊥.

In the VMHPDM Algorithm 2.1, we shall now choose the following parameters:

ck = 1, Gk
1

(

y1
y2

)

=

( −y2
y1 +

1
ν−1

y2

)

, (38)

Qk =

(

ν 0
0 1

)

, Pk =
ν

ν − 1
P, (39)

with P = (A⊤A)−1 if kerA = {0} and P =

(

R−1 0
0 I

)

otherwise, where R is the

symmetric positive definite matrix defined in (37). Note that Gk
1 is Lipschitz-continuous

and monotone (since ν > 2).

Suppose that {yk1}∞k=0, {yk2}∞k=0 and {xk}∞k=1 are the iterates generated by Algorithm 3.1.
Observe that y02 ∈ kerA⊤ and formally define x0 = A†y01 ∈ (kerA)⊥, so that y01 = Ax0

(this is done because VMHPDM needs also the x-part of the starting point, while the
splitting Algorithm 3.1 employs only the y-part to start). We next show that VMHPDM
Algorithm 2.1 applied to the operator T , with (x0, y01, y

0
2) as the starting point and

with appropriate choice of the algorithm parameters, generates the same iterates as the
splitting Algorithm 3.1.

Suppose that Algorithms 2.1 and 3.1 have the same iterates until the one indexed by
some k ≥ 0. We shall show that the (k + 1) iterate is then also the same.

Forward-Backward Splitting Step (i.e., (12) with εyk = 0, ek = 0 and other parame-
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ters defined in (38)–(39)) computes yk1 ∈ R
m, yk2 ∈ R

m such that































(

hk1
hk2

)

∈ (H +Gk
1)(y

k) =

(

Γ(yk1)
0

)

+

( −yk2
yk1 +

1
ν−1

yk2

)

,

0 = Qk
hk + yk −

(

yk −Qk

[

G(xk, yk)−Gk
1(y

k)
])

=

(

νhk1 + yk1 −
(

yk1 − ν
[

−yk2 + ν−1(yk1 − Axk) + yk2
])

hk2 + yk2 −
[

yk2 − (yk1 − Axk − yk1 − 1
ν−1

yk2)
]

)

.

Since yk1 − Axk = 0 (by the construction of Algorithm 3.1, given that the k-th iterates
coincide), from the latter relations we obtain that























(

hk1
hk2

)

∈
(

Γ(yk1)− yk2
yk1 +

1
ν−1

yk2

)

,

0 = νhk1 + yk1 − yk1 ,

0 = hk2 − yk1 + yk2 − ν
ν−1

yk2 .

Hence,

hk =

(

ν−1(yk1 − yk1)
yk1 +

1
ν−1

yk2

)

∈
(

Γ(yk1)− yk2
yk1 − yk2 +

ν
ν−1

yk2

)

.

In particular, we have that

yk2 = yk2 +
ν − 1

ν
(yk1 − yk1). (40)

Inexact Proximal Step (i.e., (13) with εxk = 0 and other parameters defined in (38)–
(39)) computes xk ∈ R

n and uk ∈ R
n such that

{

uk ∈ F (xk, yk) = A⊤yk2 + ν−1A⊤(Axk − yk1),

rk = Pku
k + xk − xk,

(41)

and

‖rk‖2
P−1

k

+ ‖sk‖2
Q−1

k

≤ σ2
k

(

‖xk − xk‖2
P−1

k

+ ‖yk − yk‖2
Q−1

k

)

, (42)

where yk = (yk1 , y
k
2), y

k = (yk1 , y
k
2) and

wk = G(xk, yk) + hk −Gk
1(y

k) =

(

ν−1(yk1 − Axk)
yk1 − Axk

)

,

sk = Qk w
k + yk − yk =

(

yk1 − Axk

yk1 − Axk + yk2 − yk2

)

.

In the above, instead of the approximation condition (14) in the VMHPDM framework
we use the stronger version (16), corresponding to (42), so that we can define the new
iterates using the stepsize τkak = ck in (15), i.e.,
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Iterates Update: Stop if xk = kk and yk = yk, otherwise

xk+1 = xk − Pku
k = xk − rk,

yk+1 = yk −Qk w
k =

(

Axk

yk2 − yk1 + Axk

)

.

We next show that for adequate choices of the approximation parameter σk ∈ (0, 1), the
element xk = A†yk1 satisfies (41) and (42).

By the very definition of the pseudo-inverse, it holds that

A⊤(Axk − yk1) = 0. (43)

Then, using also (40), we have that (41) takes the form

{

uk = A⊤yk2 = A⊤(yk2 +
ν−1
ν
(yk1 − yk1)),

rk = Pku
k + xk − xk = ν

ν−1
P uk + xk − xk.

(44)

By the construction of Algorithm 3.1, and since the k-th iterates coincide, we have that
yk2 ∈ kerA⊤ and yk1 = Axk. Hence, A⊤yk2 = 0 and

A⊤(yk1 − yk1) = A⊤A(xk − xk) + A⊤(Axk − yk1) = P−1(xk − xk),

where we have taken into account (43) and the fact that xk − xk ∈ (kerA)⊥. By using
these relations in (44), we obtain

{

uk = ν−1
ν
P−1(xk − xk),

rk = 0.

This implies that xk+1 = xk − rk = xk = A†yk1 .

Furthermore, condition (42) then becomes

1

ν
‖yk1 − Axk‖2 + ‖yk1 − Axk + yk2 − yk2‖2

≤ σ2
k

(

ν − 1

ν
‖A(xk − xk)‖2 + 1

ν
‖yk1 − yk1‖2 + ‖yk2 − yk2‖2

)

. (45)

Note that, since yk1 = Axk and A⊤(yk1 − Axk) = 0, we have

‖yk1 − Axk‖2
= ‖yk1 − yk1 + Axk − Axk‖2
= ‖yk1 − yk1‖2 + ‖Axk − Axk‖2 + 2〈yk1 − yk1 , Ax

k − Axk〉
= ‖yk1 − yk1‖2 + ‖Axk − Axk‖2 + 2〈A⊤(yk1 − Axk + Axk − Axk), xk − xk〉
= ‖yk1 − yk1‖2 + ‖Axk − Axk‖2 + 2〈Axk − Axk, Axk − Axk〉
= ‖yk1 − yk1‖2 − ‖Axk − Axk‖2.
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Also, by using (40) and similar transformations as above, we obtain

‖yk1 − Axk + yk2 − yk2‖2

=

∥

∥

∥

∥

yk1 − yk1 + Axk − Axk +
ν − 1

ν
(yk1 − yk1)

∥

∥

∥

∥

2

=

∥

∥

∥

∥

1

ν
(yk1 − yk1) + A(xk − xk)

∥

∥

∥

∥

2

=
1

ν2
‖yk1 − yk1‖2 + ‖A(xk − xk)‖2 + 2

ν
〈yk1 − yk1 , A(x

k − xk)〉

=
1

ν2
‖yk1 − yk1‖2 +

(

1− 2

ν

)

‖A(xk − xk)‖2.

Hence, from these relations and (40), the inequality (45) is equivalent to

ν + 1

ν2
‖yk1 − yk1‖2 +

ν − 3

ν
‖A(xk − xk)‖2

≤ σ2
k

(

ν2 − ν + 1

ν2
‖yk1 − yk1‖2 +

ν − 1

ν
‖A(xk − xk)‖2

)

. (46)

Since we have chosen ν > 2, it holds that ν + 1 < ν2 − ν + 1 and there exists σk < 1
such that

ν + 1

ν2
< σk

ν2 − ν + 1

ν2
,

ν − 3

ν
< σk

ν − 1

ν
,

so that the inequality (46) (and, hence, (45)) is automatic.

Finally, the new iterates of VMHPDM Algorithm 2.1 are given by

xk+1 = xk = A†yk1 ,

yk+1
1 = Axk = Axk+1,

yk+1
2 = yk2 + Axk − yk1 = yk2 + yk+1

1 − yk1 ,

which is the same as in the splitting Algorithm 3.1.

Thus, convergence properties of Algorithm 3.1 are now given by Theorem 2.2, including
the new rate of convergence results.

3.2. Proximal Alternating Directions Method

Consider the following structured variational inequality:

Find z∗ ∈ Ω such that 〈Φ(z∗), z − z∗〉 ≥ 0 ∀z ∈ Ω, (47)

where
Ω = {(ξ, ζ) ∈ K1 ×K2 | Aξ +Bζ − b = 0},

Φ(ξ, ζ) = (f(ξ), g(ζ)), f : K1 → R
n, g : K2 → R

m,

with K1 ⊆ R
n, K2 ⊆ R

m being closed convex sets, f and g being monotone functions, A :
R

n → R
ℓ and B : Rm → R

ℓ being linear operators (matrices of appropriate dimensions),
b ∈ R

ℓ.
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We denote the solution set of (47) by SOL(Φ,Ω). For a variational inequality associated
to any other pair of a set and a mapping, the notation would be analogous. As is well
known, associating a Lagrange multiplier to the equality constraint in the definition of
Ω, (47) is equivalent to finding

(ξ∗, ζ∗, λ∗) ∈ SOL(Ψ, Z), (48)

where

Z = K1 ×K2 × R
ℓ, Ψ : Z → R

n × R
m × R

ℓ, Ψ(ξ, ζ, λ) =





f(ξ)− A⊤λ
g(ζ)−B⊤λ
Aξ +Bζ − b



 . (49)

The proximal alternating directions method (PADM) [17] (see also [13, 10] for related
techniques) is the following iterative procedure.

Algorithm 3.2. Given (ξk, ζk, λk) ∈ K1 ×K2 × R
ℓ, k ≥ 0,

1. Choose symmetric positive definite matrices Hk , Rk and Sk, of the dimensions
ℓ× ℓ, n× n and m×m, respectively.

2. Find ξk+1 ∈ SOL(fk, K1), where

fk(ξ) = f(ξ)− A⊤[λk −Hk(Aξ +Bζk − b)] +Rk(ξ − ξk).

3. Find ζk+1 ∈ SOL(gk, K2), where

gk(ζ) = g(ζ)−B⊤[λk −Hk(Aξ
k+1 +Bζ − b)] + Sk(ζ − ζk).

4. Set λk+1 = λk −Hk(Aξ
k+1 +Bζk+1 − b), k := k = 1 and go to Step 1.

First observe that problem (48) is equivalent to the variational inclusion

0 ∈ T (z) = F (ζ, ξ, λ)× [G(ζ, ξ, λ) +H(ξ, λ)], (50)

with
F : Rm × R

n × R
ℓ → R

m, F (ζ, ξ, λ) = g(ζ)−B⊤λ+NK2
(ζ),

G : Rm × R
n × R

ℓ → R
n × R

ℓ, G(ζ, ξ, λ) =

(

f(ξ)− A⊤λ
Aξ +Bζ − b

)

,

H : Rn × R
ℓ → R

n × R
ℓ, H(ξ, λ) =

(

NK1
(ξ)

0

)

,

where NK1
(·) and NK2(·) are the normal cones to the sets K1 and K2, respectively.

It is evident that T defined above satisfies the Assumptions A1–A4 of Section 2. Taking
x = ζ and y = (ξ, λ), we apply Algorithm 2.1 to the operator T defined in (50), with
the following choices of the algorithm parameters:

ck = 1, Gk
1(·, ·) = G(ζk, ·, ·), (51)

Qk =

(

R−1
k 0

0 Hk

)

, Pk = (Sk +B⊤HkB)−1. (52)
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Observe that

G(xk, yk)−Gk
1(y

k) = 0, G(xk, yk)−Gk
1(y

k) = (0, B(ζk − ζk)). (53)

We next show that VMHPDM Algorithm 2.1, with appropriate choice of the parameters,
when applied to the operator T above generates the same iterates as PADM Algorithm
3.2.

Forward-Backward Splitting step (i.e., (12) with εyk = 0, ek = 0 and other parame-
ters given by (51)–(52)) computes yk ∈ R

n × R
ℓ such that

yk = (ξk, λk) = yk +Qk

[

Gk
1(y

k)−G(xk, yk)− hk
]

= yk −Qk
hk

∈ yk −Qk(H +Gk
1)(y

k)

=

(

ξk −R−1
k (NK1

(ξk) + f(ξk)− A⊤λk)

λk −Hk(Aξk +Bζk − b)

)

,

where
(H +Gk

1)(y
k) ∋ hk = (hk1, A

ξk +Bζk − b),

NK1
(ξk) + f(ξk)− A⊤λk ∋ hk1 = Rk(ξ

k − ξk),
(54)

and we have taken into account (53).

(Exact) Proximal Step (i.e., (13) with εxk = 0, rk = 0 and other parameters given by

(51)–(52)) computes ζk ∈ K2 and uk ∈ R
m such that











uk ∈ F (xk, yk) = g(ζk)−B⊤λk +NK2
(ζk)

= g(ζk)−B⊤[λk −Hk(Aξk +Bζk − b)] +NK2
(ζk),

0 = Pku
k + ζk − ζk,

(55)

with
‖sk‖2

Q−1

k

≤ σ2
k(‖ζk − ζk‖2

P−1

k

+ ‖(ξkλk)− (ξk, λk)‖2
Q−1

k

), (56)

where (using (53) and (54))

wk = G(xk, yk)−Gk
1(y

k) + hk =

(

Rk(ξ
k − ξk)

Aξk +Bζk − b

)

,

sk = Qk w
k + (ξk, λk)− (ξk, λk)

=

(

R−1
k Rk(ξ

k − ξk) + ξk − ξk

Hk(Aξk +Bζk − b)−Hk(Aξk +Bζk − b)

)

=

(

0

HkB(ζk − ζk)

)

.

In the above, instead of the approximation condition (14) in the VMHPDM framework
we use the stronger version (16), corresponding to (56), so that we can define the new
iterates using the stepsize τkak = ck in (15), i.e.,
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Iterates Update: Stop if ξk = ξk, ζk = ζk and λk = λk, otherwise

ζk+1 = ζk − Pku
k = ζk,

ξk+1 = ξk −R−1
k Rk(ξ

k − ξk) = ξk,

λk+1 = λk −Hk(Aξk +Bζk − b).

We next show that the iterates defined above are the same as those given by PADM
Algorithm 3.2.

From the second relation in (54), we have that

NK1
(ξk) ∋ −

(

f(ξk)− A⊤λk +Rk(ξ
k − ξk)

)

= −
(

f(ξk)− A⊤[λk −Hk(Aξk +Bζk − b)] +Rk(ξ
k − ξk)

)

.

By the definition of fk in PADM Algorithm 3.2, this gives

−fk(ξk) ∈ NK1
(ξk),

i.e., ξk+1 = ξk ∈ SOL(fk, K1).

Similarly, from (55) and (52), we have that

NK2
(ζk) ∋ uk −

(

g(ζk)−B⊤[λk −Hk(Aξk +Bζk − b)]
)

= P−1
k (ζk − ζk)−

(

g(ζk)−B⊤[λk −Hk(Aξk +Bζk − b)]
)

= −
(

g(ζk)−B⊤[λk −Hk(Aξk +Bζk − b)]

+(P−1
k −B⊤HkB)(ζk − ζk)

)

= −
(

g(ζk)−B⊤[λk −Hk(Aξ
k+1 +Bζk − b)] + Sk(ζ

k − ζk)
)

By the definition of gk in PADM Algorithm 3.2, this gives

−gk(ζk) ∈ NK2
(ζk),

i.e., ζk+1 = ζk ∈ SOL(gk, K2).

Finally, λk+1 = λk −Hk(Aξ
k+1 +Bζk+1 − b) is the same as the update of the multiplier

in PADM Algorithm 3.2.

Furthermore, the approximation condition (56) takes the form

‖HkB(ζk − ζk)‖2
H−1

k

≤ σ2
k

(

‖ζk − ζk‖2Sk
+ ‖ζk − ζk‖2B⊤HkB

+ ‖(ξkλk)− (ξk, λk)‖2
Q−1

k

)

or, equivalently,

〈ζk − ζk, B⊤HkB(ζk − ζk)〉

≤ σ2
k

1− σ2
k

(

‖ζk − ζk‖2Sk
+ ‖(ξkλk)− (ξk, λk)‖2

Q−1

k

)

. (57)
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Let µl and µu be respectively the lower and upper bounds for the eigenvalues of Hk and
Sk. Then

〈ζk − ζk, B⊤HkB(ζk − ζk)〉 ≤ µu‖B‖2‖ζk − ζk‖2

and
µl‖ζk − ζk‖2 ≤ ‖ζk − ζk‖2Sk

.

Hence, the inequality (57) (equivalently, the approximation condition (56)) would be
satisfied if

σ2
k

1− σ2
k

≥ µu‖B‖2
µl

,

and this can be ensured by choosing

1 > σ2
k ≥ µu‖B‖2

µu‖B‖2 + µl

.

This completes the demonstration of the fact that PADM Algorithm 3.2 is a special case
of VMHPDM Algorithm 2.1. Thus, convergence properties of Algorithm 3.2 are now
given by Theorem 2.2, including the new rate of convergence results.
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