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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖, I =
{1, 2, ...,m} a finite set of indices, and {Ti}i∈I a finite collection of nonexpansive self-
mappings of H. (Recall that a mapping T of a subset C of H into H is called nonex-
pansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.) Suppose further that the intersection
F of the fixed point sets of these mappings is nonempty. Our aim is to find an element
of F , that is, a common fixed point of the collection {Ti}i∈I . We denote by IN and IR+

the set of positive integers and nonnegative real numbers, respectively.
A frequently employed approach to the solution of this problem is the following one.
Let σ be a mapping from IN onto I that takes each value in I infinitely often and let
{λn}∞n=1 ⊂ IR+ be any bounded sequence. Then a sequence {xn}∞n=1 is generated by

x1 is arbitrary, xn+1 = xn + λn(Tσ(n)xn − xn), for all n ∈ IN. (1)

Comparing such sequences with the relaxed products generated by some form of con-
trol (for example, cyclic control [4]), we speak of random (unrestricted) products. Such
products find application in different fields: decomposition methods for the numerical
solution of partial differential equations [6], systems of linear equalities and inequalities
[8], approximation theory [22], population biology [13], mathematical programming [17],
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and image recovery (in particular, computer tomography [16, 18]).
The sequence defined by (1) does not converge, in general, to a common fixed point as
the simple example H = IR, I = {1}, λn = 1 for all n ∈ IN , and T1 = −Id shows
(here Id stands for the identity operator). But in the case where I = {1}, T1 is firmly
nonexpansive and 0 < ǫ ≤ λn = λ ≤ 2− ǫ for all n ∈ IN , it follows from a result of Opial
[20] that the sequence {xn}∞n=1 does converge weakly to a point in F . Dye and Reich [12,
Theorem 1] show that if T1 and T2 are nonexpansive mappings satisfying condition (W )
and λn = 1 for all n ∈ IN , then any random product drawn from T1 and T2 converges
weakly to a common fixed point. But what about the case where the collection of map-
pings consists of more than two mappings? Does the sequence {xn}∞n=1 still converge?
This question is motivated by a long-standing question about the convergence of the
successive projections method where each Ti is the nearest point projection onto some
closed and convex subset Ci of H. In this case the problem is reduced to that of finding
a point in the intersection of these sets. In most of the literature it is usually assumed
that the sets are chosen either in an essentially cyclic (quasi-periodic) order (that is,
every set is chosen at least once every K iterations, for some K ≥ m) or according to the
maximal distance rule (i.e., one chooses a set that is in some sense farthest away from
the current iterate). Under such assumptions one can prove weak convergence of the
iterates [5]. The notion of a step size (called relaxation parameter) λn was introduced in
[1] and [19]. It has been observed that a value of λn different of 1 (i.e., under- or over-
relaxation) can significantly improve the convergence rate (see [9, 15, 18]). The values
of λn are usually restricted to the interval [ǫ, 2 − ǫ]. Thus the following questions arise
naturally in this connection. The first one is, can the above assumptions on the order
of projections be weakened? In particular, if no assumptions on the order of projections
is made, would the iterates still converge? Secondly, is it possible to set the values of
the relaxation parameters far away from this interval while preserving the convergence
property of the sequence {xn}∞n=1? The third interesting question is whether a broader
class of mappings, that properly contains the class of projection mappings, can be used
and what is the connection between such a class of mappings and the range of relaxation
parameters? The answer to the first question was shown by Prager [21] to be yes if H
is finite dimensional and the Ci’s are closed linear subspaces of H. Prager’s result was
later extended by Amemiya and Ando [2] to the case where the Ci’s are closed linear
subspaces of any Hilbert space H. However, they established only weak convergence
in the infinite-dimensional case. Bruck [7] proved a weak convergence result assuming
that m = 3 and Ci = −Ci for all i. Youla [25] provided a general result which proves
weak convergence assuming only that the Ci’s share a so called “inner point�. Dye and
Reich [12] showed that if the sets Ci have a common “weak internal point�, or m = 3
and T1, T2, T3 are nonexpansive retractions onto C1, C2, C3, respectively, then any ran-
dom product converges weakly to some point in

⋂

i∈I Ci. In [24] Tseng established two
convergence theorems for products drawn from a finite collection of firmly nonexpansive
mappings (recall that a nearest point projection mapping is, in fact, firmly nonexpansive
[4, 14]).
In the present paper we extend and improve upon Tseng’s theorems as follows. We prove
our results in the very general context of products of mappings belonging to a recently
defined class of mappings called ν-quasi-nonexpansive [10, 11]. This class of mappings
properly contains the class of averaged and thus, in turn, of firmly nonexpansive map-
pings. When H is finite dimensional, no additional assumption on the order control
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is needed to establish convergence of our method (see Theorem 3.1 below). Moreover,
we propose a new range of relaxation parameters which at each stage of the iteration
depends, naturally enough, on the specific mapping employed at this particular stage.
Finally, we establish a weak convergence result (Theorem 3.2) for infinite dimensional
Hilbert spaces H under the so called quasi-cyclic order [24]. The quasi-cyclic order con-
trol may be considered an extension of the essentially cyclic order in which the lengths
of the quasi-cycles are allowed to increase without bound, but not too fast.

2. Preliminaries

In this short section we recall the notions of quasi-nonexpansive and ν-quasi-nonexpan-
sive mappings. We denote the fixed point set of a mapping T by Fix T .

Definition 2.1. Let C be a nonempty subset of a Hilbert space H and let T : C → H
be a mapping with a fixed point. We say that T is quasi-nonexpansive if for every x ∈ C
and f ∈ Fix T ,

‖Tx− f‖ ≤ ‖x− f‖. (2)

A more quantitative and stronger version of this definition has recently been introduced
by Crombez [10, 11].

Definition 2.2. Let C be a nonempty subset of H and let T : C → H be a mapping
with Fix T 6= ∅. Given ν ≥ 0, we say that T is a ν-quasi-nonexpansive mapping if for
every x ∈ C and f ∈ Fix T ,

‖Tx− f‖2 ≤ ‖x− f‖2 − ν‖x− Tx‖2. (3)

The class of ν-quasi-nonexpansive mappings properly contains all averaged mappings
and thus all firmly nonexpansive mappings. There are several useful consequences of (3)
(see [10, Theorem 3.2]). In the sequel we will only need the following one.

Proposition 2.3 ([10, Theorem 3.2(iii)]). Let C be a nonempty subset of H and ν
a nonnegative number. A mapping T : C → H with a nonempty fixed point set Fix T is

ν-quasi-nonexpansive if and only if

〈f − x, Tx− x〉 ≥
(

1 + ν

2

)

‖Tx− x‖2 (4)

for all x ∈ C and f ∈ Fix T .

3. Convergence Theorems

We introduce the following assumptions on the mappings, order control and relaxation
parameters.

Assumptions on the mappings. (Ti)i∈I is a finite collection of continuous νi-quasi-
nonexpansive self-mappings of a real Hilbert space H with a common fixed point, that
is, F =

⋂

i∈I Fix Ti 6= ∅.
Assumptions on the order control. The mapping σ : IN → I is such that each element
of I appears in the sequence {σ(n)}∞n=1 an infinite number of times.
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Assumptions on the relaxation parameters. For a given ǫ > 0, the sequence {λn}∞n=1 is
such that ǫ ≤ λn ≤ νσ(n) + 1− ǫ for all n ∈ IN .

Given x1 ∈ H, we define the sequence {xn}∞n=1 by

xn+1 = xn + λn(Tσ(n)xn − xn). (5)

Theorem 3.1. Suppose that the Hilbert space H is finite dimensional, and that the above

assumptions on the mappings, order control and relaxation parameters hold. Then the

sequence {xn}∞n=1 generated by (5) converges to a point in F .

Proof. We begin our proof by showing that {xn} is Fejér monotone [4, Definition 2.15]
with respect to F and hence bounded. Indeed, from Proposition 2.3 it follows that for
all f ∈ F ,

‖xn − f‖2 − ‖xn+1 − f‖2
= ‖xn − f‖2 − ‖xn+1 − xn + xn − f‖2
= ‖xn − f‖2 − (‖xn+1 − xn‖2 + ‖xn − f‖2 + 2〈xn − f, xn+1 − xn〉)
= 2〈f − xn, xn+1 − xn〉 − ‖xn+1 − xn‖2
= 2λn〈f − xn, Tσ(n)xn − xn〉 − λ2

n‖Tσ(n)xn − xn‖2

≥ 2λn

(

1 + νσ(n)
2

)

‖Tσ(n)xn − xn‖2 − λ2
n‖Tσ(n)xn − xn‖2

= λn(1 + νσ(n) − λn)‖Tσ(n)xn − xn‖2

≥ ǫ2‖Tσ(n)xn − xn‖2 (6)

≥ 0,

that is, ‖xn− f‖ ≥ ‖xn+1− f‖. From the boundedness of {xn} we obtain that {Tσ(n)xn}
is bounded too. Therefore it has a cluster point in H. We denote by Y the set of all
cluster points of the sequence {Tσ(n)xn} and claim that Y

⋂

F 6= ∅. We prove this by
contradiction. Suppose that Y

⋂

F = ∅. Let y ∈ Y and let {nk}∞k=1 be any subsequence
of IN such that {Tσ(nk)xnk

}∞k=1 converges to y. We can assume (after passing to another
subsequence if necessary) that, for some i ∈ I, σ(nk) = i for all k ∈ IN . Then Tσ(nk)xnk

=
Tixnk

for all k ∈ IN . The continuity of Ti, when combined with (6), implies that y = Tiy,
or equivalently, y ∈ Fi := Fix Ti. Since y /∈ F , there exists some nonempty subset
J ⊂ I such that y ∈ ⋂

j∈J Fj and y /∈ Fp for all p ∈ I \ J . For each k ∈ IN , let

δ(nk) denote the smallest integer τ > nk such that σ(τ) ∈ I \ J . Note that δ(nk) is
monotonically increasing and tends to ∞ as k → ∞. From the definition of δ(nk) we
have that σ(τ) ∈ J for all τ ∈ {nk, nk + 1, ..., δ(nk) − 1}. Since y ∈ ⋂

j∈J Fj, it follows

that ‖y − xτ‖ ≥ ‖y − xτ+1‖ for all τ ∈ {nk, nk + 1, ..., δ(nk)− 1}, so that

‖y − xnk
‖ ≥ ‖y − xδ(nk)‖. (7)

Since our choice of nk was arbitrary, inequality (7) holds for all k ∈ IN . Furthermore,
since {Tσ(δ(nk))xδ(nk)}∞k=1 is bounded, it has some cluster point ỹ. Similarly, we can

assume (by passing to another subsequence if necessary) that there exists some ĩ ∈ I \ J
such that σ(δ(nk)) = ĩ for all k ∈ IN and that {Tσ(δ(nk))xδ(nk)} converges to ỹ. Thus we



A. Aleyner, S. Reich / Random Products of Quasi-Nonexpansive Mappings ... 637

obtain Tσ(δ(nk))xδ(nk) = Tĩxδ(nk) for all k ∈ IN . Since Tĩ is continuous, this implies that
ỹ = Tĩỹ, or equivalently, ỹ ∈ Fĩ. Thus ỹ 6= y. We also have

‖y − Tσ(δ(nk))xδ(nk)‖2

= ‖y − ỹ‖2 + 2〈y − ỹ, ỹ − Tσ(δ(nk))xδ(nk)〉+ ‖ỹ − Tσ(δ(nk))xδ(nk)‖2,

for all k ∈ IN . Hence

lim
k→∞

‖y − Tσ(δ(nk))xδ(nk)‖2 = ‖y − ỹ‖2.

From (6) and (7) we obtain that

lim
k→∞

‖y − Tσ(nk)xnk
‖2 = lim

k→∞

‖y − xnk
‖2

≥ lim
k→∞

‖y − xδ(nk)‖

= lim
k→∞

‖y − Tσ(δ(nk))xδ(nk)‖2

= ‖y − ỹ‖2.

But {Tσ(nk)xnk
} converges to y. Hence y = ỹ, which contradicts the fact that y 6= ỹ.

Consequently, the sequence {xn} has a cluster point in F . By [4, Theorem 2.16], since
the Fejér monotone sequence {xn} has a cluster point in F , it converges to a point in
F .

Next we consider another order control (namely, the quasi-cyclic order control [24]) which
is more restrictive than the previous one. With this order control we are able to establish
a weak convergence result in an infinite dimensional setting.

Assumptions on the order control. There exists a sequence of positive integers {τ1, τ2, ...},
satisfying τ1 = 1, τk+1 − τk ≥ m for all k ∈ IN and

∑

∞

k=1
1

τk+1−τk
= ∞, such that

I ⊂ {σ(τk), σ(τk + 1), ..., σ(τk+1 − 1)}. In other words, this order means that every
mapping Ti is applied at least once between the τk-th and the (τk+1 − 1)-th iteration
(called the k-th quasi-cycle) for all k, and that the length of the k-th quasi-cycle, namely,
τk+1 − τk, cannot grow too fast with k. The special case where τk = m(k− 1) + 1 for all
k gives rise to the well known cyclic order for which σ(n) = n (mod m) for all n ∈ IN
(thus the length of each quasi-cycle is exactly m). Another interesting choice of the τk’s
is given by τk+1 = τk + km for all k ∈ IN . In this case the length of the k-th quasi-cyclic
increases linearly with k.

Theorem 3.2. Suppose that the assumptions on the mappings and the relaxation pa-

rameters hold, and let the sequence {xn}∞n=1 be generated by (5) under the quasi-cyclic

order control. Then the sequence {xn}∞n=1 has a unique weak cluster point in F .

Proof. First we assert that there exists a subsequence {nk} ⊂ IN such that

lim
k→∞

τnk+1
∑

t=τnk
+1

‖xt+1 − xt‖ = 0. (8)
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Suppose that such a subsequence does not exist. Then there exist some δ > 0 and an
integer k̄ such that

δ ≤
τk+1
∑

n=τk+1

‖xn+1 − xn‖

for all k ≥ k̄.
By the Cauchy-Bunyakovskii-Schwarz inequality, we know that

τk+1
∑

n=τk+1

‖xn+1 − xn‖ ≤

√

√

√

√

τk+1
∑

n=τk+1

‖xn+1 − xn‖2 ·
√
τk+1 − τk.

This inequality implies, in turn, that

δ2 ≤
τk+1
∑

n=τk+1

‖xn+1 − xn‖2(τk+1 − τk)

for all k ≥ k̄. Thus

δ2
∞
∑

k=k̄

1

τk+1 − τk
≤

∞
∑

k=k̄

τk+1
∑

n=τk+1

‖xn+1 − xn‖2 =
∞
∑

n=τ
k̄
+1

‖xn+1 − xn‖2. (9)

But from (6) it follows that

‖xn − f‖2 − ‖xn+1 − f‖2 ≥
(

ǫ

λn

)2

‖xn+1 − xn‖2.

Since {‖xn − f‖2}∞n=1 is monotonically decreasing and

n
∑

k=1

(

‖xk − f‖2 − ‖xk+1 − f‖2
)

≤ ‖x1 − f‖2,

we obtain that

∞
∑

n=1

(

‖xn − f‖2 − ‖xn+1 − f‖2
)

< ∞,

which, in turn, implies that

∞
∑

n=1

(

ǫ

λn

)2

‖xn+1 − xn‖2 < ∞.

Since the index set I is finite, we see that while the right-hand side of (9) is finite,
the left-hand side is infinite, thereby obtaining a contradiction. Thus there exists some
subsequence {nk} ⊂ IN satisfying (8).
Since {xn}∞n=1 is bounded, there exist some x̄ ∈ H and some subsequence of {nk}∞k=1,
which we again denote by {nk}∞k=1, such that {xτnk

+1}∞k=1 converges weakly to x̄. We
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assert that x̄ ∈ F . To see this, fix any i ∈ I. Since the mappings are applied in quasi-
cyclic order, for each k ∈ IN , there exists some ρnk

∈ {τnk
, τnk

+ 1, ..., τnk+1 − 1} such
that σ(ρnk

) = i. Using the fact that

‖xρnk
+1 − Tσ(ρnk

)xρnk
‖ = ‖xρnk

+1 − xρnk
+ xρnk

− Tσ(ρnk
)xρnk

‖
≤ ‖xρnk

+1 − xρnk
‖+ ‖xρnk

− Tσ(ρnk
)xρnk

‖

≤ ‖xρnk
+1 − xρnk

‖+ 1

λρnk

‖xρnk
+1 − xρnk

‖

≤ (1 +
1

ǫ
)‖xρnk

+1 − xρnk
‖

for all k ∈ IN , we have

‖xτnk
+1 − Tσ(ρnk

)xρnk
‖ ≤

τnk+1
∑

t=τnk
+1

‖xt+1 − xt‖+ ‖xρnk
+1 − Tσ(ρnk

)xρnk
‖

≤
τnk+1
∑

t=τnk
+1

‖xt+1 − xt‖+ (1 +
1

ǫ
)‖xρnk

+1 − xρnk
‖

for all k ∈ IN . Thus from (8) we obtain that limk→∞ ‖xτnk
+1 − Tσ(ρnk

)xρnk
‖ = 0, so that

{Tσ(ρnk
)xρnk

}∞k=1 also converges weakly to x̄. Since Tσ(ρnk
)xρnk

= Tixρnk
for all k ∈ IN ,

this together with Tixρnk
− xρnk

→ 0 implies that {xρnk
} converges weakly to x̄. Using

the Demiclosedness Principle [4, Fact 1.2], we may now conclude that x̄ ∈ Fi. Since
the choice of i ∈ I was arbitrary, we obtain that x̄ ∈ F . Finally, invoking [4, Theorem
2.16], we deduce that x̄ is the unique weak cluster point of the sequence {xn}∞n=1 in F ,
as claimed.

Remark. When each mapping Ti, 1 ≤ i ≤ m, is firmly nonexpansive we may assume,
in both Theorems 3.1 and 3.2, that each Ti is just a self-mapping of a given closed and
convex subset C of H. This is a consequence of the extension theorem in [3] which
is proved by using the convex-analytic approach of [23] to the Kirszbraun-Valentine
extension theorem.
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