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We propose two inexact parallel splitting algorithms for computing the resolvent of a weighted sum
of maximal monotone operators in a Hilbert space and show their strong convergence. We start by
establishing new results on the asymptotic behavior of the Douglas-Rachford splitting algorithm for the
sum of two operators. These results serve as a basis for the first algorithm. The second algorithm is based
on an extension of a recent Dykstra-like method for computing the resolvent of the sum of two maximal
monotone operators. Under standard qualification conditions, these two algorithms provide a means
for computing the proximity operator of a weighted sum of lower semicontinuous convex functions. We
show that a version of the second algorithm performs the same task without requiring any qualification
condition. In turn, this provides a parallel splitting algorithm for qualification-free strongly convex
programming.
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1. Introduction and notation

LetH be a real Hilbert space with scalar product 〈· | ·〉 and norm ‖·‖, and let A : H → 2H

be a monotone operator, i.e.,

(∀(x, y) ∈ H ×H)(∀(u, v) ∈ Ax× Ay) 〈x− y | u− v〉 ≥ 0. (1)

We denote by ranA =
{

u ∈ H | (∃x ∈ H) u ∈ Ax
}

the range of A, by zerA =
{

x ∈ H |
0 ∈ Ax

}

its set of zeros, by graA =
{

(x, u) ∈ H ×H | u ∈ Ax
}

its graph, and by A−1 its
inverse, i.e., the operator with graph

{

(u, x) ∈ H ×H | u ∈ Ax
}

. The resolvent of A is
JA = (Id+A)−1. This operator enjoys many important properties that make it a central
tool in monotone operator theory and its applications [3, 10, 44, 45, 52]. In particular,
it is single-valued, firmly nonexpansive in the sense that

(∀x ∈ ran(Id+A))(∀y ∈ ran(Id+A)) ‖JAx− JAy‖
2 ≤ 〈x− y | JAx− JAy〉 , (2)
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and Minty’s theorem states that it is defined everywhere in H, i.e., ran(Id+A) = H,
if and only if A is maximal monotone in the sense that, if B : H → 2H is monotone
and graA ⊂ graB, then B = A. Moreover, (2) implies that the reflection operator
RA = 2JA − Id is nonexpansive, that is,

(∀x ∈ ran(Id+A))(∀y ∈ ran(Id+A)) ‖RAx−RAy‖ ≤ ‖x− y‖. (3)

Finally, the set Fix JA =
{

x ∈ H | JAx = x
}

of fixed points of JA coincides with zerA.

The goal of this paper is to propose two strongly convergent splitting methods for com-
puting the resolvent of a monotone operator A : H → 2H which can be decomposed as a
weighted sum of maximal monotone operators (Ai)1≤i≤m, say

A =
m
∑

i=1

ωiAi, where {ωi}1≤i≤m ⊂ ]0, 1[ and
m
∑

i=1

ωi = 1, (4)

where the individual resolvents (JAi
)1≤i≤m can be implemented relatively easily. Both

methods proceed by splitting in the sense that, at each iteration, they employ these
resolvents separately. In addition, only approximate evaluations of the resolvents are
needed. Note that since computing JAr for some r ∈ H is equivalent to solving

r ∈ x+
m
∑

i=1

ωiAix, (5)

the proposed algorithms can be viewed as splitting methods for solving strongly mono-
tone inclusions (recall that A is said to be α-strongly monotone for some α ∈ ]0,+∞[ if
A− α Id is monotone).

The first method is discussed in Section 2. It is based on new results that we establish
on the asymptotic behavior of the Douglas-Rachford splitting method for the sum of two
maximal monotone operators. This section also contains new results on the convergence
of a splitting method for the (not necessarily strongly monotone) sum of m maximal
monotone operators. In Section 3, we present an alternative method, which finds its
roots in a recent extension of Dykstra’s best approximation algorithm to the construction
of the resolvent of the sum of two monotone operators. In Section 4, we turn our
attention to the problem of constructing the proximity operator of functions that can
be decomposed as weighted sums of m proper lower semicontinuous convex functions.
This problem can naturally be tackled by restricting the algorithms of Sections 2 and 3
to subdifferentials, but at the expense of imposing qualification conditions. Instead, we
exploit a recent extension of Dykstra’s projection method to the construction of the
proximity operator of the sum of two convex functions to obtain a splitting method that
requires no qualification condition. Connections with projection methods, as well as
applications to qualification-free strongly convex programming and signal denoising are
also discussed.

In addition to the notation already introduced above, we shall also need the following.
The symbols ⇀ and → denote respectively weak and strong convergence. The projector
onto a nonempty closed convex set C ⊂ H is denoted by PC , its indicator function by
ιC , and its normal cone operator by NC , i.e.,

NC : H → 2H : x 7→

{

{

u ∈ H | (∀y ∈ C) 〈y − x | u〉 ≤ 0
}

, if x ∈ C;

?, otherwise.
(6)
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Finally, a monotone operator A : H → 2H is uniformly monotone on C ⊂ H if there
exists an increasing function φ : [0,+∞[ → [0,+∞[ vanishing only at 0 such that

(∀(x, y) ∈ C × C)(∀(u, v) ∈ Ax× Ay) 〈x− y | u− v〉 ≥ φ(‖x− y‖). (7)

In particular, if φ : t 7→ αt2 for some α ∈ ]0,+∞[, then A is α-strongly monotone on C.

2. Douglas-Rachford splitting for the resolvent of the sum

In the context of monotone operator theory, what is known as the Douglas-Rachford
algorithm is a splitting scheme initially proposed in [34] for finding a zero of the sum of
two maximal monotone operators (we refer the reader to [17] for connections with the
original work of Douglas and Rachford [24]). In Section 2.1, we present new convergence
results for this algorithm. In Section 2.2, these results are utilized to obtain weak and
strong convergence conditions for a splitting scheme devised to find a zero of the weighted
sum of m maximal monotone operators. This scheme is shown to be closely related to an
algorithm originally designed by Spingarn [48, 49] with different tools. The application
of the results of Section 2.2 to the construction of the resolvent of the sum of m maximal
monotone operators is discussed in Section 2.3.

2.1. Asymptotic behavior of the Douglas-Rachford algorithm

We revisit an algorithm which was proposed in its initial form by Lions and Mercier in
[34].

Theorem 2.1. Let (H, |||·|||) be a real Hilbert space, let A and B be maximal monotone

operators from H to 2H such that zer(A + B) 6= ?, let γ ∈ ]0,+∞[, let (λn)n∈N be a

sequence in ]0, 2], and let (an)n∈N and (bn)n∈N be sequences in H. Furthermore, let

(yn)n∈N and (zn)n∈N be the sequences generated by the following routine.

Initialization
⌊

z0 ∈ H

For n = 0, 1, . . .
⌊

yn = JγB zn + bn
zn+1 = zn + λn

(

JγA (2yn − zn) + an − yn

)

.

(8)

Then the following hold.

(i) Suppose that
∑

n∈N λn(|||an|||+ |||bn|||) < +∞, that
∑

n∈N λn(2− λn) = +∞, and

that (∀n ∈ N) λn < 2. Then the following hold.

(a) (zn)n∈N converges weakly to a point z ∈ Fix(RγA ◦ RγB ) and JγB z is a zero

of A+B.

(b)
(

RγA (RγB zn)− zn

)

n∈N
converges strongly to 0.

(c) Suppose that JγB is weakly sequentially continuous and that bn ⇀ 0. Then

(yn)n∈N converges weakly to a zero of A+B.

(d) Suppose that H is finite dimensional. Then (yn)n∈N converges to a zero of

A+B.

(e) Suppose that A = ND , where D is a closed affine subspace of H. Then

(JγA zn)n∈N converges weakly to a zero of A+B.
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(f) Suppose that A = ND , where D is a closed vector subspace of H, and that

bn ⇀ 0. Then (JγAyn)n∈N converges weakly to a zero of A+B.

(ii) Suppose that
∑

n∈N |||an||| < +∞, that
∑

n∈N |||bn||| < +∞, and that infn∈N λn > 0.
Then the following hold.

(a) Suppose that int Fix(RγA ◦ RγB ) 6= ?. Then (yn)n∈N converges strongly to a

zero of A+B.

(b) Suppose that B is uniformly monotone on the bounded subsets of H. Then

(yn)n∈N converges strongly to the unique zero of A+B.

Proof. Denote the scalar product of H by 〈〈· | ·〉〉 and set T = RγA ◦ RγB . Then it
follows from (3) that T is nonexpansive. Moreover, [17, Lemma 2.6] (see also [34]) asserts
that

T = 2JγA ◦
(

2JγB − Id
)

+ Id− 2JγB (9)

and that
zer(A+B) = JγB (FixT ). (10)

(i)(a): [17, Corollary 5.2] and its proof.

(i)(b): See the proofs of [17, Corollary 5.2] and [17, Lemma 5.1].

(i)(c): It follows from (i)(a) that yn = JγB zn + bn ⇀ JγB z ∈ zer(A+B).

(i)(c) ⇒ (i)(d): Clear by continuity of JγB .

(i)(e): By assumption JγA = PD is the projector onto D and it is therefore continuous
and affine. As seen in (i)(a), zn ⇀ z ∈ FixT and JγB z ∈ zer(A+B). Hence, since PD

is weakly continuous, PD zn ⇀ PD z. However, it follows from (9) that

z ∈ FixT ⇔ z = 2PD (2JγB z + (1− 2)z) + z − 2JγB z

⇔ JγB z = 2PD (JγB z) + (1− 2)PD z ∈ D

⇔ PD (JγB z) = JγB z = 2PD (JγB z)− PD z

⇔ PD z = JγB z. (11)

Altogether, JγAzn = PD zn ⇀ PD z = JγB z ∈ zer(A+B).

(i)(f): By assumption JγA = PD is linear and nonexpansive. Hence, we derive from (9)
and (i)(b) that

|||PD (JγB zn)− PD zn||| = |||PD (PD (2JγB zn − zn)− JγB zn)|||

≤ |||PD (2JγB zn − zn)− JγB zn|||

=
1

2
|||Tzn − zn|||

→ 0. (12)

On the other hand, it follows from (i)(e) that there exists y ∈ zer(A + B) such that
PD zn ⇀ y. Thus, (12) yields PD (JγB zn) ⇀ y. Since, by weak continuity of PD ,
PD bn ⇀ 0, we conclude that JγAyn = PD (JγB zn) + PD bn ⇀ y.

(ii): Set λ = infn∈N λn, let z ∈ FixT , and set

(∀n ∈ N) cn = µn

(

2an +RγA (RγB zn + 2bn)−RγA (RγB zn)
)

, where µn =
λn

2
. (13)
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Using (9) and straightforward manipulations, we derive from (8) that

(∀n ∈ N) zn+1 = xn + cn, where xn = zn + µn(Tzn − zn). (14)

Hence, since T is nonexpansive,

(∀n ∈ N) |||zn+1 − z||| ≤ |||xn − z|||+ |||cn||| (15)

≤ (1− µn)|||zn − z|||+ µn|||Tzn − Tz|||+ |||cn|||

≤ |||zn − z|||+ |||cn|||. (16)

Moreover, since RγA is nonexpansive and supn∈N µn ≤ 1, (13) yields

∑

n∈N

|||cn||| ≤ 2
∑

n∈N

|||an|||+
∑

n∈N

|||RγA (RγB zn + 2bn)−RγA (RγB zn)|||

≤ 2
∑

n∈N

(|||an|||+ |||bn|||)

< +∞. (17)

In turn, we derive from (16), (17), and [42, Lemma 2.2.2] that

(|||zn − z|||)n∈N converges. (18)

(ii)(a): It follows from (16), (17), and [16, Proposition 3.10] that there exists x ∈ H

such that zn → x. Hence, by continuity of T , Tzn − zn → Tx−x. On the other hand,
(14) and (17) yield

|||Tzn−zn||| =
1

µn

|||zn+1−zn−cn||| ≤
2

λ
(|||zn+1−x|||+|||zn−x|||+|||cn|||) → 0. (19)

As a result, Tx − x = 0, i.e., x ∈ FixT . Appealing to (10), we conclude that yn =
JγB zn + bn → JγB x ∈ zer(A+B).

(ii)(b): By assumption, B is strictly monotone, and so is therefore A + B. Hence
zer(A+B) is a singleton. Next, in view of (18) and of the nonexpansivity of JγB , there
exists a bounded set C ⊂ H that contains (JγB zn)n∈N and JγB z. On the other hand,
since zn − JγB zn ∈ γB(JγB zn) and z − JγB z ∈ γB(JγB z), (7) yields

(∀n ∈ N) 〈〈JγB zn − JγB z | zn − z〉〉

≥ |||JγB zn − JγB z|||
2 + γφ(|||JγB zn − JγB z|||),

(20)

for some increasing function φ : [0,+∞[ → [0,+∞[ that vanishes only at 0. Hence, since
RγA is nonexpansive,

(∀n ∈ N) |||Tzn − z|||2

= |||RγA (RγB zn)−RγA (RγB z)|||
2

≤ |||RγB zn −RγB z|||
2

= |||zn − z|||2 − 4〈〈JγB zn − JγB z | zn − z〉〉+ 4|||JγB zn − JγB z|||
2

≤ |||zn − z|||2 − 4γφ(|||JγB zn − JγB z|||). (21)
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Using (14) and (21), we obtain

(∀n ∈ N) |||xn − z|||2 ≤ (1− µn)|||zn − z|||2 + µn|||Tzn − z|||2

≤ |||zn − z|||2 − 4µnγφ(|||JγB zn − JγB z|||)

≤ |||zn − z|||2 − 2λγφ(|||JγB zn − JγB z|||) (22)

≤ |||zn − z|||2. (23)

Now set ν = 2 supk∈N |||xk − z||| + supk∈N |||ck|||. It follows from (17), (18), and (23)
that ν < +∞. Furthermore, we derive from (15) and (22) that

(∀n ∈ N) |||zn+1 − z|||2 ≤ |||xn − z|||2 + (2|||xn − z|||+ |||cn|||)|||cn|||

≤ |||zn − z|||2 − 2λγφ(|||JγB zn − JγB z|||) + ν|||cn|||. (24)

Thus, (17) and (18) yield φ(|||JγB zn−JγB z|||) → 0 and, in turn, JγB zn → JγB z. Hence,
we get yn = JγB zn + bn → JγB z and, in view of (10), the proof is complete.

Remark 2.2. Let us make a few commentaries about Theorem 2.1 and its connections
to results available in the literature.

(i) Special cases of Theorem 2.1(i)(a) are [15, Proposition 12], [26, Theorem 7], and
the original Lions and Mercier result [34, Theorem 1]. Let us note that, at this
level of generality, there is no weak or strong convergence result available for the
sequences (yn)n∈N, (JγA yn)n∈N, (JγA zn)n∈N, and (JγB zn)n∈N.

(ii) In numerical applications [20, 28, 35], the scaling parameter γ has been experienced
to impact the speed of convergence of the Douglas-Rachford algorithm.

(iii) The conditions
∑

n∈N λn(2− λn) = +∞ and
∑

n∈N λn|||bn||| < +∞ used in Theo-
rem 2.1(i) do not imply that bn ⇀ 0. Indeed, set

(∀n ∈ N) λn =

{

1, if n = 0;

1/n, if n ≥ 1.
(25)

Then
∑

n∈N λn(2− λn) ≥
∑

n∈N λn = +∞. Now let (en)n∈N be a sequence of unit
norm vectors in H and set

(∀n ∈ N) bn =

{

e0, if n ∈ S;

en/n, if n /∈ S,
(26)

where S =
{

n ∈ N | (∃ k ∈ N) n = k2
}

. Then clearly bn 6⇀ 0. However,

∑

n∈N

λn|||bn||| = 1 +
∑

n∈Sr{0}

1

n
+

∑

n∈NrS

1

n2

= 1 +
∑

n∈Nr{0}

1

n2
+

∑

n∈NrS

1

n2

< +∞. (27)

It is noteworthy that our framework allows for non summable error sequences: in
the above example, we actually have lim |||bn||| = 1.
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(iv) If we set λn ≡ 2 in Theorem 2.1(ii), we obtain strong convergence conditions for
an inexact version of the Peaceman-Rachford algorithm [17, 34]. In general, the
sequences (yn)n∈N and (zn)n∈N produced by the Peaceman-Rachford algorithm do
not converge, even weakly.

(v) In [7], the asymptotic behavior of algorithm (8) when zer(A +B) = ? is investi-
gated in the special case when A and B are the normal cone operators of closed
convex sets and when λn ≡ 1, an ≡ 0, and bn ≡ 0.

(vi) Suppose that B = 0 and that bn ≡ 0 in Theorem 2.1(i)(c). Then (zn)n∈N =
(yn)n∈N and we obtain the weak convergence to a zero of A of the proximal point
iteration

z0 ∈ H and (∀n ∈ N) zn+1 = zn + λn

(

JγAzn + an − zn

)

(28)

provided that
∑

n∈N λn|||an||| < +∞,
∑

n∈N λn(2 − λn) = +∞, and (∀n ∈ N)
λn < 2. Alternate convergence results for the proximal point algorithm can be
found in [17] and the references therein, in particular in the classical papers [11, 44].

Corollary 2.3. Let (H, ||| · |||) be a real Hilbert space, let D be a closed affine subspace

of H, let B : H→ 2H be a maximal monotone operator such that zer(ND + B) 6= ?,

let γ ∈ ]0,+∞[, let (λn)n∈N be a sequence in ]0, 2], and let (bn)n∈N be a sequence in

H. Furthermore, let (xn)n∈N and (pn)n∈N be the sequences generated by the following

routine.
Initialization
⌊

z0 ∈ H

For n = 0, 1, . . .












yn = JγB zn + bn
xn = PD yn

pn = PD zn

zn+1 = zn + λn(2xn − pn − yn).

(29)

Then the following hold.

(i) Suppose that
∑

n∈N λn|||bn||| < +∞, that
∑

n∈N λn(2 − λn) = +∞, and that

(∀n ∈ N)λn < 2. Then the following hold.

(a) (pn)n∈N converges weakly to a zero of ND +B.

(b) Suppose that D is a closed vector subspace of H and that bn ⇀ 0. Then

(xn)n∈N converges weakly to a zero of ND +B.

(ii) Suppose that
∑

n∈N |||bn||| < +∞, that infn∈N λn > 0, and that B is uniformly

monotone on the bounded subsets of H. Then (xn)n∈N converges strongly to the

unique zero of ND +B.

Proof. Set A = ND and an ≡ 0 in Theorem 2.1. Then JγA = PD is an affine operator
and (8) can therefore be written as (29). Consequently, we can draw the following
conclusions.

(i)(a): Theorem 2.1(i)(e) asserts that there exists y ∈ zer(ND + B) such that pn =
PD zn⇀ y.

(i)(b): Theorem 2.1(i)(f) asserts that there exists y ∈ zer(ND + B) such that xn =
PD yn⇀ y.
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(ii): Theorem 2.1(ii)(b) asserts that yn → y, where {y} = zer(ND +B) ⊂ D. Since PD

is continuous and y ∈ D, we conclude that xn = PD yn → PD y = y.

Remark 2.4. LetHbe a real Hilbert space, letD be a closed vector subspace ofH, and
let B : H→ 2H be a maximal monotone operator such that zer(ND +B) 6= ?. It follows
from Corollary 2.3(i)(b) with γ = 1, λn ≡ 1, and bn ≡ 0 that a point s ∈ zer(ND +B)
can be constructed by the basic Douglas-Rachford algorithm

z0 ∈ H and (∀n ∈ N)









yn = JB zn

(xn, rn)= (PD yn, PD
⊥zn)

zn+1 = rn + 2xn − yn.
(30)

On the other hand, (6) yields zer(ND +B) =
{

s ∈ D | (∃v ∈ D⊥) v ∈ Bs
}

. In [48],
Spingarn considered the problem

find (s,v) ∈ D ×D⊥ such that v ∈ Bs (31)

and proposed the “method of partial inverses�

(s0,v0) ∈ D ×D⊥

and (∀n ∈ N)

⌊

find (yn,un) ∈ graB such that yn + un = sn + vn

(sn+1,vn+1) = (PD yn, PD
⊥un)

(32)

to solve it. Strong connections between (30) and (32) were established in [31, Section 1]
(see also [26, Section 5] and [35]).

2.2. Splitting for the sum of maximal monotone operators

The following result concerns an algorithm for finding a zero of the sum of m maximal
monotone operators. Its proof revolves around a 2-operator product space reformulation
of the original m-operator problem. Such a strategy can be traced back to the work
of Pierra [40, 41], who introduced it for solving convex feasibility, best approximation,
and constrained optimization problems (see also [14] for its use in inconsistent convex
feasibility problems, [5, 12] for its use in Bregman projection algorithms, and [18] for
its use in visco-penalization problems). It is also instrumental in the operator splitting
method proposed by Spingarn [48] (see also [7, 32]).

Theorem 2.5. Let (Bi)1≤i≤m be m ≥ 2 maximal monotone operators from H to 2H,
and set

B =
m
∑

i=1

ωiBi, where {ωi}1≤i≤m ⊂ ]0, 1[ and

m
∑

i=1

ωi = 1. (33)

Let γ ∈ ]0,+∞[, let (λn)n∈N be a sequence in ]0, 2], and, for every i ∈ {1, . . . ,m}, let
(bi,n)n∈N be a sequence in H. Furthermore, suppose that zerB 6= ?, and let (xn)n∈N and



P. L. Combettes / Iterative Construction of the Resolvent of a Sum of Maximal ... 735

(pn)n∈N be the sequences generated by the following routine.

Initialization
⌊

For i = 1, . . . ,m
⌊

zi,0 ∈ H

For n = 0, 1, . . .


























For i = 1, . . . ,m
⌊

yi,n = JγBi
zi,n + bi,n

xn =
∑m

i=1
ωiyi,n

pn =
∑m

i=1
ωizi,n

For i = 1, . . . ,m
⌊

zi,n+1 = zi,n + λn

(

2xn − pn − yi,n
)

.

(34)

Then the following hold.

(i) Suppose that max1≤i≤m

∑

n∈N λn‖bi,n‖ < +∞, that
∑

n∈N λn(2 − λn) = +∞, and

that (∀n ∈ N) λn < 2. Then the following hold.

(a) (pn)n∈N converges weakly to a zero of B.

(b) Suppose that (∀i ∈ {1, , . . . ,m}) bi,n ⇀ 0. Then (xn)n∈N converges weakly to a

zero of B.

(ii) Suppose that max1≤i≤m

∑

n∈N ‖bi,n‖ < +∞, that infn∈N λn > 0, and that the op-

erators (Bi)1≤i≤m are α-strongly monotone on H for some α ∈ ]0,+∞[. Then

(xn)n∈N converges strongly to the unique zero of B.

Proof. Let H be the real Hilbert space obtained by endowing the Cartesian product
Hm with the scalar product (x,y) 7→

∑m

i=1
ωi 〈xi | yi〉, where x = (xi)1≤i≤m and y =

(yi)1≤i≤m denote generic elements in H. The associated norm is

||| · ||| : x 7→

√

√

√

√

m
∑

i=1

ωi‖xi‖2. (35)

Define
D =

{

(x, . . . , x) ∈ H | x ∈ H
}

. (36)

In view of (6), we have

ND : H→ 2H : x 7→

{

D⊥ =
{

u ∈ H |
∑m

i=1
ωiui = 0

}

, if x ∈ D;

?, otherwise.
(37)

We also introduce the canonical isometry

j : H → D : x 7→ (x, . . . , x). (38)

Now set

A = ND and B : H→ 2H : x 7→

m

×
i=1

Bixi. (39)
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It is an easy matter to check that A and B are maximal monotone with resolvents

(∀x ∈ H) JγAx = PDx = j

( m
∑

i=1

ωixi

)

and JγBx =
(

JγBi
xi

)

1≤i≤m
. (40)

Moreover, for every y ∈ H, (33) and (37) yield y ∈ zerB ⇔ 0 ∈
∑m

i=1
ωiBiy ⇔

(∃ (ui)1≤i≤m ∈ ×m

i=1Biy)
∑m

i=1
ωiui = 0 ⇔ (∃u ∈ Bj(y)) −u ∈ D⊥ = ND j(y) ⇔

j(y) ∈ zer(ND +B) ⊂ D. Thus,

j(zerB) = zer(ND +B). (41)

Now set (∀n ∈ N) zn = (zi,n)1≤i≤m, yn = (yi,n)1≤i≤m, bn = (bi,n)1≤i≤m, xn = j(xn),
and pn = j(pn). Then it follows from (34) and (40) that the sequences thus defined are
precisely those appearing in (29).

(i): In view of (35),

∑

n∈N

λn|||bn||| =
∑

n∈N

λn

√

√

√

√

m
∑

i=1

ωi‖bi,n‖2 ≤
m
∑

i=1

∑

n∈N

λn‖bi,n‖ < +∞. (42)

(i)(a): Corollary 2.3(i)(a) and (41) imply that (pn)n∈N converges weakly to a point j(y),
where y ∈ zerB. Hence, pn = j−1(pn) ⇀ y.

(i)(b): The assumptions imply that bn ⇀ 0. Hence, it results from Corollary 2.3(i)(b)
and (41) that (xn)n∈N converges weakly to a point j(y), where y ∈ zerB. Hence,
xn = j−1(xn) ⇀ y.

(ii): By assumption, B is α-strongly monotone, hence uniformly monotone, on H. On
the other hand, proceeding as in (42), we obtain

∑

n∈N |||bn||| < +∞. Hence, Corol-
lary 2.3(ii) and (41) imply that (xn)n∈N converges strongly to j(y), where {y} = zerB.
Thus, xn = j−1(xn) → y.

We have obtained Theorem 2.5 as a corollary to Theorem 2.1 on the asymptotic behavior
of the Douglas-Rachford algorithm. In [48, 49], Spingarn proposed a splitting method
for m monotone operators based on a product space implementation of the method of
partial inverses (32). Since, as mentioned in Remark 2.4, connections exist between the
Douglas-Rachford algorithm and (32), we naturally obtain a connection between the
product space transpositions of these algorithms. In the next corollary, we exploit this
connection to derive from Theorem 2.5(i)(b) the convergence of Spingarn’s m-operator
splitting method (see also [7, Section 4] for the product space behavior of the Douglas-
Rachford algorithm in the special case of convex feasibility problems and its connection
to Spingarn’s parallel projection method [48, Section 6], [50]).

Corollary 2.6 ([48, Corollary 5.1(i)]). Let (Bi)1≤i≤m be m ≥ 2 maximal monotone

operators from H to 2H, and set

B =
m
∑

i=1

ωiBi, where {ωi}1≤i≤m ⊂ ]0, 1[ and

m
∑

i=1

ωi = 1. (43)
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Suppose that zerB 6= ? and let (sn)n∈N be the sequence generated by the following routine.

Initialization
⌊

s0 ∈ H
(vi,0)1≤i≤m ∈ Hm satisfy

∑m

i=1
ωivi,0 = 0

For n = 0, 1, . . .
























For i = 1, . . . ,m
⌊

find (yi,n, ui,n) ∈ graBi such that yi,n + ui,n = sn + vi,n

sn+1 =
∑m

i=1
ωiyi,n

qn =
∑m

i=1
ωiui,n

For i = 1, . . . ,m
⌊

vi,n+1 = ui,n − qn.

(44)

Then (sn)n∈N converges weakly to a zero of B.

Proof. Fix temporarily n ∈ N. For every i ∈ {1, . . . ,m}, the conditions defining
(yi,n, ui,n) in (44) can be expressed as sn + vi,n − yi,n ∈ Biyi,n and ui,n = sn + vi,n − yi,n,
that is, yi,n = JBi

(sn + vi,n) and ui,n = sn + vi,n − yi,n. Now set (∀i ∈ {1, . . . ,m})
zi,n = sn + vi,n and xn = sn+1. Upon eliminating the variables (vi,n)1≤i≤m, the loop on n
in (44) can be rewritten as





























For i = 1, . . . ,m
⌊

yi,n = JBi
zi,n

ui,n = zi,n − yi,n

xn=
∑m

i=1
ωiyi,n

qn =
∑m

i=1
ωiui,n

For i = 1, . . . ,m
⌊

zi,n+1 − xn = ui,n − qn.

(45)

Now set pn =
∑m

i=1
ωizi,n. Then qn =

∑m

i=1
ωizi,n −

∑m

i=1
ωiyi,n = pn − xn and hence,

for every i ∈ {1, . . . ,m}, ui,n − qn = zi,n − yi,n − pn + xn. Therefore, upon eliminating
(ui,n)1≤i≤m, un, and qn, an introducing pn, (45) can be reduced to

























For i = 1, . . . ,m
⌊

yi,n = JBi
zi,n

xn =
∑m

i=1
ωiyi,n

pn =
∑m

i=1
ωizi,n

For i = 1, . . . ,m
⌊

zi,n+1 = zi,n + 2xn − pn − yi,n,

(46)

which coincides with the loop on n in (34) in the special case when it is implemented
with γ = 1, λn = 1, and (∀i ∈ {1, . . . ,m}) bi,n = 0. Since Theorem 2.5(i)(b) asserts that
in this case (xn)n∈N converges weakly to a zero of B, so does (sn)n∈N.
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Remark 2.7.

• Another angle on the problem of finding a zero of the sum of m maximal monotone
operators is the ergodic method proposed by Passty [39]. This approach, however,
requires that the sum be itself maximal monotone, which imposes additional re-
strictions; see [2] and [47, Section 32]. In addition, it involves finely tuned vanishing
parameters, which leads to numerical instabilities (see also [33]).

• In the case when the operators (Bi)1≤i≤m are subdifferentials, applications of The-
orem 2.5(i)(a) in the area of inverse problems can be found in [21].

2.3. Splitting for the resolvent of the sum of maximal monotone operators

In this section, we apply Theorem 2.5(ii) to our initial problem of devising a strongly
convergent splitting method for computing the resolvent of a sum of maximal monotone
operators.

Theorem 2.8. Let (Ai)1≤i≤m be m ≥ 2 maximal monotone operators from H to 2H,
and set

A =
m
∑

i=1

ωiAi, where {ωi}1≤i≤m ⊂ ]0, 1[ and

m
∑

i=1

ωi = 1. (47)

Let γ ∈ ]0,+∞[, let (λn)n∈N be a sequence in ]0, 2] such that infn∈N λn > 0, and, for every
i ∈ {1, . . . ,m}, let (ai,n)n∈N be a sequence in H such that

∑

n∈N ‖ai,n‖ < +∞. Further-

more, let r ∈ ran(Id+A) and let (xn)n∈N be the sequence generated by the following

routine.
Initialization
⌊

For i = 1, . . . ,m
⌊

zi,0 ∈ H

For n = 0, 1, . . .






























For i = 1, . . . ,m
⌊

yi,n = J γ

γ+1
Ai

(

zi,n + γr

γ + 1

)

+ ai,n

xn =
∑m

i=1
ωiyi,n

pn =
∑m

i=1
ωizi,n

For i = 1, . . . ,m
⌊

zi,n+1 = zi,n + λn

(

2xn − pn − yi,n
)

.

(48)

Then xn → JA r.

Proof. Set

(∀i ∈ {1, . . . ,m}) Bi : H → 2H : y 7→ −r+ y+Aiy and (∀n ∈ N) bi,n = ai,n. (49)

The operators (Bi)1≤i≤m are maximal monotone and 1-strongly monotone. In addition,

(∀i ∈ {1, . . . ,m})(∀y ∈ H)(∀z ∈ H) y = JγBi
z

⇔ z ∈ y + γBiy

⇔ z + γr ∈ (γ + 1)y + γAiy

⇔ y = J γ

γ+1
Ai

((z + γr)/(γ + 1)) . (50)
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Thus, (48) coincides with (34). Now set B =
∑m

i=1
ωiBi. Then (47) and (49) yield

B = −r + Id+A and, since r ∈ ran(Id+A), we obtain zerB = {JA r}. Appealing to
Theorem 2.5(ii), we conclude that xn → JA r.

3. Dykstra-like splitting for the resolvent of the sum

In [6, Theorem 2.4], Dykstra’s method for computing the projection onto the intersection
of two closed convex sets [9, 23, 25] was extended to a method for computing the resolvent
of the sum of two maximal monotone operators. In Proposition 3.2, we establish the
convergence of an inexact version of this method. This result is then used to obtain
Theorem 3.3, where we introduce an alternative splitting method for computing the
resolvent of m ≥ 2 maximal monotone operators. The following fact will be needed.

Lemma 3.1. Let (H, ||| · |||) be a real Hilbert space, let T1 and T2 be firmly nonexpansive

operators from H to H such that Fix(T1◦T2) 6= ?, and let (e1,n) and (e2,n) be sequences in
H such that

∑

n∈N |||e1,n||| < +∞ and
∑

n∈N |||e2,n||| < +∞. Furthermore, let (un)n∈N
be the sequence resulting from the iteration

u0 ∈ H and (∀n ∈ N) un+1 = T1

(

T2un + e2,n

)

+ e1,n. (51)

Then there exists u ∈ Fix(T1 ◦ T2) such that un ⇀ u. Moreover, T2un −un → T2u−u.

Proof. See the statement and the proof of [36, Théorème 5.5.2] or, from a more general
perspective, those of [17, Corollary 7.1].

Proposition 3.2. Let (H, ||| · |||) be a real Hilbert space, let A and B be maximal mono-

tone operators from H to 2H, and let (an)n∈N and (bn)n∈N be sequences in H such that

∑

n∈N

|||an||| < +∞ and
∑

n∈N

|||bn||| < +∞. (52)

Furthermore, let r ∈ ran(Id+A+B) and let (xn)n∈N be the sequence generated by the

following routine.

Initialization








y0 = r

q0 = 0
p0 = 0

For n = 0, 1, . . .












xn = JB (yn + qn) + bn
qn+1 = yn + qn − xn

yn+1 = JA (xn + pn) + an

pn+1 = xn + pn − yn+1.

(53)

Then xn → JA+B r.

Proof. The first part of the proof is closely patterned after that of [6, Theorem 2.4],
where (∀n ∈ N) an = 0 and bn = 0. We first derive from (53) that (∀n ∈ N) (qn+1 +
xn)+pn = yn+qn+pn. On the other hand, a simple induction argument yields (∀n ∈ N)
qn + pn = r − yn. Thus,

(∀n ∈ N) r = yn + qn + pn = qn+1 + pn + xn, (54)
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so that (53) can be rewritten as









y0 = r

q0 = 0
p0 = 0

and (∀n ∈ N)













xn = JB (r − pn) + bn
qn+1 = r − pn − xn

yn+1 = JA (r − qn+1) + an

pn+1 = r − qn+1 − yn+1.

(55)

Now set u0 = −r and (∀n ∈ N) un = pn − r and vn = −qn+1. Then it follows from
(54) that

(∀n ∈ N) vn − un = xn and vn − un+1 = yn+1, (56)

and that, in conjunction with (55),

(∀n ∈ N)

⌊

vn = pn − r + xn = un + JB (−un) + bn
un+1 = pn+1 − r = −qn+1 − yn+1 = vn − JA (vn + r)− an.

(57)

Now set C : H → 2H : v 7→ A−1(v + r) and D = B∼, where we use the notation
B∼ = (−Id) ◦B−1 ◦ (−Id). Then C and D are maximal monotone, and

C−1 = −r+A, D∼ = B, JC = Id−JA (·+r), and JD = Id+
(

JB ◦(−Id)
)

. (58)

Thus, the sequence (un)n∈N is generated by the algorithm

u0 = −r and (∀n ∈ N)

⌊

vn = JDun + bn
un+1 = JC vn − an.

(59)

To complete the proof, we invoke successively (58), [8, Equation (8)], [8, Fact 2.1], and
[8, Proposition 3.2(i)] to get

r ∈ ran(Id+A+B) ⇔ zer(−r +A+ Id+B) 6= ?

⇔ zer(C−1 + Id+D∼) 6= ?

⇔ zer(C−1 + (Id− JD )∼) 6= ?

⇔ zer(C + Id− JD ) 6= ?

⇔ Fix(JC ◦ JD ) 6= ?. (60)

Hence, since JC and JD are firmly nonexpansive, we derive from (59), (52), (56), and
Lemma 3.1 that there exists u ∈ Fix(JC ◦JD ) such that xn = vn−un = bn+JDun−un →
JDu−u. However, since [8, Proposition 3.2] asserts that JDu−u = JC −1+D

∼0 = JA+B r,
the proof is complete.

By transcribing the above result in a product space, we obtain a parallel splitting method
for computing the resolvent of the weighted sum of an arbitrary number of operators.

Theorem 3.3. Let (Ai)1≤i≤m be m ≥ 2 maximal monotone operators from H to 2H,
and set

A =
m
∑

i=1

ωiAi, where {ωi}1≤i≤m ⊂ ]0, 1[ and

m
∑

i=1

ωi = 1. (61)
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For every i ∈ {1, . . . ,m}, let (ai,n)n∈N be a sequence in H such that
∑

n∈N ‖ai,n‖ <
+∞. Furthermore, let r ∈ ran(Id+A) and let (xn)n∈N be the sequence generated by the

following routine.

Initialization








x0 = r
For i = 1, . . . ,m
⌊

zi,0 = x0

For n = 0, 1, . . .


















For i = 1, . . . ,m
⌊

yi,n = JAi
zi,n + ai,n

xn+1 =
∑m

i=1
ωiyi,n

For i = 1, . . . ,m
⌊

zi,n+1 = xn+1 + zi,n − yi,n.

(62)

Then xn → JA r.

Proof. Let H be as in the proof of Theorem 2.5, let D be as in (36), and let j be as in
(38). Set

A : H→ 2H : x 7→

m

×
i=1

Aixi and B = ND . (63)

As in (40), (35) yields

JA : H→ H: x 7→
(

JAi
xi

)

1≤i≤m
and JB = PD : H→ D : x 7→ j

( m
∑

i=1

ωixi

)

. (64)

Since by assumption r ∈ ran(Id+A), JA r is well defined. Moreover, we derive from (61),
(63), and (37) that, for every x ∈ H,

x = JA r ⇔ r − x ∈ Ax =
m
∑

i=1

ωiAix

⇔
(

∃ (ui)1≤i≤m ∈

m

×
i=1

Aix
)

m
∑

i=1

ωi(r − x− ui) = 0

⇔ (∃u ∈ Aj(x)) j(r)− j(x)− u ∈ D⊥

⇔ j(r)− j(x) ∈ Aj(x) +Bj(x)

⇔ j(x) = JA+B j(r). (65)

This shows that
j(JA r) = JA+B j(r). (66)

To construct JA+B j(r), we can use Proposition 3.2. Let (yn)n∈N, (xn)n∈N, (qn)n∈N,
and (pn)n∈N be the sequences generated by algorithm (53), where we set r = j(r) and
(∀n ∈ N) bn = 0. Proposition 3.2 asserts that

∑

n∈N

|||an||| < +∞ ⇒ xn → JA+B j(r). (67)
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On the other hand, since JB = PD , it follows from (53) that, for every n ∈ N, qn ∈ D⊥

and therefore xn = PD (yn + qn) = PD yn. Thus, the sequence (qn)n∈N plays no role in
(53), which can therefore be simplified to

⌊

y0 = j(r)
p0 = 0

and (∀n ∈ N)









xn = PD yn

yn+1 = JA (xn + pn) + an

pn+1 = xn + pn − yn+1.
(68)

After reordering the computations, we can rewrite (68) as

⌊

x0 = j(r)
p0 = 0

and (∀n ∈ N)









yn = JA (xn + pn) + an

pn+1 = xn + pn − yn

xn+1 = PD yn.
(69)

To further simplify the algorithm, let us set (∀n ∈ N) zn = xn+pn. Then (69) becomes

⌊

x0 = j(r)
z0 = x0

and (∀n ∈ N)









yn = JAzn + an

xn+1 = PD yn

zn+1 = xn+1 + zn − yn.
(70)

In view of (70), (64), and (62), we can write (∀n ∈ N) xn = j(xn), an = (ai,n)1≤i≤m,
yn = (yi,n)1≤i≤m, and zn = (zi,n)1≤i≤m. Moreover, since

∑

n∈N

|||an||| =
∑

n∈N

√

√

√

√

m
∑

i=1

ωi‖ai,n‖2 ≤
m
∑

i=1

∑

n∈N

‖ai,n‖ < +∞, (71)

(67) and (66) yield
xn = j−1(xn) → j−1(JA+B j(r)) = JA r, (72)

which completes the proof.

Remark 3.4. Theorems 2.8 and 3.3 provide two strongly convergent iterative methods
for constructing the resolvent of a weighted sum of maximal monotone operators at a
given point. Algorithms (48) and (62) share similar structures, computational costs,
and storage requirements. At iteration n, they both involve a parallel step at which the
resolvents of the operators (Ai)1≤i≤m are evaluated individually (and possibly simultane-
ously) with some tolerances (ai,n)1≤i≤m. This step is followed by a coordination step at
which the resolvents are averaged. The last step is a parallel step at which the auxiliary
variables (zi,n)1≤i≤m are updated. In terms of convergence speed, the behavior of the
algorithms will be compared through numerical experiments in future work.

4. Dykstra-like splitting for the proximity operator of the sum

We denote by dom f =
{

x ∈ H | f(x) < +∞
}

the domain of a function f : H →
]−∞,+∞], and by Γ0(H) the class of lower semicontinuous convex functions from H
to ]−∞,+∞] with nonempty domain. Moreau [37] observed that, if f ∈ Γ0(H) then, for
every r ∈ H, the function f + ‖r − ·‖2/2 admits a unique minimizer, which he denoted
by proxf r, i.e.,

proxf r = argmin
y∈H

f(y) +
1

2
‖r − y‖2. (73)
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Alternatively, the proximity operator of f thus defined can be expressed as [38]

proxf = J∂f , (74)

where ∂f : H → 2H : x 7→
{

u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y)
}

is the subdif-
ferential of f , which is a maximal monotone operator [47, Theorem 18.7].

Let f ∈ Γ0(H) and let r ∈ H. In this section, we address the problem of computing
proxf r when f can be decomposed into a weighted sum of functions (fi)1≤i≤m in Γ0(H),
say

f =
m
∑

i=1

ωifi, where {ωi}1≤i≤m ⊂ ]0, 1[ and
m
∑

i=1

ωi = 1, (75)

for which the proximity operators (proxfi)1≤i≤m can be implemented easily (we refer to
[13, 19, 22, 38] for the closed-form expressions of a variety of proximity operators). In
this context, proxf r is simply the solution to the strongly convex program

minimize
y∈H

m
∑

i=1

ωifi(y) +
1

2
‖r − y‖2. (76)

For instance, such formulations arise naturally in the area of signal denoising, where
r = x+w is an observation of an ideal signal x ∈ H which is corrupted by a realization w
of a noise process. The quadratic term ‖r−·‖2/2 promotes a least-squares data fit, while
the potentials (fi)1≤i≤m model various priors on the original signal x, e.g., [20, 22, 46, 51].
The state-of-the art in such applications is limited to at most two nonsmooth potentials.
By contrast, the results of this section provide a strongly convergent splitting algorithm
that can handle m > 2 nonsmooth potentials.

In view of (74), a first approach to construct proxf r = J∂f r is to make the additional
assumption that

∑m

i=1
ωi∂fi is maximal monotone, i.e.,

∂

( m
∑

i=1

ωifi

)

=
m
∑

i=1

ωi∂fi. (77)

In this case, we apply Theorem 2.8 or Theorem 3.3 with, for every i ∈ {1, . . . ,m},
Ai = ∂fi, which amounts to replacing each resolvent by the corresponding proximity
operator in algorithms (48) and (62) (Passty’s method [39] is also applicable in this
case but, as discussed in Remark 2.7, it has numerical limitations). A shortcoming
of this approach is of course that (77) does not come for free and requires that so-
called qualification conditions be imposed; see [1] and [47, Section 18]. We adopt a
different strategy, which will lead to a qualification-free method. Our starting point is
the following result of [6] on the proximity operator of the sum of two functions, which
itself relies on Fenchel duality arguments developed in [8].

Proposition 4.1 ([6, Theorem 3.3]). Let H be a real Hilbert space, and let f and g

be functions in Γ0(H) such that domf ∩ dom g 6= ?. Furthermore, let r ∈ H and let
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(xn)n∈N be the sequence generated by the following routine.

Initialization








y0 = r

q0 = 0
p0 = 0

For n = 0, 1, . . .












xn = proxg (yn + qn)
qn+1 = yn + qn − xn

yn+1 = proxf (xn + pn)
pn+1 = xn + pn − yn+1.

(78)

Then xn → proxf+g r.

The main result of this section is the following.

Theorem 4.2. Let (fi)1≤i≤m be m ≥ 2 functions in Γ0(H) such that

m
⋂

i=1

dom fi 6= ?, (79)

and set

f =
m
∑

i=1

ωifi, where {ωi}1≤i≤m ⊂ ]0, 1[ and

m
∑

i=1

ωi = 1. (80)

Furthermore, let r ∈ H and let (xn)n∈N be the sequence generated by the following routine.

Initialization










x0 = r
For i = 1, . . . ,m
⌊

zi,0 = x0

For n = 0, 1, . . .










xn+1 =
∑m

i=1
ωi proxfi zi,n

For i = 1, . . . ,m
⌊

zi,n+1 = xn+1 + zi,n − proxfi zi,n.

(81)

Then xn → proxf r.

Proof. Let us first observe that (79) and (80) imply that f ∈ Γ0(H). As a result, proxf r
is well defined. Let us define H as in the proof of Theorem 2.5 and denote its norm as
in (35). We also define D as in (36) and j as in (38), and set

f : H→ ]−∞,+∞] : x 7→
m
∑

i=1

ωifi(xi) and g = ιD . (82)

Then f and g are in Γ0(H), ∂f =×m

i=1 ∂fi, and proxg = PD . Therefore, (74) and (64)
yield

PD ◦ proxf = PD ◦ J∂f : H→ D : x 7→ j

( m
∑

i=1

ωiJ∂fixi

)

= j

( m
∑

i=1

ωi proxfi xi

)

. (83)
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Moreover, since (79) implies that domf ∩D = domf ∩ dom g 6= ?, we have f + g ∈
Γ0(H). We derive from (73), (80), (82), (38), and (35) that, for every x ∈ H,

x = proxf r ⇔ x = argmin
y∈H

f(y) +
1

2
‖r − y‖2

⇔ x = argmin
y∈H

(f ◦ j)(y) +
1

2
|||j(r)− j(y)|||2

⇔ j(x) = argmin
y∈D

f(y) +
1

2
|||j(r)− y|||2

⇔ j(x) = argmin
y∈H (f + g)(y) +

1

2
|||j(r)− y|||2

⇔ j(x) = proxf+g j(r). (84)

Thus,
j(proxf r) = proxf+g j(r). (85)

Now, let (xn)n∈N be the sequence generated by algorithm (78) with r = j(r). In view
of Proposition 4.1,

xn → proxf+g j(r). (86)

On the other hand, it follows from (74) that (78) is a specialization of (53) to the case
when A = ∂f , B = ∂g, and (∀n ∈ N) an = 0 and bn = 0. In addition, proxg = PD .
Therefore, just as we reduced (53) to (70) in the proof of Theorem 3.3, we can reduce
(78) to

⌊

x0 = j(r)
z0 = x0

and (∀n ∈ N)

⌊

xn+1 = PD

(

proxf zn

)

zn+1 = xn+1 + zn − proxf zn.
(87)

Upon inspecting (87) and (81) in the light of (83), it becomes apparent that (∀n ∈ N)
xn = j(xn) and zn = (zi,n)1≤i≤m. Consequently, it follows from (86) and (85) that
xn = j−1(xn) → j−1(proxf+g r) = proxf r.

As a corollary, we recover a parallel projection method to project onto the intersection
of closed convex sets. The following result first appeared in [27, Section 6] (see also [4]
and [29] for further analysis).

Corollary 4.3. Let (Ci)1≤i≤m be m ≥ 2 closed convex subsets of H such that C =
⋂m

i=1
Ci 6= ?, and let {ωi}1≤i≤m ⊂ ]0, 1[ be such that

∑m

i=1
ωi = 1. Furthermore, let

r ∈ H and let (xn)n∈N be the sequence generated by the following routine.

Initialization










x0 = r
For i = 1, . . . ,m
⌊

zi,0 = x0

For n = 0, 1, . . .










xn+1 =
∑m

i=1
ωiPCi

zi,n
For i = 1, . . . ,m
⌊

zi,n+1 = xn+1 + zi,n − PCi
zi,n.

(88)
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Then xn → PC r.

Proof. Apply Theorem 4.2 with (∀i ∈ {1, . . . ,m}) fi = ιCi
.

Remark 4.4. Suppose that the sets (Ci)1≤i≤m are closed vector subspaces in Corol-
lary 4.3. By orthogonality, the update rule in (88) reduces to xn+1 =

∑m

i=1
ωiPCi

xn and
we obtain (

∑m

i=1
ωiPCi

)n → PC . This result can be found in [30, Proposition 26] (see
also [43, Corollary 2.6]).
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[4] H. H. Bauschke, J. M. Borwein: Dykstra’s alternating projection algorithm for two sets,
J. Approx. Theory 79 (1994) 418–443.

[5] H. H. Bauschke, J. M. Borwein: Legendre functions and the method of random Bregman
projections, J. Convex Analysis 4 (1997) 27–67.

[6] H. H. Bauschke, P. L. Combettes: A Dykstra-like algorithm for two monotone operators,
Pacific J. Optim. 4 (2008) 383–391.

[7] H. H. Bauschke, P. L. Combettes, D. R. Luke: Finding best approximation pairs relative
to two closed convex sets in Hilbert spaces, J. Approx. Theory 127 (2004) 178–192.

[8] H. H. Bauschke, P. L. Combettes, S. Reich: The asymptotic behavior of the composition
of two resolvents, Nonlinear Anal., Theory Methods Appl. 60A (2005) 283–301.

[9] J. P. Boyle, R. L. Dykstra: A method for finding projections onto the intersection of convex
sets in Hilbert spaces, in: Advances in Order Restricted Statistical Inference, R. L. Dykstra
et al. (ed.), Lecture Notes in Statistics 37, Springer, Berlin (1986) 28–47.
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