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Fitzpatrick functions provide insights into the structure of operators. To help understand their infor-
mation, we investigate their efficient numerical computation on a grid for operators with finite graphs
defined on the real line. Our algorithms take advantage of existing computational Convex Analysis
frameworks to improve previous worst-case time complexity results from quartic to quadratic. We also
provide a linear-time algorithm for the computation of antiderivatives based on the Fitzpatrick function
of infinite order.

2000 Mathematics Subject Classification: 52B55, 65D99

Introduction

Fitzpatrick functions were originally introduced in [12] to study the representation of
operators using convex functions. They have generated a lot of interest very recently not
only in studying such representations [16, 9, 10] but also in simplifying proofs by using
convex analysis techniques [3, 4, 6, 17, 20, 21, 22, 24]. The Fitzpatrick function of infinite
order is linked to cyclic monotonicity, and n-cyclic monotonicity is characterized very
simply using the Fitzpatrick functions of order n, which have also proven very useful in
the study of n-cyclically monotone operators [2, 7]. A recent application of Fitzpatrick
functions, including its link to Rockafellar functions [19, 18], explained how to compute
antiderivatives of cyclically monotone operators which preserve the symmetry induced
by convex duality [5].

The present paper focuses on the efficient numerical computation on a grid of Fitzpatrick
functions of two variables FA,n : R× R → R for n = 2, . . . ,+∞ with particular interest
for the Fitzpatrick function of infinite order since it is an intrinsic antiderivative. We use
fast numerical algorithms developed for computing the Fenchel conjugate [14]. The data
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structure to store piecewise linear functions and to evaluate them efficiently on a grid
was introduced in [15] for piecewise linear-quadratic (PLQ) functions. Finally, we prove
an explicit formula for the Fitzpatrick function of infinite order of two real variables
with the second variable set to 0, which is similar to the explicit formula for Rockafellar
functions of one variable as presented in [13, p. 145] and independently in [5, Theorem
3.14].

The paper is organized as follows: we first recall preliminary results in Section 1, give
algorithms to compute Fitzpatrick functions in Section 2, and prove an explicit formula
for a particular case of the Fitzpatrick function of infinite order in Section 3. Section 4
concludes the paper.

1. Preliminary

We recall definitions and previous results while setting our notations. A finite operator
A : Rd

⇉ R
d has graph gphA = {(α1, α

∗
1), . . . (αm, α

∗
m)}, range RanA = {a∗ | ∃a, (a, a∗)

∈ gphA}, and domain DomA = {a | ∃a∗, (a, a∗) ∈ gphA}. Their respective sizes are
denoted m = | gphA|, mR = |RanA|, and mD = |DomA|. We always have mR ≤ m
and mD ≤ m. Except in Section 3 the letters a, a1, . . . , an (resp. a∗, a∗1, . . . , a

∗
n) indicate

variables taking values in DomA (resp. RanA). We denote 〈·, ·〉 the standard dot prod-
uct, and use it to emphasize results that extend beyond one dimension otherwise we
revert to standard multiplication.

We recall the definition of n-cyclic monotonicity which is at the heart of Fitzpatrick
functions.

Definition 1.1 ([1, 2, 7, 8, 23]). An operator A is n-cyclically monotone if the im-
plication

(a1, a
∗
1) ∈ gphA,

...
(an, a

∗
n) ∈ gphA

an+1 := a1



















⇒
n

∑

i=1

〈ai+1 − ai, a
∗
i 〉 ≤ 0 (1)

holds.

The usual monotonicity notion corresponds to 2-monotonicity. Fitzpatrick functions are
defined as follows.

Definition 1.2 ([2, Proposition 2.3]). Let A : R
d

⇉ R
d be an operator, and let

n ∈ {2, 3, . . .}. Then FA,n : R
d × R

d → [−∞,+∞] is defined by

FA,n(x, x
∗) = sup

(a1,a∗1)∈gphA,
...

(an−1,a
∗

n−1)∈gphA

( n−2
∑

i=1

〈ai+1 − ai, a
∗
i 〉+ 〈x− an−1, a

∗
n−1〉+ 〈a1, x

∗〉

)

, (2)

and FA,∞ = supn≥2 FA,n

One of the useful properties of Fitzpatrick functions is their relation to cyclic monotonic-
ity.
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Fact 1.3 ([5, Fact 2.11]). For an operator A and 2 ≤ n ≤ +∞,

A is n-cyclically monotone ⇔ FA,n = 〈·, ·〉 on gphA.

In the formulation above, ∞-cyclic monotonicity corresponds to cyclic monotonicity.

For operators defined on R, n-cyclic monotonicity reduces to monotonicity.

Proposition 1.4. Assume A : R ⇉ R and n is an integer with n ≥ 2. Then the
following are equivalent.

(i) A is n-cyclically monotone.

(ii) A is monotone.

(iii) A is cyclically monotone.

(iv) gphA is a non-decreasing curve in the plane with respect to the coordinate-wise
partial ordering.

Proof. The equivalences (ii)–(iv) are stated in [18, p. 240]. The fact they imply A is
n-cyclically monotone for any n ≥ 2 comes from Fact 1.3 which gives

∀(x, x∗) ∈ gphA, 〈x, x∗〉 = FA,2(x, x
∗) ≤ FA,3(x, x

∗) ≤ · · · ≤ FA,∞(x, x∗) = 〈x, x∗〉,

since the sequence (FA,n)n≥2 is increasing and pointwise convergent to FA,∞ (see [5, p. 7]).
Hence for any n ≥ 2, FA,n = 〈·, ·〉 on gphA, so A is n-cyclically monotone. Conversely,
if A is n-cyclically monotone, Fact 1.3 implies it is monotone.

Cyclically monotone finite operators have only a finite number of distinct Fitzpatrick
functions.

Fact 1.5 ([5, Theorem 2.16]). Suppose that A : R ⇉ R is finite with gphA contain-
ing only n points. Then if A is n-cyclically monotone, it is (n+ 1)-cyclically monotone
with

FA,n+1 = FA,n+2 = · · · = FA,∞.

So when A is finite cyclically monotone, the only Fitzpatrick functions FA,n to compute
are for 2 ≤ n ≤ m, and n = +∞. However, when A is not cyclically monotone, the
function FA,∞ is always equal to ∞ ([5, Remark 3.14]) but all the other functions are
(potentially) distinct.

We are now ready to tackle the numerical computation of Fitzpatrick functions.

2. Numerical Computation

Our goal is to compute FA,n(x, x
∗) for (x, x∗) belonging to a grid X = Xx ×Xx∗ of size

N = Nx×Nx∗ , and 2 ≤ n ≤ +∞ when A : R ⇉ R is a finite operator with a graph of size
m. Using the definition, computing FA,n on a grid of size N takes O(nmn−1N) worst-case
time. Indeed, each of the n − 1 variables takes m values giving mn−1 possibilities for
which a sum of n − 2 terms is computed, and the calculation has to be done for each
(x, x∗) belonging to the grid.

The exponential complexity is reduced to polynomial time using the following recursive
formula.
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Fact 2.1 ([5, Proposition 2.13]). Let A : R ⇉ R, n ∈ {2, 3, . . .}, and (x, x∗) ∈ R
2.

Then
FA,n+1(x, x

∗) = sup
(a,a∗)∈gphA

[FA,n(a, x
∗) + xa∗ − aa∗] . (3)

Remark 2.2. The recursion Formula (3) can be extended to n=1 by defining FA,1(x, x
∗)

= xx∗.

Proposition 2.3. Using the recursive formula (3), computing FA,n on a grid of size N
takes O(nm2Nx∗ +mN) time.

Proof. Note Tn(N) the time required to evaluate FA,n(x, x
∗) on a grid of size N . For-

mula (3) implies that Tn(N) = Tn−1(mNx∗) + mN , and Tn−1(mNx∗) = Tn−2(mNx∗) +
m2Nx∗ . Solving the recurrence equation gives Tn−1(mNx∗) = O(nm2Nx∗). Hence,
Tn(N) = O(nm2Nx∗ +mN).

Remark 2.4. The typical case occurs when O(Nx) = O(Nx∗) = O(m). Indeed, gphA
is a one-dimensional object (a curve in the plane) while N is the cardinality of a grid in
the plane (a two-dimensional object). So a good measure of the complexity is when all
the one-dimensional objects are of size Θ(m).

For example, a typical plot requires m = Nx = Nx∗ = 100. In that case, the recursive
Formula (3) allows the computation of FA,n on a grid of size N = Nx.Nx∗ = 10, 000 in
1, 000, 000(n+1) operations. Computing FA,∞ = Fa,m+1 requires 102, 000, 000 operations.

We now explain how to further improve the complexity using fast transform algorithms
such as the Linear-time Legendre Transform (LLT) [14] (alternatively one may use the
Parabolic Envelope (PE) [11] algorithm which shares the same complexity). First, we
establish a different recursion formula which clearly separates the variables (x, x∗) thus
allowing us to take advantage of the LLT algorithm.

Proposition 2.5. Let A : R ⇉ R, let n ∈ {4, 5, . . .}, and let (x, x∗) ∈ R
2. Then

FA,n(x, x
∗) = max

a1,a
∗

n−1

(

a1x
∗ + xa∗n−1

+ max
a∗1,an−1

[

−an−1a
∗
n−1 − a1a

∗
1 − I(a1, a

∗
1)− I(an−1, a

∗
n−1) + FA,n−2(an−1, a

∗
1)
] )

(4)

where I(a, a∗) is the indicator function of gphA at (a, a∗) (I(a, a∗) = 0 when (a, a∗) ∈
gphA, +∞ otherwise).

Proof. Changing the names of variables and applying (2) gives

FA,n−2(an−1, a
∗
1) = max

(a2,a∗2)∈gphA,
...

(an−2,a
∗

n−2)∈gphA

[

a2a
∗
1 +

n−2
∑

i=2

(ai+1 − ai)a
∗
i

]

.

The result follows by applying Formula (2) to FA,n.

We now recall the complexity of the LLT Algorithm for bivariate functions.
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Fact 2.6 ([14, p. 177]). Assume u : R2 → R is a bivariate function, S = S1×S2 ⊂ R
2

(resp. X = X1 × X2) a grid with cardinality |Si| = mi (resp. |Xi| = ni). The LLT2d
algorithm computes

u∗
X(s1, s2) = max

x1∈X1,x2∈X2

[s1x1 + s2x2 − u(x1, x2)]

= max
x1∈X1

[

s1x1 +

(

max
x2∈X2

s2x2 − u(x1, x2)

)]

for all values (s1, s2) ∈ S in O(n1n2 + n1m2 +m1m2).

A first consequence of Fact 2.6 is that

FA,2(x, x
∗) = max

a,a∗
[xa∗ + ax∗ − aa∗ − I(a, a∗)]

can be evaluated for all (x, x∗) ∈ X using the LLT2d algorithm in O(m2 +mNx∗ + N)
time. When N = m2 this gives O(m2) which is also the size of the output and so is
optimal.

Similarly we can compute

FA,3(x, x
∗) = max

a1,a
∗

2

[xa∗2 + a1x
∗ + f(a1, a

∗
2)] ,

f(a1, a
∗
2) = max

a∗1,a2
[−a1a

∗
1 − a2a

∗
2 + a2a

∗
1 − I(a1, a

∗
1)− I(a2, a

∗
2)]

in O(m2 +mNx∗ +N) time using Algorithm 2.9 to compute f for all the m2 values, and
the LLT2d Algorithm.

A second consequence is that the Fitzpatrick functions can be computed recursively
using Algorithm 2.7.

Algorithm 2.7 (Fitzpatrick functions Algorithm).
Input: gphA, X, n
Output: FA,n(x, x

∗) for all (x, x∗) ∈ X
1 begin
2 if n=2 or n=3 then
3 Compute FA,n directly
4 else
6 Compute recursively FA,n−2(an−1, a

∗
1) for all (an−1, a

∗
1) ∈ DomA× RanA;

8 Compute for all values (a1, a
∗
n−1) the function

f(a1, a
∗
n−1)

= max
a∗1,an−1

[

− an−1a
∗
n−1 − a1a

∗
1 − I(a1, a

∗
1)− I(an−1, a

∗
n−1) + FA,n−2(an−1, a

∗
1)
]

10 Compute for all values (x, x∗)

FA,n(x, x
∗) = max

a1,a
∗

n−1

(

a1x
∗ + xa∗n−1 + f(a1, a

∗
n−1)

)

11 end
12 end
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Proposition 2.8. Algorithm 2.7 runs in O(nm2 +mNx∗ +N).

Proof. Denote by Tn(N) the cost to compute FA,n on a grid of size N . Algorithm 2.7
runs in O(m2 +mNx∗ +N +m2 + Tn−2(m

2)) since Line 6 takes Tn−2(m
2) by calling the

algorithm recursively, Line 10 takes O(m2+mNx∗ +N) using the LLT2d algorithm, and
we can compute Line 8 in O(m2) using Algorithm 2.9. Considering the case where n− 2
is odd and the case where n − 2 is even we can solve the recurrence equation to find
Tn−2(m

2) = O(nm2) since T2(N) = T3(N) = O(m2+mNx∗ +N) as shown above. So we
deduce Tn(N) = O(nm2 +mNx∗ +N).

Algorithm 2.9 (Algorithm for Line 8 of Algorithm 2.7).
Input: gphA = {(α1, α

∗
1), . . . , (αm, α

∗
m)}

Output: f(a1, a
∗
n−1) for all a1 ∈ {αi|i = 1, . . . ,m} and all a∗n−1 ∈ {α∗

j |j = 1, . . . ,m}
begin

for i = 1..m do
for j = 1..m do

F (i, j) = −αiα
∗
i − αjα

∗
j + αjα

∗
i ;

end
end

end

Remark 2.10. Continuing our typical case from Remark 2.4, Algorithm 2.7 takes
around 10, 000n operations to compute FA,n and about 1, 000, 000 operations for FA,∞ =
FA,m+1, a reduction by a factor of 100.

To further improve the complexity of computing FA,∞, we turn to piecewise linear-
quadratic (PLQ) algorithms and Rockafellar functions. Our next algorithm, Algo-
rithm 2.14, relies on the following explicit formula for Rockafellar functions of finite
operators A : R ⇉ R.

Fact 2.11 ([5, Theorem 3.14]). Suppose that the graph of B : R ⇉ R : x 7→ conv(Ax)
is

m
⋃

i=1

(

{ai} × [b−i , b
+
i ]
)

,

where m ∈ {1, 2, . . .}, a1 < a2 < · · · < am, and b−1 ≤ b+1 ≤ b−2 ≤ · · · ≤ b−m ≤ b+m. Set
a0 := −∞ and am+1 := +∞. Suppose that k ∈ {1, . . . ,m}. Then RA,ak : R → R is given
by

RA,ak(x) =































(x− ai)b
−
i +

k
∑

j=i+1

(aj−1 − aj)b
−
j , if ai−1 < x ≤ ai ≤ ak;

(x− ai)b
+
i +

i−1
∑

j=k

(aj+1 − aj)b
+
j , if ak ≤ ai ≤ x < ai+1,

(5)

Note that using these notations implies that the operator A is cyclically monotone, and
mD = m.

Lemma 2.12. Computing RA,ak using Formula (5) takes Θ(m) time.
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Definition Recursive Formula Fast Algorithm PLQ Algorithm

FA,n O(nmn−1N) O(nm2Nx∗ +mN) O(nm2 +mNx∗ +N)
FA,∞ O(mm+1N) O(m3Nx∗ +mN) O(m3 +mNx∗ +N) O(m2 +mNx +N)

Table 2.1: Complexity results for computing FA,n on a grid of size N = NxNx∗ .

Proof. Since the function is written as a piecewise linear function withm pieces, we only
need to show that each piece can be computed in O(1). This is achieved by precomputing
each sum S− =

∑k

j=2(aj−1− aj)b
−
j and S+ =

∑m−1
j=k (aj+1− aj)b

+
j , and updating them as

x sweeps through intervals defined by the sequence (ai)i.

The link between Fitzpatrick functions and Rockafellar functions is provided by the
following result.

Fact 2.13 ([5, Theorem 3.15]). Let A : R ⇉ R. Then

∀(x, x∗) ∈ R× R, FA,∞(x, x∗) = sup
a∈DomA

[ax∗ +RA,a(x)] .

Algorithm 2.14 (Fitzpatrick function of infinite order Algorithm).
Input: gphA, X
Output: FA,∞(x, x∗) for all (x, x∗) ∈ X
begin

for k = 1..m do
Compute RA,ak using the explicit formula (5);
Evaluate RA,ak(x) for all x ∈ Xx;

end
for all x ∈ Xx do

Compute FA,∞(x, x∗) = max
a∈DomA

[ax∗ +RA,a(x)] ;

end
end

Proposition 2.15. Algorithm 2.14 computes FA,∞(x, x∗) for all (x, x∗) ∈ X in O(m2 +
N +mNx) time.

Proof. The correctness of the algorithm is ensured by Fact 2.11 and Fact 2.13. For
each a ∈ DomA, computing RA,a and storing it as a PLQ function takes O(m) using
the explicit formula while evaluating a PLQ function with m nodes at Nx points takes
O(m + Nx) using the plq_eval function [15]. So the first loop runs in O(m(m + Nx)).
The second loop runs in O(Nx(m+Nx∗)) operations using the LLT1d algorithm for each
value of x. Adding both complexities concludes the proof.

Table 2.1 summarizes our results while Table 3.1 emphasizes the typical caseNx = Nx∗ =
m. The computation of FA,∞ using the Fast LLT Algorithm is reduced to computing
FA,m+1 when the operator is cyclically monotone (otherwise FA,∞ is identically +∞).

3. Antiderivatives

We now focus on the application of Fitzpatrick functions to the computation of an-
tiderivatives.
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Definition 3.1 ([5, Definition 3.1]). Let A : R ⇉ R and let f be convex lower-semi-
continuous, and proper. Then f is an antiderivative of A if

gphA ⊂ gph ∂f. (6)

The following facts will be useful in our computation of antiderivatives.

Fact 3.2 ([5]). Assume A : R ⇉ R is a finite operator.

(i) The Rockafellar function RA,a is convex lower semicontinuous proper polyhedral,
and a continuous antiderivative A.

(ii) If A is cyclically monotone, the function f = FA,∞(·, 0) is polyhedral continuous
with full domain, and an antiderivative of A with

FA,∞(·, 0) = max
a∈DomA

RA,a.

(iii) If the operator A is not cyclically monotone, it does not admit antiderivatives. In
that case, the functions RA,a and FA,∞(·, 0) are identically equal to +∞ for any
a ∈ DomA.

While the computation of Rockafellar functions of a finite operator A : R ⇉ R takes
O(m), the computation of FA,∞(·, 0) takes O(m2 + mNx) using the PLQ Algorithm.
We now show how to reduce that computation to Θ(m+Nx) by computing an explicit
formula.

First we need to define the following indices

j0 = max{j = 0, . . . ,m+ 1|b−j < 0} and j1 = max{j = 0, . . . ,m+ 1|b+j < 0}, (7)

where b−0 = b+0 = −∞ and b−m+1 = b+m+1 = +∞. We also simplify our notation by writing
RA,ak = Rak when there is no ambiguity on the operator A.

The relationship between j0 and j1 will be needed in our discussion later.

Lemma 3.3. Assuming j0 and j1 are defined by (7) with bi given as in (5), we have
j1 ≤ j0 ≤ j1 + 1.

Proof. The relation b−j ≤ b+j gives j1 ≤ j0. Now assume j0 > j1 + 1 i.e. j0 ≥ j1 + 2.
Then we have b+j1 < 0 ≤ b+j1+1 ≤ b−j1+2 ≤ b−j0 < 0, a contradiction which concludes the
proof.

We now split the computation of max1≤k≤mRak between computing max1≤k≤iRak and
maxi+1≤k≤mRak .

Lemma 3.4. Assume ai < x < ai+1. If 1 ≤ j1 ≤ i then max1≤k≤iRak = Raj1+1
,

otherwise i+ 1 ≤ j1 ≤ m and max1≤k≤iRak = Rai.

Proof. Assume 1 ≤ k ≤ i. We have

Rak(x) = (x− ai)b
+
i +

i−1
∑

j=k

(aj+1 − aj)b
+
j .
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Now if i+ 1 ≤ j1 ≤ m, the coefficients b+j < 0 so maxk Rak = Rai . Otherwise 1 ≤ j1 ≤ i
and the fact that maxk Rak = Raj1+1

is a consequence of the following formulas.

Rak(x) = Raj1+1
(x) +

j1
∑

j=k

(aj+1 − aj)b
+
j ,

Raj1+1
(x) = Rak(x) +

i−1
∑

j=j1+1

(aj+1 − aj)b
+
j .

The first establishes Rak ≤ Raj1+1
for 1 ≤ k ≤ j1 and the second for j1 < k.

Lemma 3.5. Assume ai < x < ai+1. If 1 ≤ j0 ≤ i then maxi+1≤k≤mRak = Rai+1,
otherwise i+ 1 ≤ j0 ≤ m and maxi+1≤k≤mRak = Raj0

.

Proof. Assume i+ 1 ≤ k ≤ m. The Rockafellar functions can be written as

Rak(x) = (x− ai+1)b
−
i+1 +

k
∑

j=i+2

(aj−1 − aj)b
−
j .

So when 1 ≤ j0 ≤ i we have b−j ≥ 0 so Rak ≤ Rai+1
. Otherwise i + 1 ≤ j0 ≤ m and

maxi+1≤k≤mRak = Raj0
using the same argument as in the previous proof.

We can now write the explicit formula for FA,∞(x, 0) = max
1≤k≤m

Rak(x).

Proposition 3.6. Assume ai < x < ai+1. Then

max
1≤k≤m

Rak(x)

=



































Raj1+1
(x) = (x− ai)b

+
i +

i−1
∑

j=j1+1

(aj+1 − aj)b
+
j when j0 < i,

Raj0
(x) = (x− ai+1)b

−
i+1 +

j0
∑

j=i+2

(aj−1 − aj)b
−
j when j0 > i,

Raj1+1
(x) = (x− ai)b

+
i when j0 = i and b+i = b−i+1,

(8)

and when j0 = i but b+i < b−i+1 we have

max
1≤k≤m

Rak(x) =

{

Rai+1
(x) = (x− ai+1)b

−
i+1 when x̄ ≤ x < ai+1,

Raj1+1
(x) = (x− ai)b

+
i when ai < x ≤ x̄;

(9)

with x̄ = (aib
+
i − ai+1b

−
i+1)/(b

+
i − b−i+1) when i > 0, x̄ = −∞ when i = 0, and x̄ = +∞

when i = m.

Proof. First we consider the following two cases.

Assume 1 ≤ j1 ≤ j0 < i. Then the two candidates for the maximum are

Raj1+1
(x) = (x− ai)b

+
i +

i−1
∑

j=j1+1

(aj+1 − aj)b
+
j and Rai+1

(x) = (x− ai+1)b
−
i+1.



788 B. Gardiner, Y. Lucet / Numerical Computation of Fitzpatrick Functions

Recursive Fast PLQ Explicit
Definition Formula Algorithm Algorithm Formula

FA,n O(nmn+1) O(nm3) O(nm2)
FA,∞ O(mm+3) O(m4) O(m3) Θ(m2)
FA,∞(·, 0) O(mm+3) O(m4) O(m3) O(m2) Θ(m)

Table 3.1: Complexity results for computing FA,n when Nx = Nx∗ = m.

Since i + 1 > j0, b
−
i+1 ≥ 0; and i > j1 implies b+i ≥ 0. Moreover, for all j > j1 we have

b+j ≥ 0. Taking the sign of all coefficients bj into account we deduce Rai+1
≤ 0 ≤ Raj1+1

.

Now assume i+ 1 ≤ j1 ≤ j0 ≤ m. The maximum is taken between the two functions

Raj0
(x) = (x− ai+1)b

−
i+1 +

j0
∑

i+2

(aj−1 − aj)b
−
j and Rai(x) = (x− ai)b

+
i .

A similar argument gives Rai ≤ 0 ≤ Raj0
.

Now using Lemma 3.3 we can partition the values taken by indexes j0 and j1 as follows:
either j0 = j1 then the cases j0 < i and i < j0 have been treated above and we only need
to consider the case j0 = i, or j0 = j1 + 1 and again the only remaining case is j0 = i
since j0 < i and j0 > i are covered in the previous two cases.

Assume j0 = i. Our two candidates are now

Raj1+1
(x) = (x− ai)b

+
i and Rai+1

(x) = (x− ai+1)b
−
i+1.

So if j0 = j1 + 1 then b+i = b+j1+1 ≥ 0 and the maximum is Raj1+1
≥ 0 ≥ Rai+1, which

proves the first part of the proposition.

The last case is when j0 = j1 = i. Then b+i 6= b−i+1 otherwise 0 > b+j1 = b−j0+1 ≥ 0 which
is impossible. So b+i < b−i+1, we can compute x̄ and the result follows as the function
x 7→ (x − ai)b

+
i is decreasing from 0 when x = ai, and the function x 7→ (x − ai+1)b

−
i+1

is increasing to 0 (reached when x = ai+1).

Corollary 3.7. Computing the Fitzpatrick function of infinite order FA,∞ on a set
(x, 0) ∈ X takes Θ(m+Nx).

Proof. The size of the input is Ω(m+Nx), which gives the trivial lower bound. Propo-
sition 3.6 allows one to compute FA,∞ in O(m) and store it as in PLQ format. Then
evaluating on the grid using the PLQ evaluation function takes O(m+Nx).

Hence we reduce the computation of FA,∞(x, 0) for all x ∈ Xx when Nx = m = 100
from 10206 (using the definition) to 108 (using recursive Formula 3) to 106 (using the
LLT2d fast algorithm through Algorithm 2.7) to 104 (using the PLQ Algorithm 2.14) to
the optimal value of 102 (using Proposition 3.6). Table 3.1 summarizes our complexity
results.
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4. Conclusion

While Fitzpatrick functions have become the subject of several works recently, very
little is known on how to compute them efficiently even in the case of finite operators.
We tackle this problem and provide polynomial time algorithms to compute Fitzpatrick
functions of order n and of infinite order. Our algorithms build on the Linear-time
Legendre Transform algorithm, to compute the Legendre-Fenchel conjugate in linear
time, and on PLQ algorithms, to evaluate efficiently piecewise linear functions on a
grid. Considering it has important applications for computing antiderivatives, we also
provided an explicit formula to compute FA,∞(·, 0) in Θ(m + N) on a grid of size N ,
which is optimal.

While our results are limited to operators on the real line, they already reveal the com-
plexity of such computations. Future work will focus on extending them to higher di-
mensions, which requires extending PLQ algorithms to higher dimensions, a subject of
active investigation.
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