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In this paper, we are motivated by the question of when a convex semialgebraic set in IRn is equal to
the feasible set of a linear matrix inequality (LMI). Given a basic semialgebraic set, V, which is defined
by quadratic polynomials, we restrict our attention to closure of its convex hull, namely co(V). Our
main result is that co(V) is equal to the intersection of a finite number of LMI sets and the halfspaces
supporting V along a particular subset of the boundary of V. As a corollary, we show that in IR2, the
halfspaces of concern are finite in number, so that an LMI representation for co(V) always exists.

1. Introduction

A linear matrix inequality (LMI) is a constraint of the form

F (x) = F0 + F1x1 + · · ·+ Fnxn � 0, (1)

where Fi are p × p real symmetric matrices. It has recently been shown that the
solvability conditions for numerous problems in systems and control theory and several
other fields can be expressed as LMI conditions [1]. Since it is easily shown that they
constitute convex optimization problems and a self-concordance barrier function exists,
numerical solutions of LMIs can be obtained efficiently [2].

A simple fact about LMIs is that their feasible regions (i.e., “LMI sets�) constitute
convex semialgebraic sets in IRn. Based on this fact, one can naturally ask whether the
converse is also true. That is, are all convex semialgebraic sets LMI sets? It is easily
shown by the counterexample x4+ y4 ≤ 1 that the answer is in the negative. However,
by defining new variables, one can lift this particular problem to a higher dimensional
space and obtain an LMI representation [8]. Yet, to the best our knowledge, it is
currently not known whether it is possible to convert every convex semialgebraic set
into an LMI set in a higher dimensional space or not.

It is then reasonable to ask “Which class of convex semialgebraic sets are LMI sets?�
This question has been studied in detail by [3] and their results show that a property
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called “rigid convexity� is necessary for a semialgebraic set to have an LMI represen-
tation. In IR2, rigid convexity is also shown to be a sufficient condition. They also
conjecture that sufficiency is valid in IRn as well.

In this paper, we are interested in finding an LMI representation not for a semialgebraic
set V , but, for the closure of its convex hull, co(V). We are motivated in this by the
fact that minimizing a linear function over V yields the same result as minimizing
it over co(V) [2]. Therefore, if the LMI representation exists, a nonconvex problem
can be converted into a convex LMI problem. Moreover, in many global optimization
methods, a series of convex sets Ci satisfying V ⊆ Ci, Ci+1 ⊆ Ci and converging to co(V)
are constructed to obtain computationally cheap bounds for optimizing an objective
function over V [6, 7, 4, 9, 10]. Hence, if Cis are chosen as LMI sets, the existence of
such a representation opens up the possibility of obtaining a relaxation algorithm that
converges in a finite number of steps. For a positive example, see the mixed integer
programming relaxations proposed in [10], for which both Ci and co(V) are polytopic
regions and finite convergence is achieved.

In an attempt to give a limited answer to the problem posed above, we consider semi-
algebraic sets described by quadratic constraints only. Our main result is that for such
a V , co(V) is given by the intersection of a finite number of LMI sets and the halfs-
paces supporting V along a subset of the boundary of V . The supporting halfspaces of
concern are infinitely many in IRn, but in IR2, their intersection is easily shown to be
a polyhedral set. Therefore, for V ⊆ IR2, co(V) is always an LMI set, regardless of the
convexity of V itself. Note that since a semialgebraic description of the convex hull is
not readily available, the application of the rigid convexity criterion presented in [3] to
our problem is not possible.

The paper is organized as follows. In Section 2, we introduce the notation and some
assumptions used throughout the paper. The main theorem of the paper is given
in Section 3 together with a sketch of the proof. In Section 4, it is shown how a
characterization in terms of infinitely many supporting halfspaces can be converted
into another description involving a smaller set of supporting halfspaces and finitely
many LMIs. Section 5 is devoted to the proof of the main theorem. An explanatory
example regarding the LMI description in IR2 is given in Section 6. A summary and
conclusions are given in Section 7. The proofs of all intermediate results can be found
in appendices.

2. Notation and Preliminaries

The set of n×n-dimensional real symmetric matrices is denoted by Sn while Sn
+ denotes

the positive semidefinite cone. Given two matrices A,B ∈ Sn, the relation A � B
implies A−B ∈ Sn

+. For A ∈ Sn, the number of positive and negative eigenvalues of A
are denoted by π(A) and ν(A), respectively. We use A+ to denote the Moore-Penrose
pseudo-inverse of matrix A.

For S ⊆ IRn, S and int(S) denote the closure and interior of S, respectively. The
boundary of S is defined as ∂S := S \ int(S). We denote the convex hull of S as
co(S). We define a neighborhood of x ∈ IRn, as an open ball centered at x. That is,

Nx := {y ∈ IRn | ‖y − x‖ < r} for some r > 0. (2)
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Now consider the quadratic polynomial

p(x) =

(

x
1

)T

P

(

x
1

)

, (3)

where P ∈ Sn+1. The feasible region of a single inequality constraint and the corre-
sponding zero set are

Qp := {x ∈ IRn | p(x) ≥ 0} and Zp := {x ∈ IRn | p(x) = 0}. (4)

It is clear that Zp = ∂Qp as long as P is not positive semidefinite. We also use the
compact notation

Qp := {x ∈ IRn | p(x) ⊲ 0}, (5)

where ⊲∈ {≥,=}. That is, if we have an equality constraint, then “⊲� stands for “=�,
and Qp = Zp, while for an inequality constraint, “⊲� represents “≥� and Qp = Qp.

Let S ⊆ IRn be nonempty and assume x ∈ ∂S. We denote the intersection of all
halfspaces supporting S at x as C(S, x). If no supporting halfspace exists, we take
C(S, x) = IRn.

In the rest of the paper, we focus on the basic semialgebraic set

V := {x ∈ IRn | pi(x) ≥ 0, i = 1 : r}, (6)

where pi are nonconstant quadratic polynomials. To avoid technical difficulties in the
rest of the paper, we put the expression given in (6) into a more suitable form and
make use of a number of assumptions. Note that these assumptions by no means
put any restriction on our results as described below. They are used to simplify the
presentation of the material.

If an inequality constraint and a negative multiple of it exist, we replace them with
a single equality constraint. By an appropriate choice of indexing, this leads to the
following formulation

V = {x ∈ IRn | pi(x) ≥ 0, i = 1 : ℓ, pj(x) = 0, j = ℓ+ 1 : m}. (7)

Assumption 2.1. The matrix Pj, associated with the constraint pj(x) = 0 satisfies
ν(Pj) ≥ π(Pj).

Remark 2.2. Note that this assumption clearly does not lead to any limitations. If
it is not satisfied, one can simply multiply the both sides of the equality constraint by
a negative number.

Assumption 2.3. For all i = 1 : m, Pi is indefinite.

Remark 2.4. In order to see that this assumption is not restrictive, first assume
Pi � 0. In this case, pi cannot appear in an equality constraint because the condition
ν(Pi) ≥ π(Pi) cannot be satisfied for a nonzero polynomial. On the other hand, if it is
used in an inequality constraint, the constraint is satisfied for every x ∈ IRn. Therefore,
it can be removed from the description. Next, assume, Pi � 0. As can be anticipated
from the spectral decomposition of Pi, for both equality and inequality constraints, the
feasible set turns out to be a linear subspace of IRn. Therefore, without altering V , the
constraint associated with pi can be replaced by a number of equality constraints, for
which the corresponding matrix has to be indefinite.
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3. Main Result - Characterization of co(V)

In this section, we state the main result of this paper, which is that co(V) can be
described in terms of a combination of LMIs and supporting halfspaces.

Let V ∈ IRn be a basic semialgebraic set and assume the polynomials used in its
description satisfies Assumptions 2.1 and 2.3. We define the set

I :=

(

⋃

i6=j

(Zpi ∩ Zpj)

)

∩ V. (8)

The main result of the paper is the following theorem.

Theorem 3.1. The set I is a subset of ∂V. Furthermore, co(V) can be expressed as

the intersection of a finite number of LMIs and the set

F :=







⋂

x∈I

C(V , x) if I 6= ∅

IRn if I = ∅.
(9)

The following is an immediate corollary of the theorem above.

Corollary 3.2. If V ∈ IR2, then, co(V) is an LMI set in IR2.

Proof. In IR2, the following statements hold true. The set I is simply composed
of a finite number of intersection points. Moreover, the intersection of all halfspaces
supporting a set at a common boundary point is a polyhedral set. Therefore,

⋂

x∈I

C(V , x) (10)

is an LMI set.

3.1. Outline of the Proof of Theorem 3.1

We base proof of Theorem 3.1 on the following characterization of the convex hull.

Proposition 3.3. Let S ⊆ IRn be nonempty. The intersection of all supporting halfs-

paces of S is equal to the closure of convex hull of S, that is

co(S) =
⋂

x∈∂S

C(S, x). (11)

This proposition is a simple consequence of well-known results from convex analysis.
In general, it leads to a characterization in terms of infinitely many halfspaces, which
is not practically useful. The main approach we follow is to replace these halfspaces
with a finite number of LMI sets as much as possible to obtain a better description of
the convex hull. This procedure is summarized below.

It is easy to see that the boundary points of V belong to the zero sets Zpi . Using this
fact, one can separate these points into two disjoint groups, namely, those lying at the
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intersections of more than one zero set, I, and those that are elements of only one
zero set, namely ∂V \ I. In general, ∂V is smooth along the latter while points where
the boundary is not smooth lie in the former. To prove the theorem, we show that
the halfspaces supporting V along ∂V \ I can be replaced by a finite number of LMI
sets which are, except for a few special cases, directly induced by pis themselves. This
leads to a mixed description of co(V) in terms of LMIs and the intersection of possibly
infinitely many halfspaces supporting V along I.

4. An LMI Description for Supporting Halfspaces

In this section, our goal is to develop the basic results which are employed to show
that some supporting halfspaces in the description of the convex hull can be replaced
by LMI sets. Towards this end, we concentrate on a single quadratic constraint deter-
mined by a polynomial p and the corresponding feasible region Qp, where p satisfies
Assumptions 2.1 and 2.3. We begin by introducing some propositions related with the
LMI representation of Qp.

Proposition 4.1. If π(P ) = 1, Qp is either an LMI set, or the union of two LMI sets,

Q+
p and Q−

p , which have disjoint interiors and which are symmetric with respect to a

point xc ∈ IRn.

The proof of the proposition is given in Appendix A. For π(P ) = 1, an explicit
formulation of LMI regions of Qp in terms of the matrix P can be found in the proof.
Examples of Qp under this condition are convex regions bounded by an ellipsoid, a
paraboloid and a hyperboloid. The first two are LMI sets while the last one is union
of two LMI sets each of which bounded by a sheet of the hyperboloid.

Proposition 4.2. If π(P ) = 1 and Qp is composed of two LMI components, no halfs-

pace containing Qp exists.

As an example for Proposition 4.2, consider the region bounded by a hyperboloid
mentioned previously. There does not exist a halfspace containing this region even
though there are hyperplanes separating its two LMI components.

Now, we are ready to focus on the main result. Consider a set S ⊆ IRn, which has a
nonempty interior. Let’s define

U := S ∩ Qp (12)

and assume

B := int(S) ∩ Zp 6= ∅. (13)

It is clear that B ⊆ ∂U . A conceptual picture illustrating these definitions in IR2 is
given in Figure 4.1 for an inequality constraint (i.e., Qp = Qp).

In the rest of the section, we show that halfspaces supporting U along B can be replaced
by an LMI set.

Lemma 4.3. If there exists a hyperplane, T , supporting U at a point y ∈ B, then

π(P ) = 1 and T ∩ int(Qp) = ∅.

The main idea behind Lemma 4.3 for an inequality constraint can be interpreted as
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Q̂p = Qp

B

S

Zp

U

Figure 4.1: Illustration of S, Qp, U and B

follows. (A similar reasoning applies to an equality constraint.) If a hyperplane T
supports U at a point y ∈ B, clearly, T ∩ int(U) = ∅. This also implies that U must
possess a certain convexity property around a neighborhood of y. Roughly speaking,
Lemma 4.3 (in conjunction with Proposition 4.1) states that these properties also hold
true globally for T and Qp.

As an example, consider Figure 4.2 a). As can be seen from the figure, there exists

Qp

B

S

Zp

U

y

T Qp

B
S

Zp

U

a) b)

Qp

B

S

Zp

U

y

T

c)

Figure 4.2: Examples for Lemma 4.3

a supporting halfspace at a point y ∈ B, and hence, due to Lemma 4.3 and Propo-
sition 4.1, Qp is composed of LMI sets and T does not intersect its interior (for this
example, Qp has only one LMI component). The necessity of the condition π(P ) = 1
when there is a halfspace supporting U along B is illustrated in Figure 4.2 b). Here
Qp is the region outside the circle for which clearly we must have π(P ) > 1. As can
be seen from the figure in this situation there is no hyperplane supporting U along B.
The lemma also guarantees that a situation like in Figure 4.2 c) (i.e., T supports U
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but intersects the interior of Qp) cannot occur even in IRn.

Lemma 4.4. If there exists a hyperplane supporting U at a point y ∈ B, there exists

an LMI set Lp such that U ⊆ Lp and any hyperplane supporting U at a point of B also

supports Lp.

Except for some technical details, Lemma 4.4 is a simple consequence of previous
results. We describe this briefly for an inequality constraint. If there exists a supporting
halfspace along B, Qp is either an LMI set or a union of two LMI sets. If the former
holds true, Qp itself can be chosen as Lp and we are done (see Figure C.1 (a) below). A
similar reasoning applies when Qp is composed of two components and U is a subset of
one of them as can be seen from Figure C.2. It remains to consider the case in whichQp

is composed of two components but U is not a subset of one of them as in Figure C.3 (a).
However, for this situation, there does not exist a hyperplane supporting U along B if
we disregard some technical details. In order to see this, assume there exists such an
hyperplane, T . Then, T cannot intersect int(Qp). Moreover, due to Proposition 4.2, a
halfspace cannot contain Qp. Hence, T has to separate Q+

p and Q−
p , which are convex

sets having nonempty disjoint interiors. This leads to a contradiction.

As can be seen from the sketch given above, Lp is usually determined by the polynomial
p itself. However, there are some exceptions as described in the proof. For these and
a rigorous treatment including equality constraint, refer to Appendix B.

The following corollary of Lemma 4.4 is the main result of this section which will be
utilized to obtain the characterization of co(V).

Corollary 4.5. If the exists a hyperplane supporting U at a point of B, then there

exists an LMI set Lp such that

U ⊆ Lp ⊆
⋂

x∈B

C(V , x). (14)

Remark 4.6. As one can see from the definition of B (13), the formulation given in

(14) does not include the halfspaces supporting U at points of Zp ∩ ∂S. These points

are marked with small circlers in Figure 4.1.

5. Proof of Theorem 3.1

We are ready to prove the main theorem employing the results developed in the previous
section. Let’s define

Vpk :=











{x ∈ IRn | pi(x) ≥ 0, i = 1 : ℓ, i 6= k;

pj(x) = 0, j = ℓ+ 1 : m, j 6= k} if m > 1

IRn if m = 1,

(15)

which is obtained by removing the constraint corresponding to polynomial pk from
the description of V . In order to prove the theorem, for each k ∈ {1 : m}, we apply
Corollary 4.5 to pk and Vpk regarding them p and U respectively. By this way, we can

replace all supporting halfspaces used in description of co(V ) successively by LMI sets
except the ones supporting V along the intersection set I, and we are done. Note that
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we can not get rid of all supporting halfspaces because points lying in Zp ∩ ∂Vpk are
not handled by Corollary 4.5 as stated in Remark 4.6. In the sequel, we give the formal
proof of the theorem.

Proof of Theorem 3.1. We first construct a characterization of ∂V . Because V is
closed, ∂V ⊆ V. Moreover, as one can easily verify, an element of V is its boundary
point if and only if it is also an element of Zpi for some i = 1 : m. Using these facts,
we can express ∂V as the union of the two disjoint set

I = {x ∈ V | x ∈ Zpi for at least two different values of i} (16)

and
J := {x ∈ V | x ∈ Zpi for exactly one i}. (17)

It is clear that the former is equivalent to the definition given in (8). We define

Bpi := Zpi ∩ int(Vpi), i = 1 : m (18)

and infer that

J =
m
⋃

i=1

Bpi . (19)

Without loss of generality, if there exists some nonempty elements in the collection
{Bpi}, we can assume they are the first elements in the collection by an appropriate
change of indexing. Hence, we can write

J =
r
⋃

i=1

Bpi , (20)

where r is the number of nonempty sets in {Bpi}. Putting all together, we can express
the boundary of V as

∂V = I ∪

(

r
⋃

i=1

Bpi

)

. (21)

We proceed by the characterization of the closure of the convex hull of V . Due to
Proposition 3.3, we have

co(V) =
⋂

x∈∂V

C(V , x). (22)

By substituting (21) into this expression, we can write

co(V) =

(

⋂

x∈I

C(V , x)

)

⋂





r
⋂

i=1





⋂

x∈Bpi

C(V , x)







 . (23)

If all the sets in the collection {Bpi} are empty, we are done. Alternatively, assume
there are nonempty elements in {Bpi}. By definition, we can write

V = Vpi ∩Qpi , i = 1 : r. (24)
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Therefore, for each Vpi and Qpi , i ∈ 1 : r, we can apply Corollary 4.5 and deduce that
either there exists an LMI set Lpi such that

V ⊆ Lpi ⊆
⋂

x∈Bpi

C(V , x), (25)

or there does not exist any hyperplane supporting V along Bpi . Using this result with
(23), we come up with

V ⊆

(

⋂

x∈I

C(V , x)

)

⋂

(

s
⋂

i=1

Lpi

)

⊆ co(V). (26)

Note that we apply a change of indexing to ensure that the indices for which there
exists a hyperplane supporting V along Bi are the first s ones.

6. Example

In what follows, we illustrate our results on an example in IR2.

Consider the set of constraints

p1(x) = 64− x2
1 − x2

2 ≥ 0,

p2(x) = 50− x2
1 − 8x2 ≥ 0,

p3(x) = x2
1 − (x2 − 2)2 − 4 ≥ 0,

p4(x) = (x1 + 4)2 + (x2 − 4)2 − 10 ≥ 0.

The corresponding feasible region, V , is depicted in Figure 6.1 a). We know that co(V)
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Figure 6.1: a) The region determined by quadratic inequalities; b) its convex hull.

is the intersection of its supporting halfspaces. It is possible to separate these halfspaces
into two groups – those supporting V at the points in ∂V \ I and those supporting it
at the points in I (points of I are indicated by thick dots in the figure). Corollary 4.5
states that the former can always be replaced by LMIs. These LMIs can be identified
as follows.
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The halfspaces supporting V along Zp1 and Zp2 can be replaced by Qp1 and Qp2 .
Because these sets are determined by convex quadratic constraints, they admit the
LMI representations

Lp1 :





1 0 x1

0 1 x2

x1 x2 64



 � 0; Lp2 :

[

1 x1

x1 50− 8x2

]

� 0 (27)

which can be derived from (32) and (37) respectively. On the other hand, there does
not exist any halfspace supporting V along the points of ∂V \ I lying on Zp3 or Zp4 .
This fact was also mentioned just after Lemma 4.3.

Now it remains to consider the halfspaces supporting V at points of I. As shown in
the proof of Corollary 3.2, using only finitely many of them is enough. In this example,
we have only two

LI1 : 0.3322x1 − x2 + 3.6438 ≥ 0; LI2 : x2 + 4.385 ≥ 0 (28)

which are depicted in Figure 6.1 b). As a result, the following LMI representation is
obtained

co(V) = Lp1 ∩ Lp2 ∩ LI1 ∩ LI2 . (29)

Notice that, Corollary 3.2 only shows that the convex hull is an LMI set and it is not
constructive. The main difficulty in obtaining an LMI representation arises in finding
the halfspaces supporting V at the points of I. In the example given above, we could
compute the convex hull by inspection.

7. Summary and Conclusions

In this paper, we have focused on the LMI representation of the convex hull of a basic
semialgebraic set V ∈ IRn. Our interest in the problem stems from the fact that if
such a representation exists a nonconvex problem can be converted into a convex LMI
problem. Moreover, it would be possible to develop an LMI relaxation algorithm having
finite convergence property. Assuming that the defining polynomials are quadratic, we
have derived a characterization of co(V) in terms of a combination of LMIs and a
class of supporting halfspaces. Then, using this characterization, we have proved that
co(V) is an LMI set when the problem is restricted to IR2. A future research direction
is to develop an algorithm which constructs the LMI representation of co(V). We
are currently investigating the conditions under which one can find an exclusive LMI
representation for co(V) in IRn.

A. Proofs of Propositions 4.1 and 4.2

Proof of Proposition 4.1. By partitioning the matrix P, we can express the inequali-
ty constraint as

p(x) =

(

x
1

)T [
A b
bT c

](

x
1

)

≥ 0 (30)
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Let’s apply the linear transformation x = x̄ − A+b. The constraint in the new space
can now be written as

p̄(x̄) =

(

x̄
1

)T

P̄

(

x̄
1

)

≥ 0, P̄ :=

[

A b̄
b̄T c̄

]

, (31)

where b̄ := (I − AA+)b, c̄ := c− bTA+b.

We proceed by investigating a number of scenarios. First, assume b ∈ Im(A). In
that case, b̄ = 0 and (31) simplifies to c̄ + x̄TAx̄ ≥ 0. If c̄ > 0, A has to be negative
semidefinite because π(P ) = 1. Therefore, A can be decomposed as A = −V V T , where
V is the matrix of eigenvectors corresponding to the negative eigenvalues of A. Using
the Schur complement formula, we obtain

[

I V T x̄
x̄TV c̄

]

=

[

I V T (x+ A+b)
(x+ A+b)TV c− bTA+b

]

� 0. (32)

Now, assume c̄ ≤ 0. This implies π(A) = 1. Therefore, A can be expressed as
A = uuT − V V T , where u is the eigenvector corresponding to the positive eigenvalue
and V is the matrix of eigenvectors corresponding to the negative eigenvalues of A.
With this decomposition, (31) becomes

x̄TuuT x̄− x̄TV V T x̄− d2 ≥ 0 (33)

where −d2 := c̄. The set of points satisfying the last inequality are the solutions of one
of the two constraints




±uT x̄I

(

V T x̄
d

)

(

x̄TV d
)

±uT x̄



 =





±uT (x+ A+b)I

(

V T (x+ A+b)
d

)

(

(x+ A+b)TV d
)

±uT (x+ A+b)



 � 0

(34)
and we denote their feasible sets as Q+

p and Q−
p . It can be easily inferred that Q+

p and
Q−

p are symmetric with respect to the point xc := −A+b. Note that we obtain (34)
using the Schur complement formula for positive semidefinite inequalities. See [2] for
details.

Lastly, assume b /∈ Im(A). This implies b̄ 6= 0, and AT b̄ = 0. As a result, it can be
verified that the vectors

[

(c̄/2±∆)b̄
−b̄T b̄

]

, where ∆ :=
√

c̄2/4 + b̄T b̄, (35)

are eigenvectors of P̄ , the corresponding eigenvalues of which are − b̄T b̄
c̄/2±∆

. It is clear
that one of these eigenvalues has to be negative while the other is positive. Therefore,
P̄ cannot have another positive eigenvalue because π(P ) = 1 and inertia is preserved
under congruence. Based on this fact, it can be shown that A � 0. In order to see
this, assume A has a positive eigenvalue α with the associated eigenvector u. Because
u ∈ Im(A), the condition b̄Tu = 0 must hold true. This leads to the fact that the vector
(uT 0)T must be another eigenvector of P̄ with the associated positive eigenvalue α,
which is a contradiction.
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Now, because A is negative semidefinite, we can rewrite (31) as

c̄+ 2b̄T x̄− x̄TV V T x̄ ≥ 0 (36)

using the decomposition A = −V V T . This leads to the LMI representation

[

I V T x̄
x̄TV c̄+ 2b̄T x̄

]

=

[

I V T (x+ A+b)
(x+ A+b)TV c̄+ 2b̄T (x+ A+b)

]

� 0. (37)

Proof of Proposition 4.2. We use the linear transformation introduced in the proof
of Proposition 4.1. Since Qp is composed of two LMI components, we have c̄ ≤ 0,
π(A) = 1 and the polynomial constraint takes the form

p(x̄) =

(

x̄
1

)T [
A 0
0 c̄

](

x̄
1

)

≥ 0. (38)

Consider an arbitrary halfspace defined by the inequality

q(x̄) = αT x̄+ β =

(

x̄
1

)T [
0 α/2

αT/2 β

](

x̄
1

)

≥ 0. (39)

Now, assume this halfspace contains Qp. This means q(x̄) ≥ 0 for every x̄ satisfying
p(x̄) ≥ 0. Because q(x̄) can be made strictly positive, the S-procedure [2] can be
applied and one can infer that there exists a λ ≥ 0 such that

[

0 α/2
αT/2 β

]

− λ

[

A 0
0 c̄

]

� 0. (40)

However, because π(A) = 1, the above given inequality cannot be satisfied for any
λ ≥ 0, which is a contradiction. Hence, there does not exist a halfspace containing
Qp.

B. Proof of Lemma 4.3

Proof of Lemma 4.3. Consider parametrization of the hyperplane T given by

x = Uw + y, (41)

where w ∈ IRn−1 and U ∈ IRn×(n−1) has full-column rank. By substituting this
parametrization into polynomial p, one obtains

p(Uw + y) =

(

w
1

)T

P̃

(

w
1

)

,

P̃ :=

[

U y
0 1

]T

P

[

U y
0 1

]

, P =

[

A b
bT c

]

.

(42)
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Because y ∈ B, it satisfies p(y) = 0 and P̃ ∈ IRn simplifies to

P̃ =

[

UTAU UT (Ay + b)
(Ay + b)TU 0

]

. (43)

We now show that ξ := UT (Ay + b) = 0. To that end, assume ξ 6= 0. This means
ξi 6= 0 for an i ∈ 1 : n − 1. Let’s substitute the vector w := αei into (42), where ei
denotes the ith standard basis vector. We obtain

p(αUei + y) = āiiα
2 + 2ξiα, (44)

where āii := (UTAU)ii. This expression can be made both positive and negative for
values of α having arbitrarily small absolute value. This means that the hyperplane T
does not stay on the same side of the surface Zp within the set S. Hence, it cannot
be a supporting hyperplane of U , which is a contradiction. As a result, we must have
UT (Ay + b) = 0.

(From a geometric point of view, this conditions means the hyperplane T is either
tangent to the surface Zp or the tangent of Zp at y is not defined.)

For later use, we note that employing the Poincaré separation theorem [5] and the fact
that UT (Ay + b) = 0, one can obtain the inertia inequalities

π(P ) ≥ π(P̃ ) = π(UTAU) ≥ π(P )− 1 (45a)

ν(P ) ≥ ν(P̃ ) = ν(UTAU) ≥ ν(P )− 1. (45b)

We now consider inequality and equality constraints separately and begin with in-
equality constraints first. Consider a neighborhood of the origin N0 ⊆ IRn−1 such that
Uw + y ∈ int(S) for every w ∈ N0. Note that such a neighborhood exists because
y ∈ int(S). Since T is a supporting hyperplane, p(Uw + y) ≤ 0 for all w ∈ N0.
Otherwise, T

⋂

int(U) would be non-empty and T would not be a supporting hyper-
plane. Since UT (Ay + b) = 0, we infer p(Uw + y) = wTUTAUw. Hence, we obtain
wTUTAUw ≤ 0 for every w ∈ N0. This can be satisfied if and only if UTAU � 0,
which means p(Uw + y) ≤ 0 for every w ∈ IRn−1. Therefore, T ∩ int(Qp) = ∅. Since
UTAU � 0, we conclude that π(P ) ≤ 1 by (45a). Due to Assumption 2.3, π(P ) = 1.

Now consider the equality constraint. There exists a neighborhood N0 ⊆ IRn−1 such
that the polynomial p(Uw + y) is sign-definite over N0. Otherwise, there would be
points of B, which is a subset of U , on both sides of T , and hence, it would not
be a supporting hyperplane. Consequently, UTAU must be sign-definite. In order
to show that it is in fact negative semi-definite, note the following. Assumptions
2.1 and 2.3 imply ν(P ) ≥ π(P ) ≥ 1. Together with sign-definiteness of UTAU and
(45), this implies that π(P ) = 1. Moreover, UTAU � 0 if ν(P ) > 1. Hence, it
only remains to show negative semi-definiteness when π(P ) = ν(P ) = 1. For this
case, if UTAU � 0, we can multiply both sides of the corresponding constraint by a
negative number without loss of generality. This is because p appears in an equality
constraint and Assumption 2.1 is not violated. Hence it can be ensured that UTAU � 0.
Consequently, T ∩ int(Qp) = ∅.
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C. Proof of Lemma 4.4

Before proving Lemma 4.4, we need the following proposition.

Proposition C.1. Consider two distinct hyperplanes

Ti = {x ∈ IRn | αT
i x+ βi = 0}, i = 1, 2. (46)

Assume π(P ) = 1 and Qp is union of two LMI sets, Q+
p and Q−

p . If the conditions

αT
i x+ βi ≥ 0, ∀x ∈ Q+

p , i = 1, 2 (47a)

αT
i x+ βi ≤ 0, ∀x ∈ Q−

p , i = 1, 2 (47b)

are satisfied, then

{x ∈ Qp | α
T
i x+ βi ≥ 0, i = 1, 2} = Q+

p . (48)

Proof. Suppose that (48) does not hold true. Then, there exists a point y ∈ Q−
p \Q+

p

which is an element of the set appearing on the left-hand side of (48). Hence, taking
into account (47b), one can infer that αT

i y+βi = 0, i = 1, 2. This implies y /∈ int(Qp).
Otherwise, at least one of (47a) and (47b) is violated. Hence, one can see that y ∈ Zp.
Without loss of generality, assume that the coordinate system is translated so that
p(x) = c+ xTAx ≥ 0 as in the proof of Proposition 4.1. The normal of the surface Zp

at y can be found as Ay. When Ay 6= 0, the normal is well-defined and T1 and T2 have
to be tangents of Zp at y. This is because they become supporting hyperplane of Q+

p

or Q−
p at y. However, the tangent is unique, which is a contradiction. Hence, we must

have Ay = 0.

Because y is in the null space of A, it has to be orthogonal to eigenvectors of A. This
means uTy = 0, where u is defined as in (33). Hence, from (33) and (34), y ∈ Q+

p

⋂

Q−
p .

This contradicts the fact that y ∈ Q−
p \ Q+

p , which completes the proof.

Proof of Lemma 4.4. Because there exists a hyperplane supporting U at y, Lemma
4.3 implies that π(P ) = 1. Due to Proposition 4.1, this means Qp is either an LMI
set or a union of two LMI sets having disjoint interiors. If the former holds true, we
simply choose Lp as Qp, which ensures U ⊆ Qp ⊆ Qp = Lp.

Now, consider an arbitrary hyperplane supporting U at a point of B. Using Lemma 4.3
again, we can infer that it does not intersect int(Qp). Because Qp is a convex set
having a nonempty interior, this leads to the fact that the hyperplane supports Lp.
(See Figure C.1.)

Assume Qp is the union of two LMI sets Q+
p and Q−

p . If U is a subset of only one of
these components, the one containing U can be chosen as Lp. The preceding argument
can be directly utilized to show that hyperplanes supporting U along B also supports
Lp. (See Figure C.2.)

In the rest of the proof, we validate our claim when Qp is composed of two components
under the condition U * Q+

p and U * Q−
p . First, we show that if ν(P ) > 1 or we have

an inequality constraint, there exists at most one hyperplane supporting U at points
of B. To this end, assume there are two such distinct hyperplanes given by

Ti = {x ∈ IRn | αT
i x+ βi = 0}, i = 1, 2. (49)
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Q̂p = Qp = Lp

B

S

Zp

U U = B

S

Q̂p = Zp

Qp = Lp

(a) (b)

Figure C.1: Example for Lemma 4.4 with π(P ) = 1 and Qp has a single component.
(a) Inequality constraint, (b) equality constraint.

S

B Q−
p

= Lp

Zp

U

Q+

p

Figure C.2: Example for an inequality constraint in Lemma 4.4, for which π(P ) = 1
and U is a subset of a convex component of Qp

We know from Lemma 4.3 that they cannot intersect the nonempty disjoint sets
int(Q+

p ) and int(Q−
p ) (nonemptiness of these sets is due to Assumption 2.3). More-

over, due to Proposition 4.2, the halfspaces induced by T1 and T2 cannot contain Qp.
Consequently, one can infer that these hyperplanes separate Q+

p and Q−
p . Therefore,

multiplying the equations used in the definition (49) by a negative number if necessary,
one can always guarantee

αT
i x+ βi ≥ 0, ∀x ∈ Q+

p , i = 1, 2
αT
i x+ βi ≤ 0, ∀x ∈ Q−

p , i = 1, 2.
(50)

Based on this fact, in what follows, we show that elements of U must lie on the set
defined by the constraint

(αT
1 x+ β1)(α

T
2 x+ β2) = 0. (51)

In order to see this, assume the contrary. Then, there exists a point y ∈ U for which
αT
i y + βi 6= 0, i = 1, 2. Let’s investigate different possibilities.

• If αT
i y + βi > 0, i = 1, 2, we have

αT
i x+ βi ≥ 0, ∀x ∈ U , i = 1, 2. (52)

Otherwise, there would exist points of U on both sides of one of its supporting
hyperplanes, which is a contradiction. However, due to Proposition C.1, (52)
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S

B

Zp

UU

Q−
p

Q+

p

S

Zp

Q+

p
Q−

p

UB

x ∈ U

(a) (b)

S

Q̂p = Zp

Q+

p Q−

p

U = B

(c)

Figure C.3: An illustration of Lemma 4.4 for π(P ) = 1 and two components under
the condition U * Q+

p , U * Q−
p : (a) for an inequality constraint, U does not have a

supporting halfspace at a point of B, (b) for an inequality constraint, it has a single
supporting halfspace; (c) for an equality constraint, it has two supporting halfspaces

implies U ⊆ Q+
p , which clearly contradicts our hypothesis that U * Q+

p . Hence,
the condition αT

i y + βi > 0, i = 1, 2 cannot be satisfied. Similarly, it can also be
shown that these linear functions cannot be made strictly negative by y.

• If αT
1 y+β1 > 0 and αT

2 y+β2 < 0, then y cannot be an element of Qp due to (50),
which means it is not also an element U . Therefore, these inequalities cannot be
satisfied. Similarly, y cannot satisfy αT

1 y+β1 < 0 and αT
2 y+β2 > 0. As a result,

we have shown that (51) must be satisfied for every element of U .

Now, consider a point x ∈ B. If ν(P ) > 1, Zp exhibits a nonplanar characteristics
around x (i.e., it does not lie on a hyperplane) as opposed to the set defined by
(51). Therefore, this condition cannot be satisfied. If U is defined by an inequality
constraint, its interior is nonempty. Hence, U cannot be a subset of the set induced
by (51). Consequently, we have shown that when ν(P ) > 1 or we have an inequality
constraint, there do not exist two distinct supporting halfspaces T1 and T2, which means
there exists at most one hyperplane supporting U along B. This also shows that there
exists one such halfspace because U does not lie on a hyperplane.

Lastly, let’s consider the case in which π(P ) = ν(P ) = 1 and U is defined by an
equality constraint. For this case, the constraint defining Zp takes the form given in
(51). Hence, Zp becomes the union of two hyperplanes. Because B is smooth, any
hyperplane supporting U at a point of B has to be tangent to Zp. This means there
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exists at most two distinct supporting hyperplanes (hyperplanes of Zp themselves).
This also implies that there exists at most two supporting halfspaces.

When U * Q+
p and U * Q−

p , we have shown that there exists finitely many halfspaces
(at most two) supporting U along B. We choose the intersection of these halfspaces as
Lp when they exist. Conceptual pictures of this case are given in Figure C.3.

For the example depicted in Figure C.3 (a), there does not exist any supporting halfs-
pace. In Figure C.3 (b), an example with one supporting halfspace is given. The last
figure shows a case with two supporting halfspaces.
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