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In this paper we study compact convex sets having the following property: nonempty intersection
of any family of translates of the set is a summand (in the sense of Minkowski) of that set. The
intersection property was introduced by G. T. Sallee [13]. We call such sets Sallee sets. We prove that
some sets other than polytopes and elipsoids, that is wedges, dull wedges (Theorem 2.3) and certain
subsets of the Euclidean ball (Theorem 4.3), possess the intersection property. We also present the
family of all three-dimensional polyhedral sets that have the intersection property (Theorem 3.2). The
family coincides with the family of all three dimensional strongly monotypic polytopes [10], [1].
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1. Introduction

Compact convex sets in R
2 have a very special property: nonempty intersection of

any family of translates of a given set is a summand of that set [14]. In general,
convex sets in R

n, n ≥ 3 do not have such property; consider for example a regular
octahedron and its translate in the direction of one of its edges by half of the length
of it. Interestingly, by [9] this property is shared by all Euclidean balls. Sallee [13]
characterized all centrally symmetric convex polytopes in R

n that have this property
(they are direct sums of segments and centrally symmetric polygons). By the name of
Sallee sets we will call all nonempty compact convex sets in R

n that have that property.
Let X = R

n, and K(X) be the family of all nonempty compact convex subsets of X.
Let Minkowski sum of A, B ∈ K(X) be defined by

A+B = {a+ b | a ∈ A, b ∈ B}.

We also denote k · A = {k · a | a ∈ A} for k ∈ R. We say that a set B ∈ K(X) is
a summand of A ∈ K(X) and we write B ≪ A if there exists C ∈ K(X) such that
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B + C = A. Let
A �−B = {x ∈ X | x+B ⊂ A}

be the Minkowski subtraction of A and B. The following equality

A �−B =
⋂

C⊂B+p

(B + p)

holds true [6], [8], [12]. The Minkowski subtraction is the most natural subtraction
within the cone K(X) of nonempty compact convex sets. This subtraction is surpassed
only by subtraction in Minkowski-R̊adström-Hörmander space [7] after embedding the
cone K(X) in that space. The Minkowski-R̊adström-Hörmander space appears very
useful in studying differences of sublinear functions [15] (DS-functions) and quasidif-
ferential calculus [3], [4]. The set A is a Sallee set if the Minkowski difference A �−B
for any B ∈ K(X) is either empty or a summand of A [2]. Minkowski subtraction was
studied in [8], [12], [10], [11], [6], [2].
For a subset A ⊂ X of a vector space X we denote by

convA =

{

x =
k

∑

i=1

αiai

∣

∣

∣
αi ≥ 0,

k
∑

i=1

αi = 1, ai ∈ A, k ∈ N

}

the convex hull of A.
In this paper we present a class of non-polyhedral sets (wedges and dull wedges) that
are Sallee sets. We also show that three dimensional polytopes which are Sallee sets
coincide with strongly monotypic polytopes. Finally we show that certain segments of
Euclidean ball are Sallee sets.

2. Generalized wedges and dull wedges

Let x = (x1, x2, x3), p1(x) = (x1, x2, 0), p2(x) = (x1, x2, x2), p3(x) = (x1, 0, 0), e =
(0, 0, 1), w ∈ R+.
Let us denote H1 = {x ∈ R

3 | x3 = 0}, H+

1 = {x ∈ R
3 | x3 ≥ 0}, H2 = {x ∈ R

3 |
x3 = x2}, H−

2 = {x ∈ R
3 | x3 ≤ x2}, Hw

2 = {x ∈ R
3 | x2 + w = x3}, Hw−

2 = {x ∈
R

3 | x3 ≤ x2 + w}, H3 = {x ∈ R
3 | x2 = 0}, H+

3 = {x ∈ R
3 | x2 ≥ 0}.

Definitions. We call the set A ∈ K(R3) a wedge in proper position if for any x ∈ A
we have

1) 0 ≤ x3 ≤ x2,

2) p1(x) ∈ A, p2(x) ∈ A, p3(x) ∈ A.

We call the set A
′ ∈ K(R3) a proper base if for any x ∈ A

′

we have

1) 0 = x3 ≤ x2,

2) p3(x) ∈ A
′

.

We call the set A ∈ K(R3) a dull wedge in proper position with the width w > 0 if for
any x ∈ A

1) 0 ≤ x3 ≤ x2 + w,

2) p1(x) ∈ A, p2(x) + we ∈ A, p3(x) ∈ A, p3(x) + we ∈ A.

Let Ax = p−1

3 (p3(x)) ∩ A be the intersection of A and the plane containing x and
perpendicular to the first axis of coordinates. Notice that if A is a wedge in proper
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position or the dull wedge in proper position then p1(A), p2(A) are its bases, p1(A)
is a proper base and p3(A) is its edge. The set Ax is a triangle or, respectively, a
trapezoid. We can describe a wedge as a dull wedge with the width w = 0. We call
the set A ∈ K(R3) a wedge (a dull wedge) if there exists a system of coordinates in R

3

such that A is a wedge (a dull wedge) in proper position.

A

x2

x3

0

A

x2

x1

0

Notice that a polygonal wedge is a wedge with polygonal base. Polygonal wedges and
dull wedges form two out of four types of strongly monotypic polytopes [10]. In general,
the side surface of a wedge (dull wedge) does not have to be a finite union of polygons.
It can be a smooth union of continuum of parallel segments. The following propositions
are quite obvious.

Proposition 2.1. Any proper base A
′

is a base of exactly one wedge in proper position
A (one dull wedge in proper position with the width w). Then A = H+

1 ∩ H−
2 ∩

p−1

1 (A′), (A = H+

1 ∩Hw−
2 ∩ p−1

1 (A′)).

Proposition 2.2. Let A, B be two wedges (two dull wedges with the widths wA, wB)
in proper position. Then the following properties hold true:

(i) A = B if and only if p1(A) = p1(B) (p1(A) = p1(B) and wA = wB);

(ii) A + B is a wedge in proper position (dull wedge in the proper position with the
width wA + wB) and p1(A+B) = p1(A) + p1(B);

(iii) B is a summand of A if and only if p1(B) is a summand of p1(A) (p1(B) is a
summand of p1(A) and wB ≤ wA). Moreover, A �−B is a wedge in proper position
(dull wedge in proper position with the width wA − wB) satisfying p1(A �−B) =
p1(A) �− p1(B).

Theorem 2.3. Let A be a wedge (a dull wedge) in R
3. Then A is a Sallee set.

Proof. We can assume that A is a wedge in proper position. Let B ∈ K(R3) and
A �−B 6= ∅. Since for any x ∈ R

3 one has A �− (B − x) = (A �−B) + x, we may assume
that B ⊂ A, B ∩ p1(B) 6= ∅, B ∩ p2(B) 6= ∅. Denote A

′

= p1(A). By Proposition 2.1,
one has A = H+

1 ∩H−
2 ∩ p−1

1 (A′). Then

A �−B =
⋂

b∈B

(A− b) =
⋂

b∈B

(H+

1 − b) ∩
⋂

b∈B

(H−
2 − b) ∩

⋂

b∈B

(p−1

1 (A′)− b)

= H+

1 ∩H−
2 ∩

⋂

b∈B

(p−1

1 (A′ − p1(b)))

= H+

1 ∩H−
2 ∩ p−1

1 (A′ �− p1(B )).

Notice that A
′ �− p1(B) does not have to be a proper base. However, the set (A

′ �− p1(B))
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∩H+

3 is a proper base and H+

1 ∩ H−
2 ∩ p−1

1 (A′ �− p1(B )) = H +

1 ∩ H −
2 ∩ (p−1

1 (A′ �−
p1(B )) ∩ H +

3
). Hence A �−B is the wedge with the base (A

′ �− p1(B)) ∩ H+

3 . By [14]

this base is a summand of A
′

and by Proposition 2.2(iii) the set A �−B is a summand
of A.

Let A be a dull wedge with the width w in proper position and B ∈ K(R3), B ⊂
A, B ∩H1 6= ∅, B ∩H2 6= ∅. Then

A �−B =
⋂

b∈B

(A− b) =
⋂

b∈B

(H+

1 − b) ∩
⋂

b∈B

(Hw−
2 − b) ∩

⋂

b∈B

(p−1

1 A′ − b)

= H+

1 ∩Hw−
2 ∩

⋂

b∈B

(p−1

1 (A′ − p1(b)))

= H+

1 ∩Hw−
2 ∩ p−1

1 (A
′ �− p1(B )).

Hence A �−B is the wedge in proper position with the base (A
′ �− p1(B )) ∩ H +

3
. Then

A �−B is a summand of A.

At last let A be a dull wedge with the width w in proper position and B ∈ K(R3), B ⊂
A, B ∩ H1 6= ∅, B ∩ H3 6= ∅. Then A �−B = H+

1 ∩ Hv−
2 ∩ p−1

1 (A
′ �− p1(B )) where

v ∈ [0, w]. The base A �−B ∩ H1 is equal to A
′ �− p1(B) because A

′ �− p1(B) ⊂ H+

3 .

Hence the set A �−B is the dull wedge with the width v ≤ w in proper position and

the base equal to A
′ �− p1(B). Therefore, A �−B is a summand of A.

Notice that every three-dimmensional summand of a wedge or a dull wedge is a wedge
or a dull wedge. Hence such a summand is a Sallee set.

Remarks. 1. A pair of wedges in proper position (one of them can be a dull wedge)
is minimal if and only if the pair of their bases is minimal. (For the properties of pairs
of compact convex sets see [11]).

2. The pair (A, B) of dull wedges with the widths wA, wB in proper position is equiv-
alent to the other pair (C, D) of dull wedges in proper position if and only if the pairs
(A

′

, B′), (C
′

, D′) of their bases are equivalent and wA + wD = wB + wC .

3. Any two equivalent minimal pairs of wedges in proper position are translates of each
other.

4. Theorem 2.3 can be generalized to higher dimensions in the following way: Let
n ≥ 3 and S be an n − 2 dimensional simplex in R

n−2. We call the set A ∈ K(Rn)
a wedge in proper position if for any x = (x1, . . . , xn) ∈ A and y ∈ [0, x2] the point
y = (x1, y2, y3, . . . , yn) belongs to A if and only if (y3, . . . , yn) ∈ y2 · S. Then A is a
Sallee set.

3. Three-dimensional polyhedral Sallee sets.

First, we prove that skew cubes in R
3 are Sallee sets. We denote Hi = {x ∈ R

3 | xi =
0}, H+

i = {x ∈ R
3 | xi ≥ 0}, Hw

i = {x ∈ R
3 | xi = 1 + w · xi+1}, Hw−

i = {x ∈ R
3 |

xi ≤ 1 + w · xi+1}, i = 1, 2, 3.

Definition. We say that a polytope A is a skew cube in proper position if A = H+

1 ∩
H+

2 ∩H+

3 ∩Hu−
1 ∩Hv−

2 ∩Hw−
3 for some u > 0, v > 0, w > 0.



D. Borowska, J. Grzybowski / The Intersection Property in the Family of ... 177

Notice that the intersection of these six halfspaces is a polytope if and only if uvw < 1.
We also observe that a polytope is a skew cube if and only if it is a skew cube in proper
position in some system of coordinates.

Theorem 3.1. Let A be a skew cube. Then A is a Sallee set.

Proof. Let B ∈ K(R3) and A �−B 6= ∅. Then

A �−B = (H+

1
�−B) ∩ (H+

2
�−B) ∩ (H+

3
�−B)

∩ (Hu−
1

�−B) ∩ (Hv−
2

�−B) ∩ (Hw−
3

�−B)

where (H+

1
�−B), . . . , (Hw−

3
�−B) are halfspaces determined by a planes parallel to

H1, H2, H3, H
u
1 , H

v
2 , H

w
3 . Then A �−B is a polytope with maximum six facets, all

of them parallel to facets of A. Notice that the edges of A contained in H1 ∩H2 and
H2 ∩ Hu

1 are parallel and the angle between the facets of A containing the first edge
is the right angle and the angle between the facets of A containing the second edge
is greather that the right angle. Similar facts hold true for edges of A contained in
H2∩H3 and H3∩Hv

2 and H3∩H1 and H1∩Hw
3 . Therefore, all possible edges of A �−B

are coparallel to the edges of A. Each facet of A �−B is contained in some translate of
the parallel facet of A. Consider any given edge k of A �−B. The edge k is contained
in two facets F1, F2 of A �−B. Then k is contained in translates of two facets of A. An
edge of A parallel to k dominates one of these facets. A side k dominates polygon P if
and only if the sum of two angles of P adjacent to k is not greater than 180o. Hence
k cannot be longer than coparallel edge of A. Therefore by Theorem 3.2.8, p. 148 in
[14] the set A �−B is a summand of A.

Notice that a summand of a skew cube is a skew cube or a quadrilateral wedge or a
simplex or a singleton, hence it is a Sallee set.

Theorem 3.2. A three-dimensional polytope A is a Sallee set if and only if A is one
of four types of polytopes:

(i) polygonal dull wedge

(ii) polygonal prism

(iii) polygonal wedge

(iv) skew cube.
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Figure 3.1: Four types of Sallee polytopes in R
3

Proof. By [10] we know that all three-dimensional polyhedral Sallee sets are strongly
monotypic and the family of all strongly monotypic polytopes in R

3 consists of four
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types of polytopes [10], [1]; namely, polygonal prisms, polygonal wedges, polygonal dull
wedges, skew cubes. Then it is enough to show that any set belonging to any one of
these four types is a Sallee set.

First, polygonal prism is a direct sum of two Sallee sets and by [2] it is a Sallee set
itself. Polygonal wedges and dull wedges are Sallee sets due to Theorem 2.3. Skew
cubes are Sallee sets by Theorem 3.1.

4. Parts of the ball and other non-polyhedral sets

Theorem 2.3 gives us a broad class of non-polyhedral Sallee sets in R
3. In this section

we show some other non-polyhedral Sallee sets being parts of the ball. We also give
some examples of non-polyhedral sets not being Sallee sets in R

3. By A∨B we denote
the convex hull of A ∪B.

Lemma 4.1. Let H be the hyperplane H = {x ∈ R
n | xn = 0}, H+ be the halfspace

{x ∈ R
n, xn ≥ 0} and T : R

n → R
n be the isometry T (x) = (x1, x2, . . . , xn−1, −xn}.

If A, B ∈ K(Rn), T (A) = A, T (B) = B, then

A ∩H+ +B ∩H+ = (A+B) ∩H+.

Proof. Let a ∈ A i b ∈ B, an + bn ≥ 0. If a /∈ H+ then denote a
′

= (a1, . . . , an−1, 0),
b
′

= (b1, . . . , bn−1, an+bn). Both a
′

and b′ belong to H+. Notice that a
′ ∈ a∨T (a) ⊂ A,

b
′ ∈ b ∨ T (b) ⊂ B. Then a + b = a′ + b′ ∈ A ∩ H+ + B ∩ H+. The case of b /∈ H+

is similar. Therefore (A + B) ∩ H+ ⊂ A ∩ H+ + B ∩ H+. The reverse inclusion is
obvious.

Lemma 4.2. Let A ∈ K(Rn) and T (A) = A. If B ∈ K(Rn), B ⊂ A ∩ H+ and
B ∩H 6= ∅, then

A ∩H+ �−B = (A �− (B ∨ TB)) ∩H+.

Proof. Let x+B ⊂ A∩H+. Since x+B ⊂ H+ then xn ≥ 0. We have Tx+TB ⊂ A.
Since x+ Tb ⊂ (x+ b)∨ (Tx+ Tb) for all b ∈ B then x+ TB ⊂ (x+B)∨ (Tx+ TB).
Therefore, x + (B ∨ TB) ⊂ A. Hence x ∈ (A �− (B ∨ TB)) ∩H+. On the other hand,
if x+ (B ∨ TB) ⊂ A and x ∈ H+, then x+B ⊂ A and by the fact that B ⊂ H+ also
x+B ⊂ H+. Therefore, x+B ⊂ A ∩H+.

Theorem 4.3. Let A be a Sallee set in R
n which is symmetric with respect to hyper-

plane H. Then half of the set A, namely A ∩H+, cut by H, is a Sallee set.

Proof. Let T be the isometry in R
n such that Tx = x if and only if x ∈ H. Let

B ∈ K(Rn) and A ∩H+ �−B 6= ∅. We can assume that B ⊂ A ∩H+. Since T (A) = A
we have TB ⊂ A∩H− and for some x ∈ R

n, x+B ⊂ A∩H+ and (x+B)∩H 6= ∅. Hence
replacing x+B with B we can assume that the assumptions of Lemma 4.2 are fulfilled.
Then A∩H+ �−B = (A �− (B∨TB))∩H+. Since A is a Sallee set there exists C ∈ K(Rn)
such that (A �− (B ∨ TB)) + C = A. Since T (A) = A and T (B ∨ TB) = B ∨ TB then
T (A �− (B ∨ TB)) = A �− (B ∨ TB) and T (C) = C. By Lemma 4.1 we conclude that
(A ∩H+ �−B) + C ∩H+ = (A �− (B ∨ TB)) ∩H+ + C ∩H+ = A ∩H+.



D. Borowska, J. Grzybowski / The Intersection Property in the Family of ... 179

Theorem 4.3 applied to Sallee polytopes will not give us additional types of polytopes.
Half of dull wedge is a dull wedge. The same is true of prisms and wedges. And skew
cubes are symmetric with respect to no plane. However, we can apply Theorem 4.3 to
the Euclidean ball.

Corollary. Let B
n be the unit ball in R

n. Let H+

i be the halfspace {x ∈ R
n, xi ≥

0}, i = 1, 2, . . . , n and H+

k be the halfspace {x ∈ R
n | xn ≤ x1 · tg(2−k · π)} where

k is an integer and k ≥ 2. Then the sets Am = B
n ∩ ⋂

i∈I H
+

i , m = 1, . . . , n and

Am,k = B
n ∩ H+

k ∩⋂

i∈I H
+

i , m = 1, . . . , n− 1 are Sallee sets.

Proof. Applying Theorem 4.3 to the ball we obtain that half of the ball is a Sallee
set in R

n. Applying Theorem 4.3 repeatedly, we obtain that a quarter of the ball, one
eighth of the ball, etc. are Sallee sets.

In the following example we give non polyhedral sets that are not Sallee sets.

Examples. 1. Let A = {x ∈ B
n | x1 ≥ α}, n ≥ 3, where −1 < α < 0. Let

u = {−α, 1, 0, . . . , 0}. Denote B = A ∩ (A + u). Let f(x) = −x1. Then HfA = {x ∈
R

n | x1 = α, x2
2 + . . . + x2

n ≤
√
1− α2}, HfB = {x ∈ R

n | x1 = 0, x2
2 + . . . + x2

n ≤
1, (x2 − 1)2 + x2

3 + . . .+ x2
n ≤

√
1− α2}. Notice that HfB is not a summand of HfA.

Therefore B is not a summand of A and A is not a Sallee set. Hence north part of the
ball cut by the plane containing any southern parallel is not a Sallee set.

HfA HfB

2. Let A = {x ∈ B
n | x1 ≥ 0, x2 ≥ −α · x1}, n ≥ 3, α > 0. Let u =

(

1√
1+α2

,− α√
1+α2

, 0, . . . , 0
)

∈ R
n. Denote B = A ∩ (A+ u). Then

HfA = {x ∈ R
n | x1 = 0, x2 ≥ 0, x2

2 + . . .+ x2

n ≤ 1}

andHfB=
{

x ∈ R
n | x1 =

1√
1+α2

, x2
2+. . .+x2

n ≤ α2

1+α2 ,
(

x2− α√
1+α2

)2
+x2

3+. . .+x2
n ≤ 1

}

.

If α ≤
√
3 then HfB is an (n − 1)-dimensional ball, if α >

√
3 then HfB is an

intersection of two balls. In either case HfB is not a summand of HfA which is a
halfball. Therefore, A is not a Sallee set. Consider convex part of the ball cut by two
halfplanes containing different meridians. If the angle between the two hyperplanes is
greater than 90 degrees and less than 180 degrees then the part of ball is not a Sallee
set.
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HfA

HfB

α >
√
3

HfA

HfB

α <
√
3

3. The union of cylinder and two halfballs (or Minkowski sum of a ball and a segment)
is not a Sallee set.

4. Let T be a Reuleaux triangle (see [5], p. 122, [16]) with the width equal to 2 lying
on the plane y = 0 in R

3. Let 0 be the center of this triangle and let one of its verticles
lie on the positive halfaxis OZ. Let A be the set created by rotating the triangle T
around the axis OZ. Then A is a set of constant width. The set A is not a Sallee set.

5. Let A ⊂ R
3 be the set of constant width 2

√
2 containing the verticles a =

(1, 1, 1), b = (1, −1, −1), c = (−1, 1, −1), d = (−1, −1, 1) described in [16], p.
88 (three dimensional generalization of the Reuleaux triangle). The set A is not a
Sallee set.

References

[1] D. Borowska, J. Grzybowski: Strongly monotypic polytopes in R
3, Demonstr. Math.

41(1) (2008) 165–169.
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