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This paper concerns nonsmooth optimization problems involving operator constraints given by map-
pings on complete metric spaces with values in nonconvex subsets of Banach spaces. We derive general
first-order necessary optimality conditions for such problems expressed via certain constructions of gen-
eralized derivatives for mappings on metric spaces and axiomatically defined subdifferentials for the
distance function to nonconvex sets in Banach spaces. Our proofs are based on variational principles
and perturbation/approximation techniques of modern variational analysis. The general necessary con-
ditions obtained are specified in the case of optimization problems with operator constraints described
by mappings taking values in approximately convex subsets of Banach spaces, which admit uniformly
Gâteaux differentiable renorms (in particular, in any separable spaces).
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1. Introduction

A vast majority of problems considered in optimization theory are described in Banach
(if not finite-dimensional) spaces, where the linear structure is crucial to employ conven-
tional tools of variational analysis and (generalized) differentiation for deriving necessary
optimality conditions and subsequently developing numerical algorithms. On the other
hand, there is a number of remarkable classes of problems particularly important for
optimization, control, and their various applications that admit adequate descriptions
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in spaces with no linear structures; see, e.g., [5, 15, 17, 18, 20, 21] and the references
therein.

In this paper we pay the main attention to deriving first-order necessary optimality con-
ditions for a general class of optimization problems with operator constraints in complete
metric spaces. The basic problem is described as follows:

{

minimize ϕ(w) with w ∈W

subject to f(w) ∈ Θ,
(1)

where (W, ρ) is a complete metric space with the metric ρ, where ϕ : W → IR := (−∞,∞]
is a lower semicontinuous (l.s.c.) extended-real-valued cost function, and where f : W →
X is a continuous operator constraint mapping taking values in a closed subset Θ of a
Banach space (X, ‖ · ‖) equipped with the norm ‖ · ‖. Note that the case of additional
geometric constraints w ∈ Ω given by a closed subset Ω ⊂ W can be easily reduced to
the basic form (1) in the complete metric space (Ω, ρ).

Recently problem (1) has been considered in [17] in the case when ϕ is a continuous
function and when Θ is a convex subset of a Banach space X whose topological dual
space X∗ is strictly convex (or rotund in the norm topology; see, e.g., [7]). A version of
the abstract multiplier rule obtained in [17] has been applied in [18] to derive a maximum
principle for a general deterministic optimal control problem with state constraints.

Let us particularly emphasize that the convexity assumption on the constraint set Θ
imposed in [17] is clearly a restriction from both viewpoints of optimization theory and
applications. The primary goal of this paper is to establish necessary conditions for
local optimal solutions to problem (1) with no convexity requirements imposed on the
constraint set Θ and/or continuity assumptions on the cost function ϕ. We derive such
optimality conditions in the general case of complete metric spaces, lower semicontinuous
cost functions ϕ : W → IR, and continuous mappings f : W → X taking values in closed
subsets Θ of arbitrary Banach spaces. Furthermore, we obtain efficient specifications of
our general necessary optimality conditions in the case of approximately convex subsets
Θ of Banach spaces X admitting uniformly Gateaux differentiable renorms (equivalent
to the weak∗ uniform rotundity (W∗UR) of X∗ [7]) that encompass, in particular, every
separable Banach space. The latter result essentially improves the multiplier rule derived
in [17] for problems with convex constraint sets considered therein in the more restrictive
setting.

To establish necessary optimality conditions for the general problem (1), we employ
the notions of subderivates for functions and mappings on metric spaces and also of
the (topological and sequential) outer regular subdifferentials introduced and applied
below for the distance functions of closed subsets in Banach spaces. The latter abstract
subdifferential notions are defined axiomatically via several required properties that hold
in natural settings for major subdifferential constructions encountered in variational
analysis and optimization.

The rest of the paper is organized as follows. In Section 2 we define and discuss the
notions of approximate (sub)derivates and strict (sub)derivates for generally nonsmooth
mappings and extended-real-valued functions on metric spaces as well as of abstract
outer regular subdifferentials for the distance functions in Banach spaces.
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Section 3 presents the main result of the paper establishing first-order necessary optimal-
ity conditions for the general problem (1) with operator constraints. The result obtained
is expressed in terms of the strict subderivates of ϕ and f in (1) and of the outer subd-
ifferentials for the distance function dΘ of the constraint set Θ defined in Section 2. The
proof is based on employing the Ekeland variational principle and advanced perturbation
techniques of variational analysis via the strict derivate construction and the appropriate
properties of outer subgradients postulated and justified in the previous section.

Section 4 is devoted to the description and certain useful properties of extended-real
valued approximately convex functions in Banach spaces introduced in [23]. These con-
structions are closely related to some other remarkable notions of generalized convexity,
which play an important role in variational analysis and optimization. We establish new
properties of approximately convex functions and sets in terms of generalized differential
constructions of variational analysis paying the main attention to a modified version of
approximate convexity around the reference points.

In the concluding Section 5 we apply the general necessary optimality conditions estab-
lished in Section 3 and the properties of approximately convex functions and sets from
Section 4 to derive efficient specifications of the general result in the case of problem (1)
with approximately convex constraint sets Θ in Banach spaces X admitting uniformly
Gateaux differentiable renorms. As mentioned, this class of spaces contains all separa-
ble Banach spaces particularly important for variational analysis and its applications to
optimization and related topics. We show that the major subdifferential constructions
in variational analysis – that are known to be the same for the distance functions of ap-
proximately convex sets – enjoy the required properties of the topological and sequential
outer subdifferentials, which agree in the Banach spaces under consideration and allow
us to efficiently apply the main result of Section 3. Furthermore, the latter result is
constructively specified for approximately convex sets and expressed in the form similar
to the case of (full) convexity developed in [17]. We also discuss various modifications
and extensions of the proofs and results developed in Sections 4 and 5.

Throughout the paper we mainly use standard notation of variational analysis; see, e.g.,
[20, 26]. Recall that IN = {1, 2, . . .}, that IB and IB∗ stand for the closed unit ball in
the Banach space in question and its topological dual, that B(x̄; r) is the closed ball

centered at x̄ with radius r > 0, and that x
w∗

→ x∗ signifies the weak∗ convergence in the
dual X∗ to a Banach space X with the canonical paring 〈·, ·〉 between the primal and
dual spaces. We use the notation F : X →→ Y for set-valued mappings with the graph

gphF :=
{

(x, y) ∈ X × Y
∣

∣ y ∈ F (x)
}

to distinguish them from single-valued mappings denoted as usual by f : X → Y . Given
a set-valued mapping F : X →→ X∗ between a Banach space and its dual, the symbol

Lim sup
x→x̄

F (x) :=
{

x∗ ∈ X∗
∣

∣

∣
∃ a bounded net (xν , x

∗
ν) ∈ gphF

with xν → x̄ and x∗ν
w∗

→ x∗
}

.
(2)

signifies the topological Painlevé-Kuratowski outer limit of F as x→ x̄. If the nets in (2)
are replaced by sequences, we call (2) the sequential Painlevé-Kuratowski outer limit of
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F as x→ x̄ and use the same notation while indicating each time what kind of the limit
is under consideration in the specific situation.

Given further a nonempty subset Θ ⊂ X of a Banach space X, denote by clΘ its closure,
by bdΘ its boundary, by coneΘ := {αx| α ≥ 0, x ∈ Θ} its conic hull, and by

dΘ(x) := inf
{

‖x− y‖
∣

∣ y ∈ Θ
}

(3)

the distance function associated with Θ. We use the symbol Θ′ := X \ Θ to signify the

complement of Θ in X and the symbol x
Θ→ x̄ to indicate that x → x̄ with x ∈ Θ. By

convention, let α∅ := ∅ for α ∈ IR with α 6= 0 and 0 · ∅ := 0. We always suppose that all
the extended-real-valued functions ψ : W → IR under consideration are proper, i.e.,

domψ :=
{

w ∈W
∣

∣ ψ(w) <∞
}

6= ∅.

2. Subderivates and Subdifferentials

In this section we introduce and discuss the major notions of generalized differentiation
used in this paper: the approximate (sub)derivates and strict (sub)derivates for nons-
mooth mappings and extended-real-valued functions on metric spaces as well as of the
axiomatically defined outer regular subdifferentials for the distance functions in normed
spaces.

Let us start with the constructions of subderivates and derivates and define them for
mappings f : W → X on metric spaces (W, ρ) with values in normed spaces (X, ‖ · ‖).
Although the definitions below do not use the completeness of the domain and image
spaces, these properties are essential in the proofs of our main results. Thus we always
assume that the underlying domain metric spaceW is complete and the image space X is
Banach. Furthermore, the presented subderivate/derivate definitions are automatically
applied to extended-real-valued functions ϕ : W → IR finite at the reference points.

Given f : W → X and w̄ ∈W , denote by S(w̄) the sets of sequences (wi, ti)IN such that
wi ∈W , ti ∈ (0,∞), and ρ(wi, w̄) ≤ ti ↓ 0 as i→ ∞.

Definition 2.1 (Subderivates and derivates of mappings on metric spaces).
Let f : W → X, w̄ ∈W , and S(w̄) be as described above. Then:

(i) Given ε ≥ 0, we say that v ∈ X is an ε-subderivate of f at w̄ if there is a sequence
(wi, ti) ∈ S(w̄) such that

lim sup
i→∞

∥

∥

∥

∥

f(wi)− f(w̄)

ti
− v

∥

∥

∥

∥

≤ ε. (4)

We call v a subderivate of f at w̄ if ε = 0 and approximate subderivate of f at
w̄ if ε > 0. The collection of ε-subderivates of f at w̄ is called the ε-derivate
(derivate and approximate derivate, respectively) of f at this point and is denoted
by Dεf(w̄).

(ii) We say that v ∈ X is a strict subderivate of f at w̄ if for every sequence wk → w̄
there is a sequence εk ↓ 0 as k → ∞ such that v ∈ Dεkf(wk) for all k ∈ IN . The
collection of strict subderivates of f at w̄ is called the strict derivate of f at this
point and is denoted by Dsf(w̄).
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The above construction of strict derivate slightly extends the one from [17], where the
sequence εk is replaced by a positive function ε(w) ↓ 0 as w → w̄. Note that the
derivate and strict derivate have certain similarities with the classical derivative and
strict derivative of mappings between Banach spaces, while they are different even for
smooth real-valued functions ϕ : IR → IR in which case

Dεϕ(w̄) =
[

− |ϕ′(w̄)| − ε, |ϕ′(w̄)|+ ε
]

as ε ≥ 0

and Dsϕ(w̄) =
[

− |ϕ′(w̄)|, |ϕ′(w̄)|
]

.

On the other hand, the derivate constructions from Definition 2.1 make sense for heavily
discontinuous mappings and extended-real-valued functions. We have, e.g.,

Dεϕ(w) = [−1− ε, 1 + ε] and Dsϕ(w) = [−1, 1] as w ∈ IR, ε ≥ 0

for the function ϕ : IR → IR equal to w at rational numbers and to 1 + w otherwise.

It is worth mentioning that there is a number of pointwise calculus rules available for
the strict derivate of mappings between both finite-dimensional and infinite-dimensional
spaces. They are not needed in this paper and will be presented in subsequent publica-
tions.

Let us next introduce the notions of (topological and sequential) outer regular subdiffer-
entials for the class of distance functions ϕ = dΘ : X → IR defined in (3), where Θ ⊂ X
is a closed subset of a Banach space; in fact, we apply these subdifferential constructions
just to the distance function of the constraint set Θ in the original problem. Note that
the (Lipschitz continuous) distance functions play a fundamental role in subdifferential
theory and variational analysis generating subdifferentials of extended-real-valued func-
tions, which are not needed in this paper; see, e.g., [6, 12, 20, 29] for more details and
references.

Given Θ ⊂ X and x̄ ∈ Θ, an outer neighborhood U of x̄ relative to Θ is defined by

U = Θ′ ∩
{

x ∈ X
∣

∣ ‖x− x̄‖ < r
}

for some r > 0,

where Θ′ is the complement to Θ in X. By an abstract outer regular subdifferential of the
distance function dΘ : X → IR around a given point x̄ ∈ Θ we understand a set-valued
mapping DdΘ : U →→ X∗ defined at x̄ and on some outer neighborhood U of x̄ relative to
Θ′ that satisfies several properties formulated and discussed below including the major
outer regularity requirement. We present two generally different versions of the required
properties, topological and sequential, which depend on the (topological or sequential)
type of the weak∗ convergence in the dual space X∗ and generate the corresponding
notions of topological and sequential outer regular subdifferentials.

Observe that, for a given subdifferential DdΘ on a Banach space X, the topological
and sequential properties defined below are equivalent provided that the dual unit ball
IB∗ is sequentially weak∗ compact in X∗. This is the case of all Banach spaces admit-
ting a Gateaux differentiable renorm at nonzero points as well as all Asplund generated
spaces; the latter class includes every Asplund space and every weakly compactly gen-
erated (WCG) space and thus all reflexive and all separable Banach spaces. We refer
the reader to the classical texts [7, 8] and to the paper [11], where similar relations be-
tween topological and sequential properties are considered in detail in the framework of
variational analysis.
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Definition 2.2 (Outer robustness). Given x̄ ∈ Θ, we say that DdΘ is topologically
outer robust around x̄ if there exists an outer neighborhood U of x̄ relative to Θ such
that for every x ∈ U we have the inclusion

D′dΘ(x) := Lim sup
u
Θ′

→x

DdΘ(u) ⊂ DdΘ(x), (5)

where Lim sup stands for the topological outer limit (2) relative to Θ′. If (5) holds with
the replacement of the topological outer limit by the sequential one, we say that DdΘ is
sequentially outer robust around x̄.

Note that the topological outer robustness property implies the sequential one but not
vice versa. It is also obvious that these properties are always satisfied around interior
points of Θ, since the left-hand side set in (5) is empty in this case. For boundary points
of any closed sets, the outer robustness (both topological and sequential versions) holds
for the generalized gradient by Clarke [6] and for the “approximate� G-subdifferential by
Ioffe [12] in arbitrary Banach spaces as well as for the basic/limiting subdifferential by
Mordukhovich [20] in WCG Banach spaces (not necessarily Asplund); see Theorem 3.60
and the discussions after its proof in [20, pp. 323–326]. We can similarly justify the
outer robustness in WCG Banach spaces for certain modifications of the limiting sub-
differential: namely, for the right-sided subdifferential introduced in [22] (see also [20,
Subsection 1.3.3]) and the closely related outer subdifferential of [13], and also for the
sequential limiting subdifferential developed in [10] in the case of Asplund generated
spaces.

The next required properties (topological and sequential) of DdΘ are more selective than
the corresponding outer robustness and depend, for specific subdifferentials, on the set
Θ ⊂ X and the point x̄ ∈ Θ under consideration.

Definition 2.3 (Outer regularity). Given x̄ ∈ Θ, we say that DdΘ is topologically

outer regular at x̄ if every sequence xk
Θ′

→ x̄ as k → ∞ has a subnet S such that the
topological Painlevé-Kuratowski outer limit

Lim sup
x

S
→x̄

DdΘ(x) is a singleton in X∗. (6)

We say that DdΘ is sequentially outer regular at x̄ if S can be selected as a subsequence
and the topological outer limit in (6) is replaced by a sequential one.

Note that the singleton in (6) generally depends on the chosen subnet/subsequence S.
Similarly to the case of outer robustness, observe that the topological outer regularity
property implies its sequential counterpart but not vice versa and that these properties
obviously hold for interior points x̄ of any set Θ.

If Θ is “smooth� around x̄ ∈ bdΘ (in the sense that dΘ is smooth around this point),
then the outer regularity properties obviously hold for any natural subdifferentials DdΘ
on Banach spaces such that D reduces to the classical derivative for smooth functions.
We show in Section 5 that all the major subdifferentials in variational analysis are outer
regular at any points of approximately convex sets in Banach spaces admitting Gateaux
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differentiable renorms. This implies, in particular, the outer regularity of the classical
subdifferential of convex analysis in the case of convex sets in Definition 2.3.

Another major property required for the abstract subdifferentials considered in this paper
is the Extended Mean Value Inequality (EMVI), which is a weak extended form of the
mean value theorem in generalized differentiation.

Definition 2.4 (Extended mean value inequality). We say that the Extended Mean
Value Inequality (EMVI) holds forDdΘ around x̄ ∈ Θ if there exist an outer neighborhood
U of x̄ relative to Θ, a function ω : U×[0, 1) → [0,∞) with ω(x, τ) ↓ 0 as (x, τ) → (x̄, 0+),
and a dense subset S ⊂ U such that for any x, u ∈ S we can find v ∈ (x+‖u−x‖IB)∩U
and x∗ ∈ DdΘ(v) satisfying

dΘ(u)− dΘ(x) ≤ 〈x∗, u− x〉+ ‖u− x‖ω
(

x, ‖u− x‖
)

. (7)

The case of ω ≡ 0 in (7) corresponds to the conventional Mean Value Inequality (MVI)
and holds for the majority of known subdifferentials of Lipschitz continuous functions
useful in applications; see, e,g., [1, 5, 6, 10, 20, 26, 27, 28] and the references therein.
Considering a dense subset S ⊂ X in Definition 2.4 allows us to cover the sequential
limiting subdifferential on Asplund generated spaces in [10] for which the MVI is proved
relative to an Asplund space sitting densely in X. Thus the extended inequality (7)
is a natural subdifferential property, which does not impose any restrictions on the
class of subdifferentials used in what follows. Observe that the EMVI property from
Definition 2.4 is not a limiting one and hence does not have topological and sequential
versions as those from Definition 2.2 and Definition 2.3.

Combining the above requirements on DdΘ with another property that must be always
fulfilled, we arrive at the following definition of the topological and sequential abstract
outer regular subdifferentials for the class of distance functions under consideration.

Definition 2.5 (Abstract outer regular subdifferentials of distance functions).
Given a nonempty set Θ ⊂ X and a point x̄ ∈ Θ, we say that DdΘ is a topological outer
regular subdifferential of the distance function dΘ around x̄ if the sets DdΘ(x) ⊂ X∗ are
defined at least at x̄ and on some outer neighborhood U of this point relative to Θ and
the following properties are satisfied:

(P1) DdΘ(x) ⊂ IB∗ for all x ∈ U ;

(P2) DdΘ is topologically outer robust around x̄;

(P3) DdΘ is topologically outer regular at x̄;

(P4) The extended mean value inequality holds for DdΘ around x̄.

We say that DdΘ is a sequential outer regular subdifferential of dΘ around x̄ if it satis-
fies properties (P1), (P4) and the sequential versions of properties (P2) and (P3) from
Definition 2.2 and Definition 2.3, respectively.

Note that there are several versions of axiomatically defined abstract subdifferentials
in nonsmooth analysis; see, e.g., [1, 12, 14, 19, 20, 28]. Both topological and sequen-
tial outer regular subdifferentials of Definition 2.5 are essentially different from all the
known constructions. The major differences consist of considering sets (via their dis-
tance functions in contrast to arbitrary functions) and paying the main attention to
outer properties of subdifferentials that deal with out-of-set points. In this approach
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the validity of the imposed subdifferential requirements and their realization for specific
subdifferentials depend on the set and its boundary point in question; see the discussions
and examples presented above.

3. Necessary Optimality Conditions for General Problems

In this section we establish the main result of the paper providing first-order necessary
optimality conditions for the general problem (1) via the strict derivate and outer regular
subdifferential constructions introduced and discussed in Section 2.

Theorem 3.1 (Necessary conditions for constrained optimization in metric
spaces). Let w̄ be a local minimizer for problem (1), where (W, ρ) is a complete metric
space and (X, ‖ · ‖) is a Banach space, ϕ : W → IR is finite at w̄ and l.s.c. around
this point while f : W → X is continuous around w̄ with x̄ := f(w̄), and Θ ⊂ X is
locally closed around x̄. Let further Ds(ϕ, f)(w̄) be the strict derivate of the mapping
(ϕ, f) : W → (IR,X) at w̄ and DdΘ be a topological outer regular subdifferential of dΘ
around x̄. Assume further that

0 /∈ D′dΘ(x̄) (8)

via the topological outer limit of DdΘ relative to Θ′ defined in (5). Then there are
elements (λ, x∗) ∈ [0, 1]×X∗ such that

(λ, x∗) 6= (0, 0), x∗ ∈
√
1− λ2D′dΘ(x̄), and (9)

λϑ+ 〈x∗, v〉 ≥ 0 for all (ϑ, v) ∈ Ds(ϕ, f)(w̄). (10)

If in addition the dual unit ball IB∗ ⊂ X∗ is weak∗ sequentially compact in X∗, then the
topological outer regular subdifferential DdΘ and its topological outer limit D′dΘ can be
replaced by their sequential counterparts in the relations above.

Proof. The proof of the theorem is rather long but not difficult to follow. We split it
into seven steps. Observe first that the interior case of x̄ = f(w̄) ∈ intΘ is trivial, since
D′dΘ(x̄) = ∅ in this case by construction (5) and therefore the theorem holds with x∗ = 0
and λ = 1 by our convention at the end of Section 1 that α∅ 6= ∅ if and only if α = 0.
Thus we consider the boundary case x̄ ∈ bdΘ in what follows. In Steps 1–6, which are
devoted to the proof of the “topological� optimality conditions via the topological outer
regular subdifferential in (8)–(10), the space X is assumed to be arbitrary Banach.

Step 1: approximation by unconstrained minimization problems. The first step of the
proof is to construct a sequence of unconstrained minimization problems approximating
the given minimizer w̄ for the original problem (1) with operator constraints. We proceed
by using the Ekeland variational principle; see, e.g., [20, Theorem 2,26].

Assume without loss of generality that ϕ(w̄) = 0, take an arbitrary sequence εk ↓ 0 as
k → ∞, and build the penalized function ϕk : W → IR by

ϕk(w) :=

√

[

(ϕ(w) + εk)+
]2

+ dΘ
(

f(w)
)2
, (11)

where φ+(w) := max{φ(w), 0} as usual. It is easy to see that for each k ∈ IN the function
ϕk is lower semicontinuous (l.s.c.) and bounded from below. Applying the Ekeland
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variational principle to (11) for each k ∈ IN , find wk ∈W satisfying the relations

ϕk(wk) +
√
εkρ(wk, w̄) ≤ ϕk(w̄) = εk and (12)

ϕk(wk) < ϕk(w) +
√
εkρ(w,wk) for all w ∈W \ {wk}. (13)

It follows from (12) that ρ(wk, w) ≤ √
εk ↓ 0, while (13) shows that wk is a global

minimizer for the function ϕk(w) +
√
εkρ(w,wk) and an approximate minimizer for the

functions ϕk(w) from (11). Since the constraint function f : W → X in (1) is assumed
to be continuous around w̄ with f(w̄) = x̄, for any fixed r > 0 we have

‖f(wk)− x̄‖ < r whenever k ∈ IN is sufficiently large. (14)

Step 2: approximation of strict subderivates. Intending further to justify the necessary
condition (10) of the theorem, take an arbitrary strict subderivate (ϑ, v) ∈ Ds(ϕ, f)(w̄)
and, by Definition 2.1(ii) along the sequence wk → w̄ built in Step 1, find a numerical
sequence γk ↓ 0 as k → ∞ such that

(ϑ, v) ∈ Dγk(ϕ, f)(wk) for all k ∈ IN (15)

via the approximate subderivates from Definition 2.1(i). Taking into account that (ϑ, v)
is a γk-subderivate (15) of the pair (ϕ, f) at wk and using (4), for each k ∈ IN we get a
sequence (wi

k, t
i
k)i∈IN ∈ Swk

, such that



















lim sup
i→∞

|Eϕ(i, k)| := lim sup
i→∞

∣

∣

∣

∣

ϕ(wi
k)− ϕ(wk)

tik
− ϑ

∣

∣

∣

∣

≤ γk,

lim sup
i→∞

‖Ef (i, k)‖ := lim sup
i→∞

∥

∥

∥

∥

f(wi
k)− f(wk)

tik
− v

∥

∥

∥

∥

≤ γk,

(16)

where Eϕ(i, k) and Ef (i, k) inside of | · | and ‖ · ‖ in (16) are the corresponding relative
errors in approximating the subderivate (ϑ, v) of ϕ and f . It follows from construction
(11) of the penalized functions ϕk that the difference ϕk(w

i
k)−ϕk(wk) can be written as

ϕk(w
i
k)− ϕk(wk)

= λik

{

[

ϕ(wi
k) + εk

]+ − [ϕ(wk) + εk]
+
}

+ αi
k

{

dΘ
(

f(wi
k)
)

− dΘ
(

f(wk)
)}

,
(17)

where the coefficients λik and αi
k are defined by























λik :=
[ϕ(wi

k) + εk]
+
+ [ϕ(wk) + εk]

+

ϕk(wi
k) + ϕk(wk)

∈ [0, 1] ,

αi
k :=

dΘ
(

f(wi
k)
)

+ dΘ
(

f(wk)
)

ϕk(wi
k) + ϕk(wk)

∈ [0, 1] .

(18)

Fixed a natural number k ∈ IN , we consider the following three cases, which completely
cover the situation. For simplicity and with no loss of generality, assume that each of
the listed cases hold for all k ∈ IN .
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(A) The typical case: we have

ϕ(wk) + εk > 0, dΘ
(

f(wk)
)

> 0, k ∈ IN. (19)

(B) The mixed sign case: there is a subsequence of {εk}, still denoted by {εk}, such
that

ϕ(wk) + εk ≤ 0, dΘ
(

f(wk)
)

> 0, k ∈ IN. (20)

(C) The zero case: there is a subsequence of {εk}, still denoted by {εk}, such that

dΘ
(

f(wk)
)

= 0, k ∈ IN. (21)

Next we analyze each case above separately paying the main attention to the typical
case (A) and indicating the necessary changes needed in the other case (B) and (C).

Step 3: relating the subderivates of (ϕ, f) with the topological outer regular subdifferential
DdΘ(f(wk)) in the typical case (A). Fix an outer neighborhood U of x̄ relative to Θ′ on
which the imposed properties of outer robustness from Definition 2.2 and the extended
mean value inequality (EMVI) from Definition 2.4 are satisfied. Using further estimate
(14) with r > 0 small enough and employing the lower semicontinuity property of ϕ
around wk as well as the continuity property of f around this point for each fixed k ∈ IN ,
we have the relationships

ϕ(wi
k) + εk > 0, dΘ

(

f(wi
k)
)

> 0, f(wi
k) ∈ U (22)

whenever i ∈ IN is sufficiently large. By passing to a subsequence of {i} as necessary,
find βk ∈ [0,∞] such that ϕ(wi

k) + εk → βk as i→ ∞. Since ϕ is l.s.c. around w̄, we get

βk ≥ ϕ(wk) + εk > 0 for all k ∈ IN.

Denote further ηk := ϕ(wk) + εk and νk := dΘ(f(wk)) and observe that the limit

(λk, αk) := lim
i→∞

(λik, α
i
k)

of the sequences in (18) exists (along a selected subsequence of {i}) and is computed by

(λk, αk) =
1

√

β2
k + ν2k +

√

η2k + ν2k

(

βk + ηk, 2νk

)

due to the strict inequalities in (19), with (λk, αk) = (1, 0) if βk = ∞. In the general
case under consideration we have

(λk, αk) ∈ (0, 1)× (0, 1) and λ2k + α2
k ≥ 1/2, (23)

where the last inequality is verified by

λ2k + α2
k =

(βk + ηk)
2 + 4ν2k

(

√

β2
k + ν2k +

√

η2k + ν2k

)2 ≥ β2
k + η2k + 4ν2k

2β2
k + 2η2k + 4ν2k

≥ 1

2
.
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It follows furthermore that

[

ϕ(wi
k) + ε

]+ − [ϕ(wk) + ε]+ = ϕ(wi
k)− ϕ(wk) for all large i ∈ IN. (24)

Let us handle the dΘ term in (17) by using the EMVI property (P4) of the outer subd-
ifferential DdΘ on the dense subset S of the outer neighborhood U . It follows from the
density of S in U that there are elements aik, b

i
k ∈ S satisfying

‖aik − f(wk)‖+ ‖bik − f(wi
k)‖ ≤ (tik)

2 for all i ∈ IN, (25)

where the numbers tik are taken from (16). Since dΘ is Lipschitz continuous with modulus
ℓ = 1, the last inequality implies that

dΘ
(

f(wi
k)
)

− dΘ
(

f(wk)
)

≤ dΘ(a
i
k)− dΘ(b

i
k) + (tik)

2. (26)

Employing now the extended mean value inequality (7) on the dense set S, we find
elements cik ∈ S ∩B(aik; ‖aik − bik‖) and u∗ik ∈ DdΘ(cik) such that

dΘ(a
i
k)− dΘ(b

i
k) ≤ 〈u∗ik, aik − bik〉+ ‖aik − bik‖ω

(

aik, ‖aik − bik‖
)

. (27)

Combine (26) and (27) to get the inequality

dΘ
(

f(wi
k)
)

− dΘ
(

f(wk)
)

≤ 〈u∗ik, aik − bik〉+ ‖aik − bik‖ω
(

aik, ‖aik − bik‖
)

+ (tik)
2. (28)

Substituting expressions (24) and (28) into (17) and dividing the latter by tik, we arrive
at the upper estimate of the finite difference

ϕk(w
i
k)− ϕk(wk)

tik

≤ λik

[

ϕ(wi
k)− ϕ(wk)

tik

]

+ αi
k

{〈

u∗ik,
aik − bik
tik

〉

+

∥

∥

∥

∥

aik − bik
tik

∥

∥

∥

∥

ω
(

aik, ‖aik − bik‖
)

+ tik

}
(29)

held for all indices i ∈ IN that are sufficiently large. Let further ∆f i
k := f(wi

k)− f(wk)
and observe by (16) that ∆f i

k = tik [v + Ef (i, k)]. It follows from (16) and (25) that































lim sup
i→∞

∥

∥

∥

∥

aik − bik
tik

− v

∥

∥

∥

∥

≤ lim sup
i→∞

1

tik

[

‖aik − bik −∆f i
k‖+ ‖∆f i

k − tikv|‖
]

≤ lim sup
i→∞

[

tik + ‖Ef (i, k)‖
]

≤ γk and

lim sup
i→∞

ϕ(wi
k)− ϕ(wk)

tik
= lim sup

i→∞

[ϑ+ Eϕ(i, k)] ≤ ϑ+ γk,

which imply, in particular, that

lim sup
i→∞

∥

∥

∥

∥

aik − bik
tik

∥

∥

∥

∥

≤ ‖v‖+ γk and lim sup
i→∞

‖aik − bik‖ = 0. (30)

Now we intend to pass to the limit in the finite difference estimate (29) as i → ∞ for
each fixed k ∈ IN . To proceed, we need to take care of an appropriate convergence of the
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dual elements u∗ik ∈ X∗. Since the sequence of subgradients (u∗ik)i∈IN in (29) is uniformly
bounded for any k ∈ IN by the outer subdifferential property (P1) from Definition 2.5,
the classical Alaoglu-Bourbaki theorem allows us to conclude that the sequence (u∗ik)i∈IN
contains a subnet {u∗νk} converging to some element u∗k in the weak∗ topology of X∗.
Passing to the limit in (29) along this subnet (while keeping the notation lim supi→∞ for
the limit) and using (30) as well as the convergence ω(x, τ) ↓ 0 as x → x̄ and τ ↓ 0, we
get the estimate

lim sup
i→∞

ϕk(w
i
k)− ϕk(wk)

tik
≤ λkϑ+ αk〈u∗k, v〉+ σk, (31)

where the remainder σk is given by

σk = λkγk + αk

{

γk + (‖v‖+ γk)ω
(

f(wk), 0
)}

, k ∈ IN. (32)

Further, it follows from (25) that

aik → f(wk) and ‖aik − bik‖ ≤ ‖∆f i
k‖+ (tik)

2 → 0 as i→ ∞.

Therefore we have the convergence cik → f(wk) as i → ∞ for the intermediate points
cik ∈ S ∩ B(aik, ‖aik − bik‖) defined above via the mean value property u∗ik ∈ DdΘ(cik).
Then the topological outer robustness property (P2) of the subdifferential DdΘ gives

u∗k ∈ D′dΘ
(

f(wk)
)

⊂ DdΘ
(

f(wk)
)

, k ∈ IN,

for the weak∗ limit u∗k of (u∗ik)i∈IN whenever k ∈ IN .

Observe that the left-hand side of (31) is bounded below by −√
εk. This follows from

relation (13) with w = wi
k in the variational principle and from the estimate ρ(wi

k, wk) ≤
tik in the derivate definition. Thus (31) implies that

−(σk +
√
εk) ≤ λkϑ+ αk〈u∗k, v〉, k ∈ IN. (33)

Step 4: completing the proof of the topological optimality conditions in the typical case (A).
As justified above in “typical� case (A), inequality (33) holds with some u∗k ∈ DdΘ(f(wk))
for all k ∈ IN . Observe that f(wk) → f(w̄) as k → ∞ for the sequence of approximate
minimizers wk from (12) and (13) and that f(wk) /∈ Θ for all k ∈ IN in this case due
to (19). Note also that {wk} is independent of the particular strict subderivate (ϑ, v) ∈
Ds(ϕ, f)(w̄) and the selected outer subgradients u∗k of dΘ(f(wk)) under consideration.
Employing the topological outer regularity property (P3) of the subdifferential DdΘ along
the sequence {f(wk)}, we find by Definition 2.3 a subnet f−1(S) of {wk} generated by
the chosen subnet S of {f(wk)} from the construction in (6) and a dual element u∗ ∈ X∗

independent of (ϑ, v) such that

Lim sup

w
f−1(S)

→ w̄

DdΘ
(

f(w)
)

=
{

u∗
}

(34)

via the topological Painlevé-Kuratowski outer limit (2). It follows from the topological
outer robustness property (P2) of DdΘ and the continuity of f that u∗ ∈ DdΘ(f(w̄)).
Since the sequence of u∗k ∈ DdΘ(f(wk)), k ∈ IN , is uniformly bounded by (P1), it contains
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– by the Alaoglu-Bourbaki theorem – a weak∗ convergent subnet in X∗. By (34) and
definition (2) of the topological Painlevé-Kuratowski outer limit, each subnet of this type
generated by any strict subderivate (ϑ, v) ∈ Ds(ϕ, f)(w̄) weak

∗ converges to u∗.

Since (λk, αk) ∈ [0, 1]2 in (23), assume with no loss of generality that the whole se-
quence of (λk, αk) converges to some (λ, α) ∈ [0, 1]2 as k → ∞. Thus, from the second
relationship in (23), we have

λ2 + α2 ≥ 1/2. (35)

Passing now to the limit in (33) as k → ∞ along a weak∗ convergent subnet of {u∗k} from
the discussions above and taking into account that σk ↓ 0 as k → ∞ by definition (32),
we arrive at the inequality

λϑ+ α〈u∗, v〉 ≥ 0 for all (ϑ, v) ∈ Ds(ϕ, f)(w̄). (36)

It follows from the construction of u∗ in (34) in the case (A) under consideration that
u∗ ∈ D′dΘ(x̄) for the outer limit D′dΘ defined in (5). Thus u∗ 6= 0 due to assumption (8)
of the theorem. This implies that (λ, αu∗) 6= (0, 0) by (35). Dividing both sides of the
inequality in (36) by

√
λ2 + α2 allows us to get λ2 + α2 = 1 with no loss of generality,

i.e., α =
√
1− λ2. Denoting finally

x∗ := αu∗ =
√
1− λ2u∗,

we arrive at conditions (9) and (10) and thus complete the proof of the “topological�
part of the theorem in the typical case (A).

Step 5: completing the proof of the topological optimality conditions in the mixed case (B).
In this case we have

ϕk(wk) = dΘ
(

f(wk)
)

, k ∈ IN,

for the penalized function (11) by (20). Furthermore, formula (23) continues to hold in
case (20) with (λk, αk) = (0, 1) for all k ∈ IN . Since the function x+ := max{x, 0} is
obviously Lipschitz continuous, we get the estimate and convergence

λik
tik

∣

∣

∣

[

ϕ(wi
k) + εk

]+ − [ϕ(wk) + εk]
+
∣

∣

∣

≤ λik
tik

∣

∣

∣
ϕ(wi

k)− ϕ(wk)
∣

∣

∣
≤ λik

[

|Eϕ(i, k)|+ |ϑ|
]

→ 0 as → ∞, k ∈ IN,

with λik and Eϕ(i, k) defined in (18) and (16), respectively. Taking into account that
f(wk) /∈ Θ for all k ∈ IN in case (B), we repeat the arguments of case (A) to arrive at
all the “topological� conclusions of the theorem with (λ, α) = (0, 1) in the mixed sign
case (B).

Step 6: completing the proof of the topological optimality conditions in the zero case (C).
Considering the case (C), we observe that f(wk) ∈ Θ for all k ∈ IN sufficiently large
in (21), since the set Θ is assumed to be locally closed around x̄ = f(w̄) and since
f(wk) → x̄ as k → ∞. Without loss of generality, conclude that wk is a feasible solution
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to (1) for all k ∈ IN , and hence ϕk(wk) ≥ ϕ(w̄) as k ∈ IN due the local optimality of w̄
in the original constrained problem. Thus

ϕk(wk) = ϕ(wk) + εk ≥ εk, k ∈ IN,

for the perturbed function (11) in this case, and we have counterparts of relations (23)
and (33) with (λk, αk) = (1, 0) for all k ∈ IN . Repeating further the arguments of case
(A) with no actual use of the subdifferential properties of dΘ, we arrive at the necessary
optimality conditions (9) and (10) with (λ, x∗) = (1, 0).

Step 7: proof of the necessary optimality conditions for the sequential outer regular sub-
differential. It remains to show that the necessary optimality conditions of the theorem
hold with the replacement of the topological outer regular subdifferential and its outer
limit in (8)–(10) by their sequential counterparts from Definition 2.5 and Definition 2.2
provided that dual unit ball IB∗ ⊂ X∗ is sequentially weak∗ compact. This follows directly
from the arguments above, where the latter assumption and property (P1) allow us to
use subsequences instead of subnets in the corresponding limiting procedures. Thus we
complete the proof of the theorem.

It is not hard to show that the necessary optimality conditions obtained in Theorem 3.1
imply the classical Lagrange multiplier rule in the case of problems with finitely many
equality and inequality constraints given by strictly differentiable functions on Banach
spaces W . They are also consistent with some extended versions of multiplier rules for
problems with nonsmooth data on Banach spaces obtained in terms of the aforementioned
specific subdifferentials; cf. [5, 6, 21, 26, 27] and the references therein.

In the next section we consider a remarkable class of generally nonconvex constraint sets
Θ in Banach spaces for which the necessary optimality conditions of Theorem 3.1 can be
constructively expressed via themajor subdifferential constructions of variational analysis
that agree with each other and satisfy all the requirements imposed in Theorem 3.1.

4. Approximately Convex Functions and Sets

The main notion studied in this section is approximate convexity for extended-real-valued
functions on Banach spaces introduced by Ngai, Luc and Théra in [23] and its realiza-
tion for the case of sets via the distance functions, which is needed in what follows. The
concept of approximate convexity has been proved to be very useful for many aspects of
variational analysis and optimization being closely related to (while generally different
from) other important notions of generalized convexity for functions and sets. We refer
the reader to [2, 21, 23, 24, 26, 30] and the bibliographies therein for various properties
of approximately convex functions and sets, their relations with other notions of gen-
eralized convexity, and a number of applications to variational analysis and generalized
differentiation.

In this section we recall some facts on approximate convexity and derive several properties
of approximately convex functions and sets needed for the implementation in Section 5
of our general necessary optimality conditions from Theorem 3.1 in the case of approxi-
mately convex constraint sets. Together with the approximate convexity of functions and
sets at the reference point as in [23], we define and study in this section and then apply
in Section 5 a version of approximate convexity around the reference point involving all
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the points in a neighborhood of the reference one. Note that the latter modification is
generally different from the original one in [23] as well as from the uniform approximate
convexity introduced recently in [24]. Let us start with the basic definitions.

Definition 4.1 (Approximately convex functions and sets). Let ψ : X → IR be
a proper extended-real-valued function on a Banach space X, and let Θ ⊂ X be a
nonempty subset of X. Then:

(i) The function ψ is approximately convex at x̄ ∈ domψ if for each number γ > 0
there is η > 0 such that for all x, y ∈ B(x̄; η) and t ∈ (0, 1) we have

ψ
(

(1− t)x+ ty
)

≤ (1− t)ψ(x) + tψ(y) + γt(1− t)‖x− y‖. (37)

(ii) The function ψ is approximately convex around x̄ ∈ domψ if there is a neighbor-
hood of x̄ such that ψ is approximately convex at every point of this neighborhood.

(iii) The set Θ is approximately convex at (respectively, around) x̄ if the distance func-
tion dΘ : X → IR is approximately convex at (respectively, around) this point.

If X is a uniformly convex space with a uniformly smooth and uniformly convex norm,
then the approximate convexity of the set Θ around x̄ implies its prox-regularity around
this point. The latter fact follows from [3, Theorem 4.9] and extended the previous result
of [25] proved in Hilbert spaces. Prox-regular functions and sets and their remarkable
properties play a significant role in many aspects of variational analysis and optimization;
see, e.g., [3, 25, 26] and the references therein.

Observe further that the approximate convexity around x̄ from Definition 4.1(ii) is gen-
erally a weaker assumption in comparison with the “uniform approximate convexity�
around the reference point defined in [24], where (37) is required to hold for all points
(x, y) close to each other uniformly in a fixed neighborhood of x̄. In finite dimensions,
the approximate convexity around x̄ from Definition 4.1(ii) is equivalent to the uniform
convexity due to the compactness of the unit ball; it is easy to show this by standard
compactness arguments. Note also that the approximate convexity at the point in ques-
tion does not imply the one around this point even for strictly differentiable functions on
the real line as in the following case taken from [20, p. 19].

Example 4.2 (Difference between approximate convexity at and around the
point). Consider the function ψ : IR → IR given by

ψ(x) :=







−x2 if x = 1/k, k ∈ IN,
0 if x = 0,
linear otherwise.

(38)

It is easy to check that this function is strictly differentiable at x̄ = 0 (although it
is not Fréchet differentiable at points nearby) and that strict differentiability always
implies approximate convexity at the point in question. However, this function is not
approximately convex around x̄. Indeed, we get directly from the above construction
(38) that the function ψ admits the following representation on (0, 1):

ψ(x) =















− 1

k2
+m1

(

x− 1

k

)

if
1

k + 1
< x <

1

k
,

− 1

k2
+m2

(

x− 1

k

)

if
1

k
< x <

1

k − 1
,

k ∈ IN,
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where m2 < m1 < 0 are the corresponding slopes to the graph of ψ. Pick zk ∈
(

0, 1
k(k+1)

)

and let xk :=
1
k
− zk and yk :=

1
k
+ zk. Then

ψ(xk) = − 1

k2
−m1zk and ψ(yk) = − 1

k2
+m2zk, k ∈ IN,

which implies the following equalities for all k ∈ IN :

ψ(k−1)− ψ(xk) + ψ(yk)

2
=

(m1 −m2)zk
2

=
|yk − xk|

4
=
zk
2
.

The latter shows that inequality (37) cannot be satisfied for x = xk, y = yk, and t = 1/2
if γ > 0 is chosen to be sufficiently small (say γ < 1/2) however small η is. Thus function
(38) is not approximately convex at x̄k = 1/k for any large k ∈ IN .

An important fact established in [23, Theorem 3.6] shows that for every l.s.c. function
ψ : X → IR on an arbitrary Banach space X the major subdifferentials of variational
analysis (Clarke-Rockafellar, Fréchet, Ioffe, Mordukhovich) coincide at a point x̄ ∈ domψ
where ψ is approximately convex and they agree with the convex-type subdifferential

∂ψ(x̄) :=
{

x∗ ∈ X∗
∣

∣ 〈x∗, v〉 ≤ ψ′(x̄; v) for all v ∈ X
}

(39)

defined via the classical directional derivative

ψ′(x̄; v) := lim
t↓0

ψ(x̄+ tv)− ψ(x̄)

t
(40)

of ψ at x̄ in the direction v, which exists and is sublinear on X. If ψ is convex, the
subdifferential (39) reduces to the classical subdifferential of convex analysis. Thus we
keep the notation ∂ψ(x̄) for the subdifferential of the approximately convex function ψ
at x̄ that encompasses all the aforementioned subdifferentials.

The next proposition contains some useful properties of approximately convex functions
ψ : X → IR around the reference point employed, in particular, in the proof of necessary
optimality conditions of Section 5. Observe that we assume the “around� approximate
convexity of ψ to make sure that ∂ψ(·) in (39) is the subdifferential of the function
ψ not only at x̄ but also at all the points x ∈ domψ sufficiently close to x̄. In fact,
certain modifications of the proofs below allow us to justify the necessary optimality
conditions obtained in Section 5 in the more general case when the constraint set Θ in
(1) is approximately convex only at the optimal point; see Remark 5.7.

Proposition 4.3 (Properties of approximately convex functions). Let ψ : X →
IR be approximately convex around x̄ on a Banach space X. Then there is an upper
semicontinuous function θ : (0,∞) → [0,∞) such that θ(τ) ↓ 0 as τ ↓ 0 and the following
hold:

(i) For all x, y ∈ X sufficiently close to x̄ and all t ∈ (0, 1) we have










ψ(xt) ≤ (1− t)ψ(x) + tψ(y) + θ
(

r[x,y](x̄)
)

t(1− t)‖x− y‖,
ψ(xt)− ψ(x)

‖xt − x‖ ≤ ψ(y)− ψ(x)

‖y − x‖ + θ
(

r[x,y](x̄)
)

(1− t),
(41)

where r[x,y](x̄) := max{‖x− x̄‖, ‖y − x̄‖} and where xt := x+ t(y − x).
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(ii) Let x∗ ∈ ∂ψ(x), where x ∈ X is sufficiently close to x̄. Then for all y ∈ X close
to x we have the estimate

〈x∗, y − x〉 ≤ ψ(y)− ψ(x) + θ
(

r[x,y](x̄)
)

‖y − x‖. (42)

(iii) If (42) holds for some x ∈ X close to x̄ and all y ∈ X close to x, then

〈x∗, v〉 ≤ ψ′(x; v) + θ
(

‖x− x̄‖
)

‖v‖ whenever v ∈ X. (43)

Proof. Define the function θ : (0,∞) → [0,∞) by

θ(τ) := lim sup
η→τ

ω(η), τ ∈ (0,∞), (44)

where ω(η) := inf{γ > 0| (37) holds for all (x, y) ∈ B(x̄; η)}. It is easy to check that
function (44) satisfies all the requirements asserted in the theorem. Let us justify the
three properties (i)–(iii) with this function θ.

To proceed with (i), observe that the first inequality in (41) follows directly from (37)
by construction of the function θ in (44). Subtracting ψ(x) from both sides of the first
inequality in (41) and dividing then each term by ‖xt − x‖ = t‖y − x‖, we arrive at the
second inequality in (41) and thus justify property (i) of the proposition.

To prove (ii), fix x ∈ X sufficiently close to x̄ and take any y ∈ X close to x. Then the
second inequality in (41) implies that

ψ(x+ tv)− ψ(x)

t
≤ ψ(x+ v)− ψ(x) + θ

(

r[x,y](x̄)
)

(1− t)‖v‖ (45)

with v := y − x for all t > 0 sufficiently small. By passing to the limit in (45) as t ↓ 0
and taking into account the existence of the directional derivative in (40), we conclude
that

ψ′(x; v) ≤ ψ(x+ v)− ψ(x) + θ
(

r[x,x+v](x̄)
)

‖v‖ with v = y − x. (46)

Since 〈x∗, y − x〉 ≤ ψ′(x; y − x) for any x∗ ∈ ∂ψ(x) by (39), it follows from (46) that
estimate (42) is satisfied, which justifies property (ii).

Finally, let x∗ satisfy (42) for some fixed x close to x̄ and any y close to x. Taking an
arbitrary direction v ∈ X and setting y := x+ tv for small t > 0, we get from (42) that

〈x∗, v〉 ≤ ψ(x+ tv)− ψ(x)

t
+ θ

(

r[x,x+tv](x̄)
)

‖v‖,

which gives (43) by passing to the limit as t ↓ 0 by (40) due to the upper semicontinuity
of θ(·). This justifies (iii) and completes the proof of the proposition.

5. Case Study for Approximately Convex Constraints

The concluding section of the paper is devoted to the implementation and specification
of the general necessary optimality conditions for problem (1) defined on complete metric
spaces in the case of approximately convex constraint sets Θ that belong to a broad class
of Banach spaces admitting uniformly Gateaux differentiable renorms.
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Recall that a norm ‖ · ‖ on a Banach space X is uniformly Gateaux differentiable if for
every h ∈ X with ‖h‖ = 1 the limit

lim
t→0

‖x+ th‖ − ‖x‖
t

exists and the convergence is uniform in x ∈ X with ‖x‖ = 1. We say that a Banach space
X is uniformly Gateaux smooth if it admits a uniformly Gateaux differentiable renorming,
i.e., an equivalent uniformly Gateaux differentiable norm at nonzero points. The class of
Gateaux smooth Banach spaces is sufficiently broad containing, in particular, all weakly
compactly generated Banach spaces and thus every separable and every reflexive space.
We refer the reader to [7, 9] and the bibliographies therein for a variety of results on
Gateaux smooth spaces including equivalent descriptions, sufficient conditions, examples,
and more discussions. Let us mention, in particular, a nice characterization established
recently in [9]: X is uniformly Gateaux smooth if and only if the dual unit ball B∗ ⊂ X∗

is a uniform Eberlein compact in the weak∗ topology of X∗.

In our proof below we need the following equivalent descriptions from [7, Proposi-
tion 6.2(ii) and Theorem 6.7] of the uniformly Gateaux differentiable norm ‖ ·‖ on X via
the dual norm on X∗; for simplicity we keep the same notation ‖·‖ for the corresponding
dual norm on X∗.

Proposition 5.1 (Equivalent dual descriptions of uniformly Gateaux differen-
tiable norms). The norm ‖ · ‖ on X is uniformly Gateaux differentiable if and only if
the dual norm on X∗ is weak∗-uniformly rotund in the sense that for any sequences of
dual elements x∗k ∈ X∗ and y∗k ∈ X∗ as k ∈ IN satisfying the relations

‖x∗k‖ = ‖y∗k‖ = 1 for all k ∈ IN and ‖x∗k + y∗k‖ → 2 as k → ∞ (47)

we have the weak∗ convergence (x∗k − y∗k)
w∗

→ 0 as k → ∞ in X∗. Furthermore, the condi-
tions ‖x∗k‖ = ‖y∗k‖ = 1 as k ∈ IN in (47) can be equivalently replaced by those of ‖x∗k‖ → 1
and ‖y∗k‖ → 1 as k → ∞ in the above characterization of uniform Gateaux differentiable
norms.

For the main result of this section we need also the following property for the constraint
set Θ at the reference optimal solution x̄ = f(w̄) to (1), which ensures the nontriviality
of multipliers in the corresponding necessary optimality conditions.

Definition 5.2 (Tangential relative interior points). We say that a subset Θ of a
Banach space X has a tangential relative interior point at x̄ ∈ Θ if there exist x0 ∈ X,
numbers η > 0, γ > 0 and a compact set C ⊂ X such that

B(x0; η) ⊂
[

t−1(Θ− x̄)
]

∩ IB + C for all t ∈ (0, γ). (48)

Note that condition (48) automatically holds with x0 = 0 for every closed and convex
set Θ ⊂ X such that the linear subspace spanned by Θ is closed and finite-codimensional
in X and its relative interior, ri Θ, is nonempty. Indeed, it follows from [4, Theorem 2.5]
that in this case there is a convex compact set C ⊂ X such that 0 ∈ int [(Θ− x̄)∩IB+C],
i.e.,

B(0; η) ⊂ (Θ− x̄) ∩ IB + C for some η > 0. (49)
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Since Θ convex and 0 ∈ (Θ − x̄), we have Θ − x̄ ⊂ t−1(Θ − x̄), and hence (49) implies
(48).

In what follows we pay the main attention to approximately convex sets admitting tan-
gential relative interior points in uniformly Gateaux smooth Banach spaces. The next
theorem shows that the subdifferential (39) of the distance functions dΘ for such sets,
which encompasses the major subdifferentials of variational analysis, is an outer regu-
lar subdifferential in the sense of Definition 2.5 satisfying furthermore the nontriviality
condition (8) of Theorem 3.1. Note that, since the dual unit ball IB∗ ⊂ X∗ is sequen-
tially weak∗ compact for any (uniformly) Gateaux smooth space X by the discussion in
Section 2, there is no difference between topological and sequential outer regular subd-
ifferentials in the setting under consideration in the next theorem.

Theorem 5.3 (Outer regular subdifferentials for the distance functions of
approximately convex sets). Let X be a uniformly Gateaux smooth Banach space,
and let Ω ⊂ X be an nonempty subset locally closed around x̄ ∈ Ω. The following
assertions hold:

(i) If Θ is approximately convex around x̄, then the subdifferential ∂dΘ in (39) of the
distance function dΘ encompassing the major subdifferentials of variational analysis
is an outer regular subdifferential around x̄.

(ii) If in addition Θ has a tangential relative interior point at x̄, then the nontriviality
condition 0 /∈ ∂′dΘ(x̄) holds for the subdifferential ∂dΘ.

Proof. To justify (i), observe first that, as discussed in Section 4, the approximate con-
vexity around x̄ ensures the existence of a neighborhood of x̄ on which the subdifferential
∂dΘ(x) in (39) of the distance function dΘ encompasses the major subdifferentials of vari-
ational analysis. Property (P1) in Definition 2.5 follows for the subdifferential (39) of
dΘ directly from its definition. The outer robustness property (P2) and EMVI property
(P4) with ω ≡ 0 in (7) hold for ∂dΘ due to, e.g., their validity for Clarke’s generalized
gradient of Lipschitz continuous functions; see [6, Proposition 2.1.5 and Theorem 2.3.7].

To complete the proof of (i), it remains to justify the outer regularity property (P3) of
∂dΘ from Definition 2.5. The case of x̄ ∈ intΘ is trivial, since in this case there is no
sequence of xk ∈ Θ′ converging to x̄. Thus we consider the boundary case x̄ ∈ bdΘ, fix an

arbitrary sequence xk
Θ′

→ x̄ as k → ∞, and let ‖ · ‖ be a uniformly Gateaux differentiable
norm onX. Take now any sequence of subgradients x∗k ∈ ∂dΘ(xk) from (39) and establish
first the norm convergence

‖x∗k‖ → 1 as k → ∞. (50)

To proceed, let εk := 1/k for all k ∈ IN and choose yk ∈ Θ such that

dΘ(xk) ≥ (1− εk)‖xk − yk‖, k ∈ IN.

Apply now property (42) of the approximately convex function ψ(x) = dΘ(x) with
x∗ = x∗k and (x, y) = (xk, yk) therein to get the estimate

〈x∗k, yk − xk〉 ≤ −(1− εk)‖xk − yk‖+ θ
(

r[xk,yk](x̄)
)

‖yk − xk‖, k ∈ IN,
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since dΘ(yk) = 0. Dividing then each term of the above inequality by −‖xk − yk‖ 6= 0
for all k ∈ IN , we conclude that

〈

x∗k,
xk − yk
‖xk − yk‖

〉

≥ 1− εk − θ
(

r[xk,yk](x̄)
)

,

which gives 1 ≥ ‖x∗k‖ ≥ 1−εk−θ(r[xk,yk](x̄)). Passing to the limit in the latter estimates
as k → ∞ and taking into account that xk, yk → x̄ and r[xk,yk](x̄) → 0, we arrive at (50).

Since x∗k ∈ IB∗ for all k ∈ IN and the dual ball IB∗ ⊂ X∗ is sequentially weak∗ compact in
X∗ (by the Gateaux smoothness of X), the sequence {x∗k} contains a subsequence that
weak∗ converges to some x∗ ∈ X∗. Without loss of generality, assume that the sequence
{x∗k} itself converges to x∗ as k → ∞. To justify the outer regularity property (6), we
thus need to show that any weak∗ convergent sequence of y∗k ∈ ∂dΘ(xk), k ∈ IN , has the
same weak∗ limit x∗, i.e.,

x∗k − y∗k
w∗

→ 0 as k → ∞ whenever y∗k ∈ ∂dΘ(xk), k ∈ IN, (51)

and the sequence {y∗k} weak∗ converges inX∗. Indeed, by the obvious convexity of the set
∂dΘ(xk) in (39), we have the inclusion (x∗k + y∗k)/2 ∈ ∂dΘ(xk) for all k ∈ IN . Therefore,
the above relation (50) implies the norm convergence

‖y∗k‖ → 1 and ‖x∗k + y∗k‖ → 2 as k → ∞. (52)

It easily follows from (52) and from the equivalent dual description of the uniformly

Gateaux differentiable norm ‖ · ‖ from Proposition 5.1 that x∗k − y∗k
w∗

→ 0 as k → ∞. This
justifies (51) and thus completes the proof of the outer regularity assertion (i) of the
theorem.

Next we justify assertion (ii) of the theorem ensuring the validity of the nontriviality
condition 0 6∈ ∂′dΘ(x̄) for the outer limit (5) of the subdifferential (39) for the distance
function dΘ under the tangential relative interiority property (48) of the approximately
convex set Θ under consideration. Take any x∗ ∈ ∂′dΘ(x̄) and by the (sequential)

construction in (5) find sequences xk
Θ′

→ x̄ and x∗k ∈ ∂dΘ(xk) such that x∗k
w∗

→ x∗ as
k → ∞. We need to show that x∗ 6= 0. To proceed, employ the tangentially relative
interiority property of Θ at x̄ from Definition 5.2 assuming without loss of generality
that x0 = 0 therein. In this way, using the function θ(·) from Proposition 4.3 and the
constants from Definition 5.2, select t ∈ (0, γ) so small that θ(t) ≤ η/4 and suppose
in what follows that k ∈ IN is so large that ‖xk − x̄‖ ≤ t. Applying inequality (42)
from Proposition 4.3 to dΘ with x = xk and taking into account that dΘ(xk) ≥ 0 and
dΘ(y) = 0, we get

〈x∗k, y − xk〉 ≤ θ
(

r[xk,y](x̄)
)

‖y − xk‖ for all y ∈ Θ ∩B(x̄; t). (53)

Since r[xk,y](x̄) ≤ max{‖xk − x̄‖, ‖y− x̄|} ≤ t, ‖y−xk‖ ≤ 2t, and θ(t) ≤ η/4 in (53), this
estimate yields that

〈x∗k, y − xk〉 ≤ ηt/2 for large k ∈ IN. (54)
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Take further any point u ∈ B(0; η) and represent it by the tangential relative interiority
condition (48) in Definition 5.2 as

u = x/t+ z for some x ∈ (Θ− x̄) ∩B(0; t) and z ∈ C.

Letting y := x+ x̄ = t(u− z) + x̄ ∈ Θ ∩B(x̄; t), we get from (54) that

〈x∗k, t(u− z) + x̄− xk〉 ≤ ηt/2,

which immediately implies the estimate

〈x∗k, u〉 ≤
〈x∗k, xk − x̄〉

t
+ 〈x∗k, z〉+

η

2
≤ |〈x∗k, x̄− xk〉|

t
+max

z∈C
|〈x∗k, z〉|+

η

2
.

Since the latter also holds with u replaced by −u ∈ B(0; η), we arrive at

η‖x∗k‖ = sup
u∈B(0;η)

|〈x∗k, u〉| ≤ max
z∈C

|〈x∗k, z〉|+
|〈x∗k, x̄− xk〉|

t
+
η

2
(55)

for all large k ∈ IN . Let us finally show that estimate (55) ensures that x∗ 6= 0 for the

weak∗ limit of x∗k
w∗

→ x∗ as k → ∞.

Assuming the contrary and taking into account the compactness of C in X, we get

max
z∈C

|〈x∗, z〉| → 0 as k → ∞

from the weak∗ convergence x∗k
w∗

→ 0. Furthermore, it follows from the norm convergence
xk → x̄ and from the boundedness of {x∗k} in X∗ by the uniform boundedness principle
that

|〈x∗k, x− x̄〉| → 0 as k → ∞

The latter two relations allow us to conclude from (55) that ‖x∗k‖ ≤ 2/3 for all large
k ∈ IN that clearly contradicts the norm convergence (50) derived above. Thus x∗ 6= 0,
which completes the proof of assertion (ii) and of the whole theorem.

Now we are ready to establish the main result of this section providing verifiable neces-
sary optimality conditions for the original problem (1) on metric spaces with operator
constraints given by general nonsmooth mappings and approximately convex sets in uni-
formly Gateaux smooth Banach spaces. This result is an efficient specification in the
setting under consideration of the general necessary optimality conditions of Section 3
obtained via abstract outer regular subdifferentials. To formulate the new result, we
recall the following well-known constructions of variational analysis; see, e.g., [20, Chap-
ter 1].

Given a nonempty set Θ ⊂ X in a Banach space X and a point x̄ ∈ Θ, the Fréchet
normal cone to Θ at x̄ is defined by

N(x̄; Θ) :=

{

x∗ ∈ X∗
∣

∣

∣
lim sup

x
Θ
→x̄

〈x∗, x− x̄〉
‖x− x̄‖ ≤ 0

}

(56)
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via the standard upper limit of scalar functions. The weak contingent cone to Θ at x̄ is
defined via the weak convergence “

w→� on X by

Tw(x̄; Θ) :=
{

v ∈ X
∣

∣

∣
∃ sequences xk

Θ→ x̄ and αk ≥ 0

such that αk(xk − x̄)
w→ v as k → ∞

}

.
(57)

If the weak convergence in (57) is replaced by the norm convergence on X, construction
(57) reduces to the classical Bouligand-Severi contingent cone T (x̄; Θ); see [20, Subsec-
tion 1.1.2] for more details, discussions, and references. We obviously have the inclusion

T (x̄; Θ) ⊂ Tw(x̄; Θ),

where the equality holds if X is finite-dimensional. Furthermore, the polarity inclusion

N(x̄; Θ) ⊂
{

x∗ ∈ X∗
∣

∣ 〈x∗, v〉 ≤ 0 for all v ∈ Tw(x̄; Θ)
}

(58)

is satisfied in arbitrary Banach spaces, where the equality holds in (58) if X is reflexive;
see [20, Theorem 1.10]. Observe that the Fréchet normal cone (56) is always convex
while neither Tw(x̄; Θ) nor T (x̄; Θ) must be convex even in finite dimensions.

Theorem 5.4 (Necessary optimality conditions for operator-constrained prob-
lems on metric spaces with approximately convex constraint sets). Let w̄ be a
local minimizer for problem (1) in the framework of Theorem 3.1. Assume in addition
that X is a Gateaux smooth Banach space, that the constraint set Θ ⊂ X is approxi-
mately convex around x̄ := f(w̄), and that Θ admits a tangential relative interior point
at x̄. Then there are multipliers (λ, x∗) ∈ IR×X∗ such that

(λ, x∗) 6= (0, 0), λ ≥ 0, x∗ ∈ N(x̄; Θ), (59)

and the strict derivate relation

λϑ+ 〈x∗, v〉 ≥ 0 for all (ϑ, v) ∈ Ds(ϕ, f)(w̄) (60)

is satisfied. Furthermore, the normal cone inclusion x∗ ∈ N(x̄; Θ) in (59) implies that

〈x∗, v〉 ≤ 0 for all v ∈ Tw(x̄; Θ) (61)

via the weak contingent cone (57), where the equivalence between x∗ ∈ N(x̄; Θ) and (61)
holds if the Banach space X is reflexive.

Proof. Theorem 5.3 tells us that the subdifferential ∂dΘ in (39) of the approximately
convex distance function dΘ, which encompasses the major subdifferentials of variational
analysis, is an outer regular subdifferential of dΘ around x̄ under the assumptions made.
Thus we can apply the sequential version of Theorem 3.1 (equivalent to the topological
one) to the case under consideration in the uniformly Gateaux smooth space X. By
assertion (ii) of Theorem 5.3 the nontriviality condition (8) with D′dΘ(x̄) = ∂′dΘ(x̄)
holds, and thus Theorem 3.1 ensures the existence of multipliers (λ, x∗) ∈ IR×X∗ such
that

(λ, x∗) 6= (0, 0), λ ≥ 0, x∗ ∈ cone ∂′dΘ(x̄), (62)
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and the strict derivate relation (10)=(60) is satisfied. To complete the proof of the
theorem, it remans to show that the inclusion x∗ ∈ cone ∂′dΘ(x̄) in (62) implies that
x∗ ∈ N(x̄; Ω), which in turn yields (61).

Indeed, it follows directly from the outer robustness property (5) of the subdifferential
(39) at x = x̄ that ∂′dΘ(x̄) ⊂ ∂dΘ(x̄). Since the subdifferential (39) for the approximate
convex function ψ = dΘ reduces to the Fréchet subdifferential of dΘ at x̄, we get from
[20, Corollary 1.96] that x∗ ∈ N(x̄; Θ) for the Fréchet normal cone defined in (56).
Furthermore, inequality (61) in arbitrary Banach spaces X and its equivalence to x∗ ∈
N(x̄; Θ) in (59) if X is reflexive follow from the polarity inclusion (58) and from the case
of equality therein mentioned above. This completes the proof of the theorem.

We conclude this section with several remarks discussing some specifications and exten-
sions of the major results obtained in the paper.

Remark 5.5 (Multiplier rule in the case of convex constraint sets). If the con-
straint set Θ in (1) is convex, then condition x∗ ∈ N(x̄; Ω) in (59) reduces to

〈x∗, x− x̄〉 ≤ 0 for all x ∈ Θ.

This follows from the fact that in the convex case the normal cone (56) agrees with
the classical normal cone of convex analysis. This version of Theorem 5.4 significantly
extends the main result of [17] obtained in the case when the cost function ϕ is continuous
and the space X has a strictly convex/norm-rotund dual (instead of the weak∗ rotundity
as in Theorem 5.4) and the set Θ is convex and finite-codimensional with closed span and
nonempty relative interior. The latter assumptions imply the tangential relative interior
condition (48) as discussed after Definition 5.2. Note that the proof of the nontriviality
condition (λ, x∗) 6= (0, 0) in [17] is based on Lemma 3.6 from Chapter 4 in [16], which
cannot be applied in the setting of Theorem 5.3.

Remark 5.6 (Nontriviality condition under sequential normal compactness).
The nontriviality condition (λ, x∗) 6= (0, 0) in Theorem 5.4 based on assertion (ii) of
Theorem 5.3 holds in fact under the replacement of the tangential relative interiority
assumption (48) by generally less restrictive sequential normal compactness (SNC) prop-
erty of Θ at x̄ ∈ Θ formulated via the normal cone (56) as follows:

[

x∗k ∈ N(xk; Θ) with xk → x̄, x∗k
w∗

→ 0
]

=⇒ ‖x∗k‖ → 0 as k → ∞. (63)

This property is automatic in finite dimensions while playing a crucial role in variational
analysis and its applications in infinite-dimensional spaces; see [20, 21] for a compre-
hensive theory and numerous applications. It has been well recognized that the SNC
property (63) is implied in arbitrary Banach spaces by certain Lipschitzian requirements
imposed on the set in question, in particular, by the compactly epi-Lipschitzian (CEL)
property of Θ around x̄ in the sense of Borwein and Strójwas that follows from (48); see
[20, Subsection 1.1.4] and [11] for more details and references.

Remark 5.7 (Case of approximately convex constraint sets at versus around

the reference point). Some modifications of the proofs given in Proposition 4.3,
Theorem 5.3, and Theorem 5.4 allow us to justify the necessary optimality conditions
of Theorem 5.4 under the assumption that the constraint set Θ is approximately convex
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only at (versus around) the reference point x̄. The main idea behind these changes
is to keep the subdifferential construction (39) via the classical directional derivative
ψ′(x̄; v) at x̄ for a locally Lipschitzian function ψ while replacing ψ′(x; v) by the robust
Clarke’s generalized directional derivative ψ◦(x; v) of ψ at points nearby. This robust
approximation allows us to conduct the limiting procedure in the proof of Theorem 5.3
and consequently in Theorem 5.4.

Remark 5.8 (Extensions to other classes of regular functions and sets). Ap-
proximate convexity is not the only type of nice/regular behavior of functions and sets.
Other classes of functions and sets exhibiting locally nice convex-like properties have
been extensively studied and applied in variational analysis and optimization; see, e.g.,
[2, 5, 21, 24, 26] and the references therein. Recently many of such notions have been
unified in [24] under the name of ϕ-regularity. The latter notion postulates a property
of type (42) from Proposition 4.3(ii) with respect to Fréchet subgradients. The class
of ϕ-regular functions contains, in particular, all prox-regular functions that are highly
important in many aspects of variational analysis and its applications; see the discussion
and references presented after Definition 4.1. As the reader can observe from the proofs
presented above, the methods developed in this paper would allow us to modify and
extend the major results obtained to the case of ϕ-regularity.
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