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Let L(Φ)(Ω) and LΦ(Ω) be the Orlicz function spaces defined by an N -function Φ, equipped with the
gauge norm and the Orlicz norm respectively, where Ω = [0, 1] or [0,∞). The Kottman constants
K(L(Φ)(Ω)) and K(LΦ(Ω)) were discussed in Rao and Ren [8, Ch. 5]. The author obtains some
improvments on the lower bounds of these constants in Section 2 (Theorems 2.1 and 2.3). Several
examples are given in Section 3 which will be used to make comments upon the papers of Yan [11] as
well as Han and Li [4].
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1. Preliminaries

In a Banach space X, a sequence of balls with centers x1, x2, · · · and a fixed radius
r > 0 is said to be packed into the unit ball B(X) if ‖xi‖ 6 1 − r, i = 1, 2, · · · and
‖xi − xj‖ > 2r, i 6= j, i, j = 1, 2, · · · .
Definition 1.1. LetX be an infinite dimensional Banach space. The packing constant
P (X) of X is defined by P (X) = sup{r > 0: infinitely many balls of radius r can be
packed into B(X)}.

Definition 1.2. For an infinite dimensional Banach space X, the Kottman constant
K(X) of X is defined by

K(X) = sup

{

inf
i6=j

‖xi − xj‖ : {xi}∞1 ⊂ S(X)

}

, (1)

where S(X) is the unit sphere of X.

Clearly, 1 6 K(X) 6 2. Kottman [6] and Ye [12] found the relationship between P (X)
and K(X) as follows.

Proposition 1.3. For an infinite dimensional Banach space X, one has

P (X) =
K(X)

2 +K(X)
. (2)
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A proof of (2) can be found in Chen [1, p. 145] or Rao and Ren [8, p. 148]. A historical
note on P (X) and K(X) is presented in [8, Ch. 5] when X is Lp(1 < p < ∞) or an
Orlicz space. In view of (2) we may study the lower bound only for K(X) instead of
that of P (X) when X is an Orlicz function space.

Let Φ(u) =
∫ |u|

0
ϕ(t)dt denote an N -function and let (Ω,Σ, µ) be a σ-finite measure

space with µ being nonatomic. The Orlicz function space LΦ(Ω) is defined by LΦ(Ω) =
{x(t) ∈ L0(Ω) : ρΦ(λx) < ∞ for some λ > 0}, in which ρΦ(λx) =

∫

Ω
Φ(λ|x(t)|)dt and

L0(Ω) is the set of all measurable functions x(t) with |x(t)| <∞, a.e. on Ω. The gauge
norm (or Luxemburg norm in some articles) and the Orlicz norm are given respectively
by

‖x‖(Φ) = inf
{

c > 0 : ρΦ

(x

c

)

6 1
}

, ‖x‖Φ = inf
k>0

1

k
[1 + ρΦ(kx)].

As usual, we set L(Φ)(Ω) = (LΦ(Ω), ‖ · ‖(Φ)) and L
Φ(Ω) = (LΦ(Ω), ‖ · ‖Φ).

Definition 1.4. Let Φ(u) =
∫ |u|

0
ϕ(t)dt be an N -function.

(i) The first and the second characteristic functions of Φ are given respectively by

FΦ(t) =
tϕ(t)

Φ(t)
, t > 0; GΦ(u) =

Φ−1(u)

Φ−1(2u)
, u > 0, (3)

where Φ−1 is the inverse of Φ on R+.

(ii) The first quantitative indices of Φ are provided by

AΦ = lim inf
t→∞

FΦ(t), BΦ = lim sup
t→∞

FΦ(t); (4)

A0
Φ = lim inf

t→0
FΦ(t), B0

Φ = lim sup
t→0

FΦ(t); (5)

AΦ = inf
t>0

FΦ(t), BΦ = sup
t>0

FΦ(t). (6)

(iii) The second quantitative indices of Φ are given by

αΦ = lim inf
u→∞

GΦ(u), βΦ = lim sup
u→∞

GΦ(u); (7)

α0
Φ = lim inf

u→0
GΦ(u), β0

Φ = lim sup
u→0

GΦ(u); (8)

αΦ = inf
u>0

GΦ(u), βΦ = sup
u>0

GΦ(u). (9)

Let Ψ(v) =
∫ |v|

0
ψ(s)ds denote the complementary N -function to Φ(u). Analogously,

we can define AΨ, BΨ, A
0
Ψ, B

0
Ψ, AΨ, BΨ and αΨ, βΨ, α

0
Ψ, β

0
Ψ, αΨ, βΨ.

Lemma 1.5 (Rao and Ren [8, p. 163]). Let Φ(u) =
∫ |u|

0
ϕ(t)dt and Ψ(v) =

∫ |v|

0
ψ(s)ds denote a pair of complementary N-functions. For FΦ(t) = tϕ(t)/Φ(t), t > 0

and FΨ(s) = sψ(s)/Ψ(s), s > 0 if both ϕ and ψ are continuous on R+, then we have

1

FΦ(t)
+

1

FΨ(s)
= 1, s = ϕ(t) > 0. (10)
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Lemma 1.6 (Rao and Ren [8, p. 11]). For a pair (Φ, Ψ) of complementary N-
functions we have

2αΦβΨ = 1 = 2αΨβΦ, 2α0
Φβ

0
Ψ = 1 = 2α0

Ψβ
0
Φ, 2αΦβΨ = 1 = 2αΨβΦ. (11)

Lemma 1.7 (Rao and Ren [8, p. 93]). Let Φ(u), FΦ(t) and GΦ(u) be as in Defini-
tion 1.4(i). If FΦ(t) is decreasing (increasing) on (0,∞), then GΦ(u) is also decreasing
(increasing) on (0,∞).

Lemma 1.8 (Ren [9]). Let Φ(u), FΦ(t) and GΦ(u) be as in Definition 1.4(i).

(i) If CΦ = limt→∞ FΦ(t) exists (CΦ 6 ∞), then γΦ = limu→∞GΦ(u) exists also and

γΦ = 2−1/CΦ . (12)

(ii) If C0
Φ = limt→0 FΦ(t) exists (C

0
Φ 6 ∞), then γ0Φ = limu→0GΦ(u) exists also and

γ0Φ = 2−1/C0
Φ . (13)

Definition 1.9.

(i) An N -function Φ(u) is said to satisfy the ∆2-condition for large u (for small u,
or for all u > 0), written often as Φ ∈ ∆2(∞)(Φ ∈ ∆2(0), or Φ ∈ ∆2), if there
exist C > 2 and u0 > 0 such that Φ(2u) 6 CΦ(u) for u > u0 (for 0 6 u 6 u0, or
for u > 0).

(ii) Φ(u) is said to obey the ∇2-condition for large u (for small u, or for all u > 0),
in symbol Φ ∈ ∇2(∞)(Φ ∈ ∇2(0), or Φ ∈ ∇2), if there are l > 1 and u0 > 0 such
that 2lΦ(u) 6 Φ(lu) for u > u0 (for 0 6 u 6 u0, or for u > 0).

Proposition 1.10. For an N-function Φ with its quantitative indices as in Definition
1.4, we have the following assertions.

(i) Φ ∈ ∆2(∞)(Φ ∈ ∆2(0))[Φ ∈ ∆2] if and only if BΦ < ∞(B0
Φ < ∞)[BΦ < ∞], if

and only if βΦ < 1(β0
Φ < 1)[βΦ < 1].

(ii) Φ ∈ ∇2(∞)(Φ ∈ ∇2(0))[Φ ∈ ∇2] if and only if AΦ > 1(A0
Φ > 1)[AΦ > 1], if and

only if αΦ > 1/2(α0
Φ > 1/2)[αΦ > 1/2].

A proof of Proposition 1.10 can be found in Rao and Ren [7, Ch. 1] and [8, Ch. 1].

Remark 1.11. (i) Hudzik [5] proved that if X is a nonreflexive Banach lattice, then
P (X) = 1/2, so that K(X) = 2 by (2). Since Orlicz spaces are Banach lattices, we see
thatK(L(Φ)(Ω)) = 2 = K(LΦ(Ω)) if Φ∈∆2(∞)∩∇2(∞) when µ(Ω) <∞ (if Φ∈∆2∩∇2

when µ(Ω) = ∞).

(ii) In order to construct the Rademacher sequence of functions we consider Ω = [0, 1]
or [0,∞) with the usual Lebesque measure µ in the next section. In this paper by
a 6 {b, c} we denote that a 6 b and that a 6 c. For reflexive Orlicz function spaces
L(Φ)[0, 1] and LΦ[0, 1](i.e., Φ ∈ ∆2(∞) ∩∇2(∞)) we have

√
2 6

{

K(L(Φ)[0, 1]), K(LΦ[0, 1])
}

< 2. (14)

Similarly, (14) is true for L(Φ)[0,∞) and LΦ[0,∞) if Φ ∈ ∆2 ∩∇2 (cf. Rao and Ren [8,
Ch. 5]).
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2. Lower Bounds for K(L(Φ)[0, 1]) and K(LΦ[0, 1])

Now we refine some results on the lower bounds for the Kottman constantsK(L(Φ)[0, 1])
and K(LΦ[0, 1]) given in Rao and Ren [8, Ch. 5.3].

Theorem 2.1. Let (Φ,Ψ) be a pair of complementary N-functions. For the Orlicz
spaces L(Φ)[0, 1] and LΦ[0, 1] we have

max

(

1

αΦ

, 2β∗
Φ

)

6 K(L(Φ)[0, 1]) (15)

and

max

(

2βΨ,
1

α∗
Ψ

)

6 K(LΦ[0, 1]), (16)

where αΦ and βΨ are given in Definition 1.4(iii), and

β∗
Φ = sup

u>1

Φ−1(u)

Φ−1(2u)
, α∗

Ψ = inf
v>1

Ψ−1(v)

Ψ−1(2v)
. (17)

Proof. For (15) we have proved that (αΦ)
−1 6 K(L(Φ)[0, 1]) in Rao and Ren [8, pp.

167–169]. Now we will show

2β∗
Φ 6 K(L(Φ)[0, 1]), (18)

which will complete the proof of (15). For any given u > 1 we construct the Rademacher
functions {Ri(t), i > 1} on the interval [0, 1/u) ⊂ [0, 1] as follows

Ri(t) =
2i
∑

k=1

(−1)k+1χ
G

(i)
k

(t), G
(i)
k =

[

k − 1

2iu
,
k

2iu

)

, 1 6 k 6 2i,

where χ
G

(i)
k

is the characteristic function of G
(i)
k . Let us define

xi(t) = Φ−1(u)Ri(t), i > 1. (19)

It is seen that |xi(t)| = Φ−1(u)χ[0,1/u)(t) since U2i

k=1G
(i)
k = [0, 1/u), so that ‖xi‖(Φ) =

1, i > 1. Further, |xi(t)−xj(t)| = 2Φ−1(u)χGi,j
(t) with µ(Gi,j) = 1/2u for i 6= j. Thus,

we obtain for i 6= j

‖xi − xj‖(Φ) =
2Φ−1(u)

Φ−1

(

1

µ(Gi,j)

) =
2Φ−1(u)

Φ−1(2u)
,

which proves (18) by (1) and (17).

Next we will prove (16). In Rao and Ren [8, p. 170] it was shown that

2βΨ 6 K(LΦ[0, 1]). (20)
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Now we will prove the inequality

1

α∗
Ψ

6 K(LΦ[0, 1]), (21)

which will finish the proof of (16). For any given u > 1 we define

yi(t) =
u

Ψ−1(u)
Ri(t), i > 1, (22)

where Ri(t) is as in (19). Then ‖yi‖Φ = 1 and if i 6= j we see that |yi(t) − yj(t)| =
[2u/Ψ−1(u)]χGi,j

(t) with µ(Gi,j) = 1/2u and that

‖yi − yj‖Φ =
2u

Ψ−1(u)
µ(Gi,j)Ψ

−1

(

1

µ(Gi,j)

)

=
Ψ−1(2u)

Ψ−1(u)
,

implying (21) by (1) and (17) since u > 1 is arbitrary.

Remark 2.2. (i) Inequality (18) is the refinement of that 2βΦ 6 K(L(Φ)[0, 1]) given
in Rao and Ren [8, p. 167] because

2βΦ 6 2β∗
Φ. (23)

For an N -function Φ(u) =
∫ |u|

0
ϕ(t)dt if FΦ(t)(= tϕ(t)/Φ(t), t > 0) is strictly decreasing

on (0,∞), then there is a strict inequality in (23). For instance, consider Φ(u) =
u2 ln(1 + |u|). Clearly, FΦ(t) = 2 + t/(1 + t) ln(1 + t), t > 0, C0

Φ = limt→0 FΦ(t) =
3, CΦ = limt→∞ FΦ(t) = 2, and FΦ(t) is strictly decreasing on (0,∞). For any t > 0
we have that 3 > tϕ(t)/Φ(t) > 2, so that

t2
∫

t1

3

t
dt >

t2
∫

t1

ϕ(t)

Φ(t)
dt >

t2
∫

t1

2

t
dt

if 0 < t1 < t2 < ∞. By letting t1 = Φ−1(1) and t2 = Φ−1(2) we obtain from Lemma
1.8 that

√
2 = 2βΦ < 2β∗

Φ =
2Φ−1(1)

Φ−1(2)
< 2β0

Φ = 22/3.

(ii) Inequality (20) is the improvement of that 2αΨ 6 K(LΦ[0, 1]) (or equivalently by
(2), [1 + (αΨ)

−1]−1 6 P (LΦ[0, 1]) given in Cleaver [2]).

(iii) It should be also noted that (21) refines both that (αΨ)
−1 6 K(LΦ[0, 1]) given by

Rao and Ren [8, p. 170] and that Ψ−1(2)/Ψ−1(1) 6 K(LΦ[0, 1]) given by Cleaver [2]
since

{

1

αΨ

,
Ψ−1(2)

Ψ−1(1)

}

6
1

α∗
Ψ

.

A special situation of Theorem 2.1 is as follows.
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Theorem 2.3. Let Φ(u) =
∫ |u|

0
ϕ(t)dt and Ψ(v) =

∫ |v|

0
ψ(s)ds denote a pair of com-

plementary N-functions with both ϕ and ψ being continuous on R+. We assume that
Φ ∈ ∆2(∞) ∩∇2(∞), i.e., L(Φ)[0, 1] and LΦ[0, 1] are reflexive.

(i) If FΦ(t)(= tϕ(t)/Φ(t), t > 0) is decreasing on (0,∞), then (15) reduces to

max

(

21/CΦ ,
2Φ−1(1)

Φ−1(2)

)

6 K(L(Φ)[0, 1]) (24)

and (16) reduces to

max

(

21/CΦ ,
Ψ−1(2)

Ψ−1(1)

)

6 K(LΦ[0, 1]), (25)

where CΦ = limt→∞ FΦ(t).

(ii) If FΦ(t) is increasing on (0,∞), then (15) and (16) reduce to

max(21/CΦ , 21−1/CΦ) 6 {K(L(Φ)[0, 1]), K(LΦ[0, 1])}. (26)

Proof. (i) If FΦ(t) is decreasing on (0,∞), then FΨ(s)(= sϕ(s)/Ψ(s), s > 0) is in-
creasing on (0,∞) in view of (10) in Lemma 1.5. Thus, GΦ(u)(= Φ−1(u)/Φ−1(2u),
u > 0) is decreasing and GΨ(v)(= Ψ−1(v)/Ψ−1(2v), v > 0) is increasing on (0,∞) by
Lemma 1.7. From (17) we have

β∗
Φ = GΦ(1) =

Φ−1(1)

Φ−1(2)
, α∗

Ψ = GΨ(1) =
Ψ−1(1)

Ψ−1(2)
. (27)

On the other hand, since both limits CΦ = limt→∞ FΦ(t) and CΨ = lims→∞ FΨ(s) exist
one has from (10) that

1

CΦ

+
1

CΨ

= 1. (28)

It follows from (12) in Lemma 1.8 and (28) that

αΦ = γΦ = 2−1/CΦ , 2βΨ = 2γΨ = 21−1/CΨ = 21/CΦ . (29)

Thus, (24) and (25) follow from (15), (16), (27) and (29).

(ii) If FΦ(t) is inereasing on (0,∞), then FΨ(s) is decreasing on (0,∞) again by (10) in
Lemma 1.5, so that GΦ(u) is increasing and GΨ(v) is decreasing on (0,∞) by Lemma
1.7. Also, both GΦ and CΨ exist, so that (29) holds. In this case we have from (12)
and (28).

2β∗
Φ = 2γΦ = 21−1/CΦ , α∗

Ψ = γΨ = 2−1/CΨ = 2−1+1/CΦ . (30)

Finally, (26) follows from (15), (16), (29) and (30).

At the end of this section we recall a known result concerning with the lower bounds
of K(L(Φ)[0,∞)) and K(LΦ[0,∞)).
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Theorem 2.4. Let (Φ,Ψ) be a pair of complementary N-functions. We assume that
Φ ∈ ∆2 ∩∇2. Then one has

max

(

1

αΦ

, 2βΦ

)

6 {K(L(Φ)[0,∞)), K(LΦ[0,∞))}, (31)

where αΦ and βΦ are given by (9) in Definition 1.4(iii).

Proof. ForK(L(Φ)[0,∞)), (31) was proved in Rao and Ren [8, p.168]. ForK(LΦ[0,∞)),
it was shown in [8, p. 170] that

max

(

2βΨ,
1

αΨ

)

6 K(LΦ[0,∞)),

which proves (31) by the third one in (11) of Lemma 1.6.

3. Examples

To illustrate the theorems obtained in Section 2 and to make comments upon some re-
lated papers dealing with the Kottman and packing constants of Orlicz function spaces
we now present several examples for computations on the lower bounds of K(L(Φ)(Ω))
and K(LΦ(Ω)) when Ω = [0, 1] or [0,∞).

Example 3.1. Consider N -function Φp(u) = |u|p ln(1 + |u|) with 3/2 6 p 6 2. We
assert that there exists a constant 0 < λ 6 1/2 such that

K(L(Φp)[0, 1]) > 21/p, p ∈ (2− λ, 2]. (32)

Proof. Since ϕp(t) = Φ′
p(t) = ptp−1 ln(1 + t) + tp/(1 + t), t > 0, the function

FΦp
(t) =

tϕp(t)

Φp(t)
= p+

t

(1 + t) ln(1 + t)
, t > 0 (33)

is decreasing on (0,∞), C0
Φp

= limt→0 FΦp
(t) = p + 1 and CΦp

= limt→∞ FΦp
(t) = p.

By letting t1 = Φ−1
p (1) and t2 = Φ−1

p (2) we have from (33)

ln 2 =

t2
∫

t1

ϕp(t)

Φp(t)
dt =

t2
∫

t1

p

t
dt+

t2
∫

t1

1

(1 + t) ln(1 + t)
dt

= ln

[

Φ−1
p (2)

Φ−1
p (1)

]p

+ ln f(p),

where f(p) = ln(1 + Φ−1
p (2))/ ln(1 + Φ−1

p (1)). Let C = min{f(p) : 3/2 6 p 6 2} − 1.
Then C > 0 since f(p) > 1 for every p ∈ [3/2, 2]. It follows from the above that
21/p > [Φ−1

p (2)/Φ−1
p (1)](1 + C)1/p, or

2Φ−1
p (1)

Φ−1
p (2)

> (1 + C)1/p21−1/p, p ∈ [3/2, 2]. (34)
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Let us choose λ = min{log2(1+C), 1/2}. Then 0 < λ 6 1/2, and condition p ∈ (2−λ, 2]
implies that

(1 + C)1/p21−1/p > 21/p. (35)

Finally, (32) follows from (24) in Theorem 2.3(i), (34) and (35).

Example 3.2. Gribanov [3] introduced N -function

Φ(u) = u2e−1/|u| (36)

with Φ(0) = 0. For the corresponding Orlicz function spaces L(Φ)[0, 1] and LΦ[0, 1] we
assert that

{

K(L(Φ)[0, 1]), K(LΦ[0, 1])
}

>
√
2. (37)

Proof. Clearly, ϕ(t) = Φ′(t) = (2t+ 1)e−1/t if t > 0 and the function

FΦ(t) =
tϕ(t)

Φ(t)
= 2 +

1

t
, t > 0 (38)

is strictly decreasing on (0,∞). Note that Φ ∈ ∆2(∞)∩∇2(∞) since CΦ = limt→∞ FΦ(t)
= 2. By letting t1 = Φ−1(1) and t2 = Φ−1(2) we have from (38)

ln 2 =

t2
∫

t1

ϕ(t)

Φ(t)
dt =

t2
∫

t1

(

2

t
+

1

t2

)

dt = ln

[

Φ−1(2)

Φ−1(1)
(1 + C)

]2

, (39)

where

C = exp

{

1

2

(

1

Φ−1(1)
− 1

Φ−1(2)

)}

− 1 > 0.

By Theorem 2.3(i) and (39) we obtain

K(L(Φ)[0, 1]) >
2Φ−1(1)

Φ−1(2)
= (1 + C)

√
2 >

√
2. (40)

Next we show (37) for the space LΦ[0, 1] equipped with the Orlicz norm. Let Ψ(v)
be the complementary N -function to Φ(u). Then FΨ(s)(= sΨ′(s)/Ψ(s), s > 0) is
strictly increasing on (0, ∞) by Lemma 1.5, CΨ = lims→∞ FΨ(s) = 2 in view of (28)
and GΨ(v)(= Ψ−1(v)/Ψ−1(2v), v > 0) is strictly increasing on (0, ∞) by Lemma 1.7.
Therefore, we see that

Ψ−1(1)

Ψ−1(2)
= GΨ(1) < lim

v→∞
GΨ(v) = γΨ = 2−1/CΨ =

1√
2
.

The above and Theorem 2.3(i) imply

K(LΦ[0, 1]) >
Ψ−1(2)

Ψ−1(1)
>

√
2. (41)

Finally, (37) follows from (40) and (41).
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Example 3.3. Consider Φp(u) = |u|p ln(1 + |u|) as in Example 3.1 but 2 6 p < ∞.
We assert that

{

K(L(Φp)[0, 1]), K(LΦp(0, 1])
}

> 21−1/p, 2 6 p <∞. (42)

Proof. Since FΦp
(t) is decreasing on (0,∞) and CΦp

= p (cf. (33) in Example 3.1), by
Theorem 2.3(i) and Lemmas 1.7 and 1.8 we have

K(L(Φp)[0, 1]) >
2Φ−1

p (1)

Φ−1
p (2)

> 2 lim
u→∞

GΦp
(u) = 2γΦp

= 21−1/p. (43)

Let Ψp(v) be the complementary N-function to Φp(u). Then FΨp
(s)(= sΨ′

p(s)/Ψp(s),
s > 0) is increasing on (0,∞) and CΨp

= lims→∞ FΨp
(s) = p/(p − 1) by Lemma 1.5.

Since GΨp
(v)(= Ψ−1

p (u)/Ψ−1
p (2u), u > 0) is increasing on (0,∞), one has

Ψ−1
p (1)

Ψ−1
p (2)

= GΨp
(1) < lim

v→∞
GΨp

(v) = 2−1/CΨp = 2−1+1/p.

It follows from Theorem 2.3(i) and the above that

K(LΦp [0, 1]) >
Ψ−1

p (2)

Ψ−1
p (1)

> 21−1/p,

which proves (42) together with (43).

Example 3.4. Let M(u) = u2(1 + e−1/|u|). We claim that

{

K(L(M)[0,∞)), K(LM [0,∞))
}

>
2M−1(u0)

M−1(2u0)
, (44)

where u0 is the solution of equation G′
M(u) = 0 in which GM(u) = M−1(u)/M−1(2u),

u > 0.

Proof. The function

FM(t) =
tM ′(t)

M(t)
= 2 +

1/t

1 + e1/t
, t > 0

is not monotonic on (0,∞) because C0
M = limt→0 FM(t) = 2 = limt→∞ FM(t) = CM

and FM(t) > 2 for each t > 0. Given any u > 0, if t1 = M−1(u) and t2 = M−1(2u),
then we have that

ln 2 =

t2
∫

t1

M ′(t)

M(t)
dt >

t2
∫

t1

2

t
dt = ln

[

M−1(2u)

M−1(u)

]2

,

so that 2M−1(u)/M−1(2u) >
√
2. Note that αM = α0

M = αM = 1/
√
2. Finally, it

follows from Theorem 2.4 that

{

K(L(M)[0,∞)), K(LM [0,∞))
}

> max

(

1

αM

, 2βM

)

= 2βM ,

where 2βM = supu>0 2M
−1(u)/M−1(2u) = 2M−1(u0)/M

−1(2u0), proving (44).
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4. Comments on Related Papers

Yan [11] as well as Han and Li [4] announced that they found the exact values of the
Kottman constant and the packing constant of the Orlicz function spaces L(Φ)[0, 1] and
LΦ[0, 1] defined by some special N -functions. To make comments upon their papers
we start with the following.

Theorem 2.3 in Yan [11]. Let Φ(u) =
∫ |u|

0
ϕ(t) be an N-function and let FΦ(t) =

tϕ(t)/Φ(t), t > 0.

(i) If FΦ(t) is decreasing on (0,∞) and 1 < CΦ < 2, where CΦ = limt→∞ FΦ(t), then

K(L(Φ)[0, 1]) = K(LΦ[0, 1]) = 21/CΦ . (45)

(ii) If FΦ(t) is increasing on (0,∞) and CΦ > 2, then

K(L(Φ)[0, 1]) = K(LΦ[0, 1]) = 21−1/CΦ .

Comment 4.1. At least, (i) of the above theorem is incorrect for L(Φ)[0, 1].

Proof. Consider N -function Φp(u) = |u|p ln(1 + |u|) with 1 < p < 2. Then FΦp
(t)

is obviously decreasing on (0,∞) and CΦp
= p (cf. (33)). If (45) were true, then

K(L(Φp)[0, 1]) = 21/p as given in Yan [11, Example 2.8]. This contradicts (32) in
Example 3.1 in Section 3.

To make comment on the paper of Han and Li [4] we have to deal with the M∆(∞)-
condition.

Definition 4.2 (Salehov [10]). An N -function Φ(u) is said to satisfy the M∆-con-
dition for large u, in symbol Φ ∈M∆(∞), if

lim
u→∞

lnΦ(u)

lnu
= p <∞. (46)

Remark 4.3. (i) Salehov [10] showed that if Φ ∈ M∆(∞) then Φ ∈ ∆2(∞). The
converse is not true in general.

(ii) If Φ ∈ ∆2(∞), Φ′(u) is continuous for large u and the limit CΦ = limt→∞ tΦ′(t)/Φ(t)
exists, then Φ ∈M∆(∞). For, by L’Hopital’s rule we have

lim
u→∞

lnΦ(u)

lnu
= lim

u→∞

(lnΦ(u))′

(lnu)′
= lim

u→∞

uΦ′(u)

Φ(u)
= CΦ

and CΦ <∞ since Φ ∈ ∆2(∞)(cf. Proposition 1.10 in Section 1).

(iii) Let Ψ(v) be the complementary N -function to Φ(u). Then Φ ∈ M∆(∞) if and
only if

lim
v→∞

lnΨ(v)

ln v
= q > 1. (47)

We can write Ψ ∈ M∇(∞) if (47) holds. The proof is as follows. If Φ ∈ M∆(∞) and
p = 1 in (46), then for any given ε > 0 there is a u0 > 0 such that lnΦ(u)/ lnu 6 1+ ε
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or Φ(u) 6 u1+ε if u > u0. By Proposition 2 in Rao and Ren [7, p. 15] there is a v0 > 0
such that Ψ(v) > v(1+ε)/ε if v > v0 since v(1+ε)/ε is complementary to u1+ε. Thus,
limv→∞ lnΨ(v)/ ln v = ∞ since ε is arbitrary. If Φ ∈ M∆(∞) and p > 1 in (46), then
for any given 0 < ε < p− 1 there is a u1 > 0 such that p− ε 6 lnΦ(u)/ lnu 6 p+ ε or
up−ε 6 Φ(u) 6 up+ε if u > u1, which implies that there exists a v1 > 0 such that

v(p−ε)/(p−ε−1)
> Ψ(v) > v(p+ε)/(p+ε−1), v > v1,

proving (47) with q = p/(p− 1). Similarly, (47) implies (46).

In view of Proposition 1.3 the main result in the paper of Han and Li [4] can be stated
as follows.

Theorem 5 in [4]. For an N-function Φ(u), if Φ ∈M∆(∞) and limu→∞ lnΦ(u)/ lnu
= p > 1, then

K(LΦ[0, 1]) =

{

21/p, 1 < p 6 2;

21−1/p, 2 < p <∞.
(48)

Comment 4.4. Formula (48) fails of success.

Proof. Consider Φ(u) = u2e−1/|u| as given in Example 3.2. Then Φ(u) satisfies the
conditions of the above theorem since limu→∞ lnΦ(u)/ lnu = 2. If (48) were true, then
K(LΦ[0, 1]) =

√
2, which contradicts (37) of Example 3.2 in Section 3.

Next we consider Φp(u) = |u|p ln(1+ |u|) with 2 < p <∞. It is seen that Φp ∈M∆(∞)
since limu→∞ lnΦp(u)/ lnu = p. If (48) were true, then K(LΦp [0, 1]) = 21−1/p, which is
impossible by (42) of Example 3.3 in Section 3.

Go further, we need the following.

Definition 4.5 (Cleaver [2]). Let M(u) be an N -function and let M0(u) = u2. If
0 6 s 6 1 we define Φs(u) to be the inverse of

Φ−1
s (u) = [M−1(u)]1−s[M−1

0 (u)]s = [M−1(u)]1−sus/2, u > 0. (49)

It was proved that Φ−1
s (u) has inverse Φs(u) and Φs(u) is an N -function if Φs(−u) =

Φs(u) for u < 0. Cf. Rao and Ren [7, p. 223]. Clearly, Φs(u)|s=0 = M(u) and
Φs(u)|s=1 = u2. The author proved the following.

Theorem 4.6 (Ren [9]). For any N-function M(u), let Φs(u) be defined by its in-
verse Φ−1

s (u) in (49). If 0 < s 6 1, then Φs ∈ ∆2 ∩∇2.

A proof of Theorem 4.6 can be found also in Rao and Ren [8, p. 40]. For convenience
and clearness we use the following technical term.

Definition 4.7. N -function Φ(u) is said to be an intermediateN -function if there exist
an N -functionM(u) and a constant 0 < s < 1 such that Φ−1(u) = [M−1(u)]1−sus/2(u >

0), i.e., Φ−1(u) = Φ−1
s (u) with Φ−1

s (u) being in (49).
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Example 4.8. Let 1 < p <∞ and let Φp(u) be the inverse of

Φ−1
p (u) = [ln(1 + u)]1/2pu1/4, u > 0.

Then Φp(u) is an intermediate N -function between Mp(u) = e|u|
p − 1 and u2 with

s = 1/2, since M−1
p (u) = [ln(1 + u)]1/p(u > 0). For the intermediate Orlicz spaces

L(Φp)(Ω) and LΦp(Ω), by Theorem 9 in Rao and Ren [8, p. 174] we have

K(L(Φp)(Ω)) = K(LΦp(Ω)) = 23/4,

where Ω = [0, 1] or [0,∞).

By Definitions 4.5 and 4.7, a theorem in Yan [11] can be stated as follows.

Theorem 2.2 in Yan [11]. Let Φ(u) =
∫ |u|

0
ϕ(t)dt denote an N-function and let

FΦ(t) = tϕ(t)/Φ(t), t > 0. Then Φ(u) is an intermediate N-function if one of the
following conditions is satisfied:

(i) FΦ(t) is decreasing on (0,∞) and 1 < CΦ < 2, where CΦ = limt→∞ FΦ(t);

(ii) FΦ(t) is increasing on (0,∞) and CΦ > 2.

Comment 4.9. The above theorem is wrong.

Proof. (a) Consider Φ(u) = |u|3/2e−1/|u| with Φ(0) = 0. Clearly, Φ(u) is an N -function
since ϕ(t) = Φ′(t) > 0 and ϕ′(t) > 0 if t > 0. Note that FΦ(t) = 3/2 + 1/t(t > 0),
is decreasing on (0,∞) and CΦ = 3/2, i.e., Φ(u) satisfies condition (i). If Φ(u) were
an intermediate N -function, then Φ ∈ ∆2 ∩∇2 by Theorem 4.6. A contradiction since
Φ∈∆2(0) because C

0
Φ = limt→0 FΦ(t) = ∞.

(b) Let Ψ(v) be the complementary N -function to Φ(u). Then FΨ(s)(= sΨ′(s)/
Ψ(s), s > 0) is increasing on (0,∞) and CΨ = lims→∞ FΨ(s) = 3 by Lemma 1.5,
i.e., Ψ(v) satisfies condition (ii). Since Ψ∈∇2(0), Ψ(v) does not an intermediate N -
function again by Theorem 4.6.

We conclude this paper by the following.

Remark 4.10. For a given N -function Φ(u), in order that Φ(u) becomes an interme-
diate N -function (cf. Definition 4.7), it is necessary but not sufficient that Φ ∈ ∆2∩∇2.
For instance, we consider N -function

Φp(u) = |u|2p + 2|u|p, 2 < p <∞. (50)

Clearly, Φp ∈ ∆2 ∩ ∇2. We assert that Φp(u) does not an intermediate N -function
for large p. Suppose to the contrary, there exist an N -function M(u) and a constant
0 < s < 1 such that Φ−1

p (u) = [M−1(u)]1−sus/2, u > 0. Then

M−1(u) =
[Φ−1

p (u)]1/(1−s)

us/2(1−s)
=

(√
u+ 1− 1

)1/p(1−s)

us/2(1−s)
, u > 0,



Z. D. Ren / On the Lower Bounds of Kottman Constants in Orlicz Function ... 171

which implies that for p > 2/s

lim
u→0

M−1(u)

M−1(2u)
= 2(ps−2)/2p(1−s) > 1

and

lim
u→∞

M−1(u)

M−1(2u)
= 2(ps−1)/2p(1−s) > 1.

In other words, there are u1 > 0 and u2 > 0 such thatM−1(u) > M−1(2u) if 0 < u < u1
or u > u2. A contradiction because the inverse function of any N -function is strictly
increasing on [0,∞).
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