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Banach spaces X with an equivalent σ(X,F )-lower semicontinuous and locally uniformly rotund norm,
for a norming subspace F ⊂ X∗, are those spaces X that admit countably many families of convex and
σ(X,F )-lower semicontinuous functions {ϕn

i : X → R+; i ∈ In}
∞
n=1 such that there are open subsets

Gn
i ⊂ {ϕn

i > 0} ∩ {ϕn
j = 0 : j 6= i, j ∈ In}

with {Gn
i : i ∈ In, n ∈ N} a basis for the norm topology of X
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1. Introduction

Let (X, ‖ · ‖) be a normed space. The norm ‖ · ‖ in X is said to be locally uniformly
rotund (LUR for short) if

lim
n
(2‖x‖2 + 2‖xn‖

2 − ‖x+ xn‖
2) = 0 ⇒ lim

n
‖x− xn‖ = 0

for any sequence (xn) and x in X. The construction of this kind of norm in separable
Banach spaces lead Kadets to the proof of the existence of homeomorphisms between
all separable Banach spaces, ([1], Section VI.9). For a non separable Banach space is
not always possible to have such an equivalent norm, for instance the space l∞ does not
have it, see for instance p. 74 in [2]. When such a norm exists its construction is usually
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based on a good system of coordinates that we must have on the normed space X from
the very beginning, for instance a biorthogonal system

{(xi, fi) ∈ X ×X∗ : i ∈ I}

with some additional properties such as being a strong Markushevich basis, [18], p. 21.
Sometimes there is not such a system and the norm is constructed modelling enough
convex functions on the given space X to add all of them up with the powerful lemma
of Deville, see Lemma 3.1 in Section 3 and Lemma VII 1.1 in [2]. Deville’s lemma
has been extensively used by R. Haydon in his seminal papers [5], [6], as well as in
[7]. It is based on the construction of an equivalent LUR norm on a weakly compactly
generated Banach space by the second named author in [17], where the convex functions
are measuring distances to suitable finite dimensional subspaces as well as evaluations
on some coordinate functionals in the dual space X∗; see [18], Theorem 7.3. The method
we have developped in [14] is mainly based on Stone’s theorem about paracompactness
of metric spaces. A σ-discrete basis for the norm topology of a normed space X can
be refined to obtain a σ-slicely isolated network if, and only if, the normed space X
admits an equivalent LUR norm, [14]. Recent contributions show an interplay between
both methods, [6, 9, 10]. It is our intention here to show the connection between both
approaches. The linking property will be the notion of slicely relatively discreteness,
or slicely isolatedness, that glues the discreteness of Stone’s theorem with the linear
topological structure of the dual pair associated to X. Let us recall precise definitions
and results:

Definition 1.1. Let X be a normed space and F be a norming subspace in the dual
X∗. A family B := {Bi : i ∈ I} of subsets in X is called σ(X,F )-slicely isolated (or
σ(X,F )-slicely relatively discrete) if for every

x ∈
⋃

{Bi : i ∈ I}

there exist a σ(X,F )-open half space H and i0 ∈ I such that

H ∩
⋃

{Bi : i ∈ I, i 6= i0} = ∅ and x ∈ Bi0 ∩H.

Our approach for LUR renormings is also based on the topological concept of network.
A family N of subsets in a topological space (T, T ) is called a network for the topology
T if for every open set W ∈ T and every x ∈ W there is some N ∈ N such that
x ∈ N ⊂ W . A main result proved with our approach is the following:

Theorem 1.2 ([14], Chapter III). Let X be a normed space and F a norming sub-

space in the dual X∗. X admits an equivalent σ(X,F )-lower semicontinuous and locally

uniformly rotund norm if, and only if, the norm topology has a network N that can be

written as N =
⋃∞

n=1 Nn where each family Nn is σ(X,F )-slicely isolated.

The known proofs of the sufficiency part of this result show a difficult task when they
arrive to a convexification process of the sets

⋃

Nn needed to construct a countable
family of seminorms, see [14, 16]. We are going to present here a different approach
where the convexification process is not nedeed any more. We shall do it by developping
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a connection between Deville’s master lemma and the σ(X,F )-slicely isolated families
in our connection Lemma 3.2. A straightforward consequence will be a new proof of
the sufficiency part of Theorem 1.2 presented in Corollary 3.3. Another result we shall
present here is that we can replace the network with a basis of the norm topology in the
former theorem to obtain:

Theorem 1.3. Let X be a normed space with a norming subspace F ⊂ X∗. Then X
admits an equivalent σ(X,F )-lower semicontinuous and locally uniformly rotund norm

if, and only if, the norm topology admits a basis B =
⋃∞

n=1 Bn such that every Bn is

σ(X,F )-slicely isolated and norm discrete.

The notion of slicely discreteness we are using lead us to replace the diameter by the
distance to a weakly compact set in the network hypothesis of Theorem 1.2; i.e. the
fact that for every ε > 0 and every x ∈ X there is n ∈ N, N ∈ Nn, with x ∈ N and
‖ · ‖ − diam(N) ≤ ε by a measure of the ε-weak compactness of the set N . In order to
do it we shall deal with spaces where the dual space has a small density character for
the weak* topology:

Theorem 1.4. Let X be a Banach space and let F ⊂ X∗ be a norming and weak∗

separable subspace. Let us assume there are σ(X,F )- slicely isolated families Nn for

n = 1, 2, ... such that for every x in X and every ε > 0 there are n ∈ N, N ∈ Nn and a

weakly compact set C ⊂ X such that x ∈ N ⊆ C + εBX . Then X admits an equivalent

σ(X,F )-lower semicontinuous and locally uniformly rotund norm.

We shall see in this paper that our condition of being slicely isolated corresponds with
the so called rigidity condition inside Deville’s lemma. Our free-coordinate approach to
LUR renormings is explained here with the construction of convex functions describing
slicely isolated families of sets in a normed space as biorthogonal systems:

Theorem 1.5. Let X be a normed space and F be a norming subspace in X∗. Let

B := {Bi : i ∈ I} be a uniformly bounded family of subsets of X. Then the following are

equivalent:

(1) The family B is σ(X,F )-slicely isolated

(2) There is a family L := {ϕi : X → R+, i ∈ I} of convex σ(X,F )-lower semicontin-

uous functions such that

(a) Bi ⊂ {x ∈ X : ϕi(x) > 0} for every i ∈ I,
(b) ϕi(Bj) = {0} whenever i 6= j.

Theorems 1.2, 1.3 and 1.5 have the following straightforward consequence:

Theorem 1.6. A Banach spaces X, with a norming subspace F ⊂ X∗, admits an equiv-

alent σ(X,F )-lower semicontinuous and locally uniformly rotund norm if, and only if,

there are countably many families of convex and σ(X,F )-lower semicontinuous functions

{ϕn
i : X → R+, i ∈ In}

∞
n=1 such that there are open subsets

Gn
i ⊂ {ϕn

i > 0} ∩ {ϕn
j = 0 : j 6= i, j ∈ In}

such that {Gn
i : i ∈ In, n ∈ N} is a basis for the norm topology of X.
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2. Lower semicontinuous convex functions and LUR renormings.

Let (X, ‖ · ‖) be a normed space with a norming subspace F ⊂ X∗. Let us denote by
‖ · ‖F the equivalent norm associated with it:

‖ · ‖F := sup{| 〈·, f〉 | : f ∈ BX∗ ∩ F}.

The former expression is plenty of sense for elements in the bidual X∗∗, nevertheless it is
equal zero on F⊥ ( X∗∗ and it is only seminorm on X∗∗. We are going to make extensive
use of it in what follows.

We shall begin with the construction of convex and lower semicontinuous functions re-
lated to the norm-distance function to a fixed convex set. Such a function is convex.
Moreover in order to control the lower semicontinuity too, we need a small modification
given in the next result:

Proposition 2.1. Let X be a normed space and F a norming subspace in the dual space

X∗. If D is a weak ∗ compact and convex subset of X∗∗ and we define

ϕ(x) := inf {‖x− d‖F : d ∈ D}

Then ϕ is a convex, σ(X,F )-lower semicontinuous,and 1-Lipschitz function from (X,‖·‖F )
to R+.

Proof. Convexity and Lipschitz conditions are an easy exercise. Let us check the lower
semicontinuity. So let us fix r ≥ 0 and take a net (xα)α∈A in X with ϕ(xα) ≤ r for every
α ∈ A and let x ∈ X be the σ(X,F )-limit of the net (xα)α∈A. We will see that ϕ(x) ≤ r
too. Let us fix an ε > 0 and choose c∗∗α ∈ D such that

sup {| 〈xα − c∗∗α , f〉 | : f ∈ BX∗ ∩ F} ≤ r + ε

for every α ∈ A. Since D is weak∗ compact we can find a cluster point (x∗∗, c∗∗) of the
net {(xα, c

∗∗
α ) : α ∈ A} in X∗∗×X∗∗ for the topology σ(X∗∗, X∗). Then we have that x∗∗

does coincide with x when both linear functionals are restricted to F and thus

〈x− c∗∗, f〉 = 〈x∗∗ − c∗∗, f〉 ≤ r + ε for all f ∈ BX∗ ∩ F

and so ϕ(x) ≤ r + ε. Since the reasoning is valid for every ε > 0 we have ϕ(x) ≤ r as
required.

Definition 2.2. The function ϕ defined in Proposition 2.1 shall be called the ‖ · ‖F
-distance to the set D.

We now arrive to the following interplay result that contains Theorem 1.5 in the intro-
duction:

Theorem 2.3. Let (X, ‖ · ‖) be a normed space and F be a norming subspace in X∗.

Let B := {Bi : i ∈ I} be a uniformly bounded family of subsets of X. The following are

equivelent:

(1) The family B is σ(X,F )-slicely isolated.
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(2) There is a family L := {ϕi : X → R+, i ∈ I} of convex σ(X,F )-lower semicontin-

uous functions such that

{x ∈ X : ϕi(x) > 0} ∩
⋃

{Bj : j ∈ I} = Bi

for every i ∈ I.

(3) There is a family L := {ψi : X → R+, i ∈ I} of convex σ(X,F )-lower semicontin-

uous functions and numbers 0 ≤ α ≤ β such that

ψi(bi) > β ≥ α ≥ ψi(bj)

for every bi ∈ Bi, bj ∈ Bj and i, j ∈ I.

Proof. Assume that (1) holds. Applying Proposition 2.1 we may consider ϕi to be the
F - distance to the convex bounded set:

co {Bj : j 6= i, j ∈ I}
σ(X∗∗,X∗)

for every i ∈ I. Fix any i0 ∈ I. The inclusion

{x ∈ X : ϕi0(x) > 0} ∩
⋃

{Bj : j ∈ I} ⊂ Bi0

in the assertion (2) follows immediately from the very definition of ϕi0 . Let us prove the
reverse inclusion. Our hypothesis on the slicely isolated character of the family B tells
us that for the element x ∈ Bi0 there is a σ(X,F )-open half space H in X with x ∈ H
and H ∩ Bi = ∅ for all i ∈ I with i 6= i0. Let us write H = {y ∈ X : f(y) > µ} where
f ∈ BX∗ ∩ F . Then we have ϕi0(x) ≥ f(x)− µ > 0 and the inclusion is proved.

The condition (2) clearly implies (3 ) with α = β = 0. Finally, assume (3 ), we then
have that ψi(y) ≤ α for every y ∈ co {Bj : j 6= i, j ∈ I} by the convexity of the function

ψi, and also for every y ∈ co {Bj : j 6= i, j ∈ I}
σ(X,F )

by the lower semicontinuity of ψi.
Consequently we have

x /∈ co {Bj : j 6= i, j ∈ I}
σ(X,F )

for every x ∈ Bi and every i ∈ I. A straightforward application of Hahn-Banach
separation theorem then yields the σ(X,F )-slicely isolated property for the family B.

A normed space X with a locally uniformly rotund norm decomposes a σ-discrete basis
of the norm topology into a σ-slicely isolated network, [14, 12]. It is possible to recover
the basis from the network and to have the σ-slicely property as presented in Theorem
1.3. In order to prove it we need the following

Proposition 2.4. Let X be a normed space with a norming subspace F ⊂ X∗. Given a

uniformly bounded and σ(X,F )-slicely isolated family

A := {Ai : i ∈ I}

of subsets in X, there exist decompositions Ai =
⋃∞

n=1A
n
i with

A1
i ⊂ A2

i ⊂ · · · ⊂ An
i ⊂ An+1

i ⊂ · · · ⊂ Ai
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for every i ∈ I, and such that for every n ∈ N the family

{An
i +B‖·‖F (0, 1/4n) : i ∈ I}

is σ(X,F )-slicely isolated and norm discrete.

Proof. For i ∈ I let us denote by ϕi the ‖ · ‖F -distance to co(Aj : j 6= i)
σ(X∗∗,X∗)

. Theo-
rem 2.3 gives us the scalpel to split up the sets of the family using these convex functions.
Indeed, let us define An

i := {x ∈ Ai : ϕi(x) > 1/n}; then we have Ai =
⋃∞

n=1A
n
i . More-

over, if x ∈ An
i +B‖·‖F (0, 1/4n) then we have

ϕi(x) > 3/(4n).

Indeed, let us write x = y + z, where y ∈ An
i , ‖z‖F < 1/4n. Since ϕi(y) > 1/n

we can select a number ρ with ϕi(y) > ρ > 1/n and we will have for every fixed

c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗,X∗)

that ‖y− c∗∗‖F > ρ. So we can find some f ∈ BX∗ ∩F with
f(y−c∗∗) > ρ. Now we see that f((y+z)−c∗∗) > ρ−1/4n and so ‖x−c∗∗‖F > ρ−1/4n for

every c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗.X∗)

. Consequently we see that ϕi(x) ≥ ρ− 1/4n > 3/4n.
On the other hand for y ∈ Aj with j 6= i, we know that ϕi(y) = 0; then for x ∈
An

j + B‖·‖F (0, 1/4n) if we write x = y + z, with y ∈ An
j and ‖z‖F < 1/4n we have, for

every c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗,X∗)

‖x− c∗∗‖F < ‖y − c∗∗‖F + 1/(4n).

From where it follows that

ϕi(x) = inf

{

‖x− c∗∗‖F : c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗.X∗)

}

≤ 1/(4n)

since ϕi(y) = 0. All together means that the family

{An
i +B‖·‖F (0, 1/(4n)) : i ∈ I}

verifies the conditions in (3 ) of the Theorem 2.3 with the functions ϕi = ψi, i ∈ I, and
constants α = 1/(4n), β = 3/(4n). Thus it is σ(X,F )-slicely isolated as we wanted to
prove.

Moreover the former family is discrete for the norm topology. Indeed for any z ∈ X, if
we fix δ > 0 such that

1/4n+ δ < 3/4n− δ

we have that

B‖·‖F (z, δ) ∩
⋃

{An
i +B‖·‖F (0, 1/4n) : i ∈ I}

has non empty intersection with at most one member of the family because every time
the intersection is non empty we can see that ϕi(z) > 3/4n− δ if

B‖·‖F (z, δ) ∩ {An
i +B‖·‖F (0, 1/4n)} 6= ∅
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but ϕi(z) < 1/4n+ δ when

B‖·‖F (z, δ) ∩ {An
j +B‖·‖F (0, 1/4n)} 6= ∅

for any j 6= i and j ∈ I. This fact can be seen as above writing now z = x + y
with x ∈ B‖·‖F (z, δ) ∩ {An

i + B‖·‖F (0, 1/4n)} and ‖y‖F < δ in the first case and x ∈
B‖·‖F (z, δ) ∩ {An

j +B‖·‖F (0, 1/4n)} with ‖y‖F < δ for the second one.

Our way to prove Theorem 1.3 pass through the next result strengthening the network
condition of Theorem 1.2:

Theorem 2.5. Let X be a normed space and F a norming subspace in the dual space

X∗. Let us assume the space X admits an equivalent σ(X,F )-lower semicontinuous and

LUR norm. Then the norm topology of X admits a network

N =
∞
⋃

n=1

Nn

where each family Nn is σ(X,F )-slicely isolated and consists of sets which are differences

of two σ(X,F )-closed and convex subsets of X. Moreover, for every n ∈ N there is δn > 0
such that Nn +B(0, δn) is norm discrete.

Proof. Let us take the network M =
⋃∞

n=1 Mn of the norm topology such that every
family Mr := {Mr,i : i ∈ Ir} is σ(X,F )-slicely isolated, see Theorem 1.2 and Chapter 3
in [14], and let us perform the decomposition from Proposition 2.4 for it, i.e. denoting

by ϕr,i the ‖ · ‖F -distance to co{Mr,j : j 6= i}
σ(X∗∗,X∗)

, we define

Nn
r,i =

{

x ∈ co(Mr,i)
σ(X,F )

: ϕr,i(x) > 3/(4n)
}

.

The fact that the family N n
r := {Nn

r,i : i ∈ Ir} is σ(X,F )-slicely isolated follows from
Theorem 2.3 since the lower semicontinuity and convexity of the functions ϕr,i tell us that

ϕr,j(y) = 0 for every y ∈ co(Mr,i)
σ(X,F )

and j 6= i, j ∈ Ir. Moreover, we easily get that for
every 0 < µ we have ϕr,i(z) > 3/(4n)−µ whenever z ∈ Nn

r,i+B‖·‖F (z, µ), and ϕr,i(z) < µ
whenever z ∈ Nn

r,j +B‖·‖F (z, µ). Let us choose δn such that 0 < 2δn < 3/4n−δn; then we
have that the norm open sets {Nn

r,i +B‖·‖F (0, δn) : i ∈ Ir} are pairwise disjoint and they
form a norm discrete and σ(X,F )-slicely isolated family by Theorem 2.3. Moreover,

each set Nn
r,i is the difference of convex and σ(X,F )-closed subsets of X: co(Mr,i)

σ(X,F )

and {x ∈ X : ϕr,i(x) ≤ 3/(4n)}. The union of all these families:

⋃

{N n
r : r, n = 1, 2, ...}

is clearly the network we are looking for. Indeed, given x ∈ X there is r ∈ N and i ∈ Ir
such that x ∈ Mr,i ⊂ x + B‖·‖F (0,

ε
3
). Then for n ∈ N big enough we have x ∈ Nn

r,i,

x ∈ co(Mr,i)
σ(X,F )

⊂ x + B‖·‖F (0,
2ε
3
) and we have x ∈ co(Nn

r,i)
σ(X,F )

+ B‖·‖F (0, δn) ⊂
x+B‖·‖F (0, ε) if we take the integer n big enough again.

We now arrive to:
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Proof of Theorem 1.3. Necessity. From the proof of Theorem 2.5 we continue with
the notation and observe that when we add open balls of sufficiently small radii to
elements of the network provided above we will have a basis of the norm topology we
are looking for. Indeed

∞
⋃

n,r

{Nn
r,i +B‖·‖F (0, δn) : i ∈ Ir}

is such a basis of the norm topology. Indeed, for a given x ∈ X and ε > 0 we find some
p ∈ N and i ∈ Ip with x ∈ Np,i ⊂ B(x, ε/2). There ism0 ∈ N such that x ∈ Nm

p,i whenever
m ≥ m0. It now follows that for m big enough we have Nm

p,i + B‖·‖F (0, δm) ⊂ B(x, ε)
since x ∈ Np,i ⊂ B(x, ε/2) and δm goes to zero when m goes to infinity. The sufficiency
follows from Theorem 1.2. Moreover, the needed implication will be proved in the next
section, see Corollary 3.3.

3. The connection lemma

Now we are in position to present our main result here. For a slicely isolated family of
sets it is always possible to construct an equivalent norm, such that, the premise for the
LUR condition on the new norm for a sequence and a point x implies that the sequence
is eventually in the same set of the family to which the limit point x belongs. The
construction is done applying Deville’s master lemma, p. 279 in [2]:

Lemma 3.1 (Deville’s master lemma). Let (X, ‖ · ‖) be a normed space, let I be a

set and let (ϕi)i∈I and (ψi)i∈I be families of non-negative convex functions on X which

are uniformly bounded on bounded subsets of X. For every x ∈ X, m ∈ N and i ∈ I
define

(1 ) θm(x) = sup
{

ϕi(x)
2 + 2−mψi(x)

2 : i ∈ I
}

,

(2 ) θ(x) = ‖x‖2 +
∞
∑

m=1

2−m(θm(x) + θm(−x)).

Then the Minkowski functional of the set {x ∈ X : θ(x) ≤ 1} is an equivalent norm ‖| · |‖
on X such that if a sequence (xn) and a point x ∈ X satisfy the LUR condition:

lim
n
(2‖|xn|‖

2 + 2‖|x|‖2 − ‖|xn + x|‖2) = 0,

then there is a sequence (in) in I such that:

(3 ) lim
n
ϕin(x) = lim

n
ϕin(xn) = lim

n
ϕin((x+ xn)/2) = sup {ϕi(x) : i ∈ I}

(4 ) lim
n

[

1

2
(ψ2

in(xn) + ψ2
in(x))− ψ2

in

(

1

2
(xn + x)

)]

= 0.

Our main lemma here reads as follows:
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Lemma 3.2 (Connection lemma). Let (X, ‖ · ‖) be a normed space and F be a nor-

ming subspace in X∗. Let B := {Bi : i ∈ I} be a uniformly bounded and slicely isolated

family of subsets of X for the σ(X,F )-topology. Then there is an equivalent and σ(X,F )-
lower semicontinuous norm ‖ · ‖B on X such that for every i0 ∈ I, every x ∈ Bi0, and

every sequence (xn)n∈N in X the condition

lim
n

(

2 ‖xn‖
2
B + 2 ‖x‖2B − ‖xn + x‖2B

)

= 0

implies that:

(1) There is n0 ∈ N such that

xn,
1

2
(xn + x) /∈ co

⋃

{Bi : i 6= i0, i ∈ I}
σ(X,F )

for all n ≥ n0

(2) For every positive δ there is nδ ∈ N such that

xn ∈ co(Bi0) + δBX

σ(X,F )

whenever n ≥ nδ.

Proof. Let us fix an index i ∈ I and define the nonnegative, convex and σ(X,F )-lower
semicontinuous function ϕi as the ‖ · ‖F - distance to

co ∪ {Bj : j 6= i, j ∈ I}
σ(X∗∗,X∗)

.

Let us choose a point ai ∈ Bi and set Di = coBi and D
δ
i = Di+B(0, δ), where we denote

by B(0, δ) the open ball {x ∈ X : ‖x‖F < δ}, for every δ > 0 and i ∈ I. We denote by

pi,δ the Minkowski functional of the convex body Dδ
i

σ(X,F )
−ai. Then we define the norm

pi by the formula

p2i (x) =
∞
∑

q=1

1

q22q
pi,1/q(x)

2

for every x ∈ X. It is well defined and σ(X,F )-lower semicontinuous. Indeed, since

B(0, δ)+ai ⊂ Dδ
i

σ(X,F )
we have for every x ∈ X, and δ > 0, that pi,δ(δx/‖x‖F ) ≤ 1, thus

δpi,δ(x) ≤ ‖x‖F and hence the above series converges. Finally we define the nonnegative,
convex and σ(X,F )-lower semicontinuous function

ψi(x) := pi(x− ai)

for every x ∈ X. We are now in position to apply Deville’s master Lemma for our ϕi’s
and ψi’s to get an equivalent and σ(X,F )-lower semicontinuous norm ‖ · ‖B on X. Take
i0 ∈ I, x ∈ Bi0 and a sequence (xn) in X satisfying

lim
n

(

2 ‖xn‖
2
B + 2 ‖x‖2B − ‖xn + x‖2B

)

= 0

implies the existence of a sequence of indexes (in) in I such that (3 ) and (4) in Lemma
3.1 hold. Our hypothesis on the slicely isolated character of the family B tell us after
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Theorem 2.3 that since the point x belongs to the set Bi0 of the family B, we have
ϕi0(x) > 0, but ϕi(x) = 0 for all i ∈ I with i 6= i0. From the assertion (3 ) from Lemma
3.1 it now follows that there exists a positive integer n0 such that in = i0, ϕio(xn) > 0
and ϕi0(

1
2
(x + xn)) > 0 for all n ≥ n0, from where the conclusion (1) of our lemma

follows. Moreover, the equation (4) in Lemma 3.1 is now in form

lim
n
[2−1(ψ2

i0
(xn) + ψ2

i0
(x))− ψ2

i0
(2−1(xn + x))] = 0,

and so by the usual convexity argument, and for every q ∈ N, we have that

lim
n
[2−1((pi0,1/q(xn − ai0))

2 + (pi0,1/q(x− ai0))
2)− (pi0,1/q(2

−1(xn + x)− ai0))
2] = 0,

and consequently
lim
n
pi0,1/q(xn − ai0) = pi0,1/q(x− ai0).

Fix a positive number δ and then q ∈ N such that 1/q < δ. Since x−ai0 ∈ D
1/q
i0

−ai0 we

have that pi0,1/q(x−ai0) < 1 because D
1/q
i0

−ai0 is norm open. Therefore, there is nδ ∈ N

such that for n ≥ nδ we have that pi0,1/q(xn−ai0) < 1 and thus xn−ai0 ∈ Dδ
i0

σ(X,F )
−ai0 ,

that is xn ∈ (co(Bi0) +B(0, δ))
σ(X,F )

, which is (2) for ‖ · ‖F . Since the proof is valid for
all δ > 0 and ‖ · ‖F is an equivalent norm the proof is over.

A direct consequence of the connection lemma is a straightforward proof of the renorming
implication in Theorem 1.2

Corollary 3.3. In a normed space (X, ‖ ·‖), with a norming subspace F in X∗, we have

an equivalent σ(X,F )-lower semicontinuous and locally uniformly rotund norm whenever

X admits a network for the norm topology which is σ-slicely isolated family for σ(X,F ),
i.e. there are σ(X,F )-slicely isolated families

Nn : n = 1, 2, ...

such that for every x in X and every ε > 0 there are n ∈ N and N ∈ Nn with the

property that x ∈ N ∈ Nn and ‖ · ‖ − diam(N) < ε.

Proof. It is not a restriction to assume that every family Nn is uniformly bounded since
we can make intersections with countably many balls centered in the origin and covering
X without losing the character of slicely isolatedness and the network condition of the
whole family. So we can consider the norms say ‖ · ‖Nn

constructed using the connection
lemma for each family Nn and to define the new norm by the formula:

‖x‖2N :=
∞
∑

n=1

cn‖x‖
2
Nn

for every x ∈ X, where the sequence (cn) is chosen accordingly for the convergence of
the series. This is possible because all the norms ‖ · ‖Nn

are equivalent to the original
one and hence there are numbers dn such that

‖ · ‖Nn
≤ dn‖ · ‖,
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so it is enough to take cn := 1
d2n2

n . Consider x and a sequence (xn)n∈N in X such that

lim
n

(

2 ‖xn‖
2
N + 2 ‖x‖2N − ‖xn + x‖2N

)

= 0.

Fix an ε > 0. We know that there is q ∈ N and N0 ∈ Nq with x ∈ N0 ⊂ x + εBX . The
condition

lim
n

(

2 ‖xn‖
2
N + 2 ‖x‖2N − ‖xn + x‖2N

)

= 0

implies that

lim
n

(

2 ‖xn‖
2
Nq

+ 2 ‖x‖2Nq
− ‖xn + x‖2Nq

)

= 0

by convexity arguments. The connection lemma now says that for every positive δ there
is nδ ∈ N such that

xn ∈ co(N0) + δBX

σ(X,F )

whenever n ≥ nδ. Thus ‖xn − x‖ ≤ ε+ δ for n ≥ nδ and limn xn = x in (X, ‖ · ‖) as we
wanted to prove.

Let us present now the renorming Theorem 1.2 as developed in Chapter 3 of [14]:

Theorem 3.4. For a normed space (X, ‖ · ‖), and a norming subspace F ⊂ X∗, the

following conditions are equivalent each to other:

(1) The space X admits an equivalent σ(X,F )-lower semicontinuous LUR norm.

(2) There are σ(X,F )-slicely isolated families Nn, n = 1, 2, ... such that
⋃

n∈N Nn is a

network for the norm topology.

(3) For every ε > 0 we can write X =
⋃

n∈NX
ε
n where for every n ∈ N and ev-

ery x ∈ Xε
n there is a σ(X,F )-open half space H ⊂ X such that x ∈ H and

diam(Xε
n ∩H) < ε

Proof. (1 ) ⇒ (3 ) can be found in Theorem 2 of [16], in the Main Theorem of [11], see
Lemma 14 and implication c) ⇒ b) in page 629, as well as in Theorem 3.1 of [14].

(3) ⇒ (2) can be found in Proposition 2.24 of [14]. For completeness we prove the latter.
Take any p ∈ N. Using Stone’s theorem, Theorem 4.4.1 in [3], when starting from a cover
of X by open sets of diameter less than 1/p, we get norm-discrete families Bp

i , i ∈ N of
open sets such that the family Bp

1 ∪ Bp
2 ∪ · · · covers X, that each element of this family

has diameter less than 1/p, and moreover that inf{‖b − b′‖ : b ∈ B, b′ ∈ B′} > 1/2i

whenever i ∈ N and B,B′ are distinct elements of Bp
i . Define now

Ni,p,n = {X1/2i

n ∩B : B ∈ Bp
i }, i, p, n ∈ N.

Fix any i, p, n ∈ N. We shall show that Ni,p,n is a σ(X,F )-slicely isolated family. So,

take any N ∈ Ni,p,n and then any x ∈ N . Find B ∈ Bp
i so that N = X

1/2i

n ∩ B. Find a

σ(X,F )-open half space H ⊂ X such that x ∈ H and diam(X
1/2i

n ∩H) < 1/2i. Consider

any B′ ∈ Bp
i distinct from B. We want to prove that (X

1/2i

n ∩ B′) ∩H = ∅. So, assume

that there is y ∈ (X
1/2i

n ∩B′)∩H. Then y ∈ X
1/2i

n ∩H, and hence ‖y−x‖ < 1/2i. However
we also have that ‖y−x‖ > 1/2i, a contradiction. We thus proved that the family Ni,p,n
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is σ(X,F )-slicely isolated. It remains to prove that the union
⋃

{Ni,p,n : i, p, n ∈ N} is a
network for the norm topology in X. So fix any x ∈ X and ε > 0. Take p ∈ N so big

that ε > 1/p. Find i ∈ N and B ∈ Bp
i so that x ∈ B. Find then n ∈ N so that x ∈ X

1/2i

n .

Thus x ∈ X
1/2i

n ∩B ∈ Ni,p,n and diam(X
1/2i

n ∩B) < 1
p
< ε.

Finally we observe that (2 ) ⇒ (1 ) is the content of Corollary 3.3.

Remark 3.5. Our approach in the proof of (3 ) ⇒ (2 ) in Theorem 3.4 does not need
any convexification argument as the ones based on Bourgain Namioka supper-lemma,
[16, 4], or those developped in [14]. The convex structure here is inside the proof of the
connection lemma; it is in the fact that the functions used there are already convex.
Since the functions ϕi and ψi are convex, as they have been defined, we get free of
charge the construction of the equivalent norm using now Deville’s master Lemma. With
our approach here the convexification can be described on the elements of the σ-slicely
(for σ(X,F )) isolated network fo the norm topology as differences of σ(X,F )-closed
convex sets. In all previous approaches this was done on the sets Xε

n from the above
decomposition X =

⋃

n∈NX
ε
n.

The main results in the work [4] provides extensions of Corollary 3.3 when the Kuratowski
index of non-compactness is used instead of the diameter. We are going to go further
when the dual unit ball is weak* separable as an application of our connection lemma
above, but using a more general measure of non-compactness. Actually we are going to
present the proof of a theorem in the introduction:

Proof of Theorem 1.4. Without any lost of generality we can, and we do assume,
that every family Nn is uniformly bounded since the intersection of a slicely isolated
family of sets with a fixed ball is slicely isolated too. Let us construct, with the use
of the connection lemma, equivalent σ(X,F )-lower semicontinuous norms ‖ · ‖Nn

, for
every n ∈ N, which verify the conclusion of Lemma 3.2 for the families Nn. We pick a
countable weak∗ dense set T =: {tn : n = 1, 2, ...} in F . Define then a new, equivalent
norm ‖| · |‖ on X by the formula

‖|x|‖2 :=
∞
∑

m=1

cm(‖x‖
2
Nm

+ 〈x, tm〉
2)

for every x ∈ X, where the sequence (cn) is chosen so that the above series converges.
Consider any x ∈ X and any sequence (xn) in X satisfying the premise

lim
n

(

2 ‖|xn|‖
2 + 2 |‖x|‖2 − ‖|xn + x|‖2

)

= 0.

We shall show first that the set {x1, x2, ...} is weakly relatively compact. To do so, fix
any ε > 0. From the assumptions, find m ∈ N, N ∈ Nm, and a weakly compact set
C ⊂ X so that x ∈ N ⊂ C + εBX . The connection lemma yields n ∈ N such that

{xn, xn+1, ...} ⊂ coN + εBX
σ(X,F )

⊂

and we may continue, using Krein-Shmulyan theorem, in the following chain of inclusions:

⊂ co(C + εBX) + εBX

σ(X,F )
⊂ coC + 2εBX .
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Hence

{x1, x2, ...}
w∗

⊂ {x1, x2, ..., xn} ∪ coC + 2εBX

w∗

⊂ {x1, x2, ..., xn} ∪ coC + 2εBX∗∗ ⊂ X + 2εBX∗∗ .

Here ε > 0 was arbitrary, so {x1, x2, ..., xn, ...} is a relatively weakly compact set. More-
over, by the convexity arguments again we have that limn 〈xn, t〉 = 〈x, t〉 for every t ∈ T .
Thus, every σ(X,X∗) cluster point y of the sequence {xn : n = 1, 2, ...} does coincide
with x on the σ(X∗, X)-dense subset T of X∗, so they coincide in all X∗ and x = y. The
sequence (xn) itself is σ(X,X∗) convergent to x by its weak relative compactness. We
conclude that the new norm ‖| · |‖ is weakly locally uniformly rotund and σ(X,F )-lower
semicontinuous. From results in [12] we will have a LUR renorming on X. The fact
that it can be obtained σ(X,F )-lower semicontinuous also follows from analysis in [14].
Indeed, the main lemma in Section 3, Chapter 3 of [14], tell us that the weak topology
has a σ(X,F )-slicely isolated network, so a metric finer than the weak topology with a
σ(X,F )-slicely isolated network can be cosntructed on X, see Theorem 3.21 in [14], from
where it follows that the same is valid for the norm topology, see Corollary 3.23 in [14].
Thus the space X admits an equivalent σ(X,F )-lower semicontinuous LUR norm.

Let us finish with an open question:

Question. Given a scattered compact space K, is there any characterization of the
LUR renormability of C(K) by means of any σ-discreteness property for the family
of all clopen subsets of K? Indeed, we know that if A is the familly of all clopen
subsets of the scattered compact spaces K and C(K) admits an equivalent pointwise
lower semicontinuous and LUR norm, then the family of clopen sets is a countable union
A =

⋃

n∈N An of families such that every An provides a set of characteristic functions
{1A : A ∈ An} which is pointwise slicely discrete, but it is unknown what else is needed
to have a reverse implication true.

Acknowledgements. We would like to thank the referee’s contribution to the final form of

the paper. In particular, his/her careful analysis of the original version providing us with a lot

of suggestions to improve the presentation.

References

[1] C. Bessaga, A. Pelczynski: Selected Topics in Infinite-dimensional Topology, Monografie
Matematyczne 58, PWN - Polish Scientific Publishers, Warszawa (1975).

[2] R. Deville, G. Godefroy, V. Zizler: Smoothness and renormings in Banach spaces, Pitman
Monographs and Surveys in Pure and Applied Mathematics 64, Longman, Harlow (1993).

[3] R. Engelking: General Topology, Monografie Matematyczne 60, PWN - Polish Scientific
Publishers, Warszawa (1977).
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