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This article develops dual variational formulations for the two dimensional equations of the nonlinear
elastic Kirchhoff-Love plate model. The first duality principle presented is the classical one and may
be found in similar format in Telega, [10], Gao, [7]. It is worth noting that such results are valid
only for positive definite membrane forces, however, we obtain new dual variational formulations
which relax or even remove such constraints. Among our results we have a convex dual variational
formulation which allows non positive definite membrane forces. In the last section, similarly to the
Triality criterion introduced in Gao, [9], we obtain sufficient conditions of optimality for the present
case. Finally, the results are based on fundamental tools of Convex Analysis and also relevant for the
developed theory is the concept of Legendre Transform, which can easily be analytically expressed for
the mentioned model.

1. Introduction

The main objective of the present article is to develop systematic approaches for ob-
taining dual variational formulations for systems originally modeled by non-linear dif-
ferential equations.

Duality for linear systems is well established and is the main subject of classical Convex
Analysis, considering that in case of linearity, both primal and dual formulations are
generally convex. In case of non-linear differential equations, some complications occur
and the standard models of duality for convex analysis must be modified and extended.

Particularly in the case of Kirchhoff-Love plate model, it is present a non-linearity
concerning the strain tensor (that is, a geometric non-linearity). To apply the classical
results of convex analysis and obtain the complementary formulation is possible only
for a special class of external load (which leads to non-compressed plates, please see
Telega, [10], Gao, [7] and other references therein).

Now we pass to describe the primal formulation and related duality principles. For a
plate of middle surface represented by an open bounded set S ⊂ R

2, whose boundary is
denoted by Γ, subjected to a load to be specified, we denote by uα : S → R (α = 1, 2)
the displacements on the horizontal plane and by w : S → R, the vertical displacement
field, so that the boundary value form of the Kirchhoff-Love model can be expressed
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by the equations:
{

Nαβ,β = 0,

Qα,α +Mαβ,αβ + P = 0, a.e. in S
(1)

and














Nαβ.nβ − P̄α = 0,

(Qα +Mαβ,β)nα +
∂(Mαβtαnβ)

∂s
− P̄ = 0,

Mαβnαnβ −Mn = 0, on Γt,

(2)

where:
Nαβ = Hαβλµγλµ,

Mαβ = hαβλµκλµ

and

γαβ(u) =
1

2
(uα,β + uβ,α + w,αw,β)

καβ(u) = −w,αβ,

with the boundary conditions

uα = w =
∂w

∂n
= 0, on Γu.

Here, {Nαβ} denote the membrane forces, {Mαβ} denote the moments and {Qα} =
{Nαβw,β} stand for functions related to the rotation work of membrane forces, P ∈
L2(S) is a field of vertical distributed forces applied on S, (P̄α, P̄ ) ∈ (L2(Γt))

3 denote
forces applied to Γt concerning the horizontal directions defined by α = 1, 2 and vertical
direction respectively, and Mn are distributed moments applied also to Γt, where Γ is
such that Γu ⊂ Γ, Γ = Γu ∪ Γt and Γu ∩ Γt = ∅. Finally, the matrices {Hαβλµ} and
{hαβλµ} are related to the coefficients of Hooke’s Law.

The correspondening primal variational formulation to this boundary value model is
represented by the functional J : U → R, where:

J(u) =
1

2

∫

S

HαβλµγαβγλµdS +
1

2

∫

S

hαβλµκαβκλµdS

−

∫

S

PwdS −

∫

Γt

(

P̄w + P̄αuα −Mn

∂w

∂n

)

dΓ

and

U =

{

(uα, w) ∈ W 1,2(S)×W 1,2(S)×W 2,2(S), uα = w =
∂w

∂n
= 0 on Γu

}

.

The first duality principle presented is the Classical one (again we mention the earlier
similar results in Telega, [10], Gao, [7]), and is obtained by applying a little change
of Rockafellar’s approach for convex analysis. We claim to have developed a slightly
different proof from the one found in [10], now by using the definition of Legendre
Transform and related properties. Such a result may be summarized as:

inf
u∈U

{J(u)} = sup
v∗∈A∗∩C∗

{−G∗
L(v

∗)}. (3)
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The dual functional, denoted by −G∗
L : A∗ ∩ C∗ → R̄ is expressed as:

G∗
L(v

∗) =

{

1

2

∫

S

H̄αβλµNαβNλµdS +
1

2

∫

S

h̄αβλµMαβMλµdS +
1

2

∫

S

N̄αβQαQβdS

}

,

where C∗ is defined by equations (1) and (2) and,

A∗ =
{

v∗ ∈ Y ∗| N11 > 0, N22 > 0, and N11N22 −N2
12 > 0, a.e. in S

}

, (4)

here v∗ = {Nαβ,Mαβ, Qα} ∈ Y ∗ = L2(S;R10) ≡ L2(S).

Therefore, as the functionalG∗
L(v

∗) is convex inA∗, the duality is perfect if the optimum
solution for the primal formulation satisfies the constraints indicated in (4), however it
is important to emphasize that such constraints imply no compression along the plate.

For the second and third principles, we highlight that our dual formulations remove or
relax the constraints concerning the external load, and are valid even for compressed
plates.

Still for these two principles, we use a theorem (Toland, [12]) which does not require
convexity of primal functionals. Such a result can be summarized as:

inf
u∈U

{G(u)− F (u)} = inf
u∗∈U∗

{F ∗(u∗)−G∗(u∗)}.

Here G : U → R and F : U → R and, F ∗ : U∗ → R and G∗ : U∗ → R denote the
primal and dual functionals respectively.

Particularly for the second principle, we modify the above result by applying it to a
not one to one relation between primal and dual variables, obtaining the final duality
principle expressed as follows:

inf
(u,p)∈U×Y

{JK(u, p)} ≤ inf
(u,v∗)∈U×Y ∗

{J∗
K(u, v

∗)}

where:

JK(u, p) = G(Λu+ p)− F (u) +
K

2
〈p, p〉

L
2(S)

and

J∗
K(u, v

∗) = F ∗(Λ∗v∗)−GL(v
∗) +K

∥

∥

∥

∥

Λu−
∂g∗L(v

∗)

∂y∗

∥

∥

∥

∥

2

L
2(S)

+
1

2K
〈v∗, v∗〉

L
2(S) .

Here K ∈ R is a positive constant and we are particularly concerned with the fact
that (even though we do not prove it in the present article, postponing a more rigorous
analysis concerning the behavior of uK below indicated as K → +∞, for a future work)

JK(uK , pK) → J(u0), as K → +∞

and
J∗
K(uK , v

∗
K) → J(u0), as K → +∞

where
JK(uK , pK) = inf

(u,p)∈U×Y
{JK(u, p)},



134 F. Botelho / Dual Variational Formulations for a Non-Linear Model of Plates

J∗
K(uK , v

∗
K) = inf

(u,v∗)∈U×Y ∗

{J∗
K(u, v

∗)}

and
J(u0) = inf

u∈U
{J(u) = G(Λu)− F (u)}.

Specifically for the third duality principle, the dual variables must satisfy the following
constraints:

N11 +K > 0, N22 +K > 0 and (N11 +K)(N22 +K)−N2
12 > 0, a.e. in S. (5)

Such a principle may be summarized by the following result:

inf
u∈U

{G(Λu)− F (Λ1u)− 〈u, p〉U} ≤ inf
z∗∈Y ∗

{

sup
v∗∈B∗(z∗)

{F ∗(z∗)−G∗
L(v

∗)}

}

where:
B∗(z∗) = {v∗ ∈ Y ∗ | Λ∗v∗ − Λ∗

1z
∗ − p = 0}.

Therefore the constant K > 0 must be chosen so that the optimum point concerning
the primal formulation satisfies the constraints indicated in (5) (because these relations
also define an enlarged region in which the the analytical expression of the functional
G∗

L : Y ∗ → R is convex, so that, in this case, negative membrane forces are allowed).

In Section 8, we present a convex dual variational formulation which may be expressed
through the following duality principle:

inf
u∈U

{J(u)} = sup
(v∗,z∗)∈E∗∩B∗

{−G∗(v∗) + 〈z∗α, z
∗
α〉L2(S)/(2K)}

where,

G∗(v∗) = G∗
L(v

∗)

=
1

2

∫

S

H̄αβλµNαβNλµdS +
1

2

∫

S

h̄αβλµMαβMλµdS +
1

2

∫

S

N̄K
αβQ,αQ,βdS

if v∗ ∈ E∗, where v∗ = {{Nαβ}, {Mαβ}, {Qα}} ∈ E∗ ⇔ v∗ ∈ L2(S;R10) and

N11 +K > 0 N22 +K > 0 and (N11 +K)(N22 +K)−N2
12 > 0, a.e. in S,

where
{

N̄K
αβ

}

=

{

N11 +K N12

N12 N22 +K

}−1

(6)

and

(v∗, z∗) ∈ B∗ ⇔



















Nαβ,β + Pα = 0,

Qα,α +Mαβ,αβ − z∗α,α + P = 0,

h̄1212M12 + z∗1,2/K = 0,

z∗1,2 = z∗2,1, a.e. in S, and, z∗ = θ on Γ.

Here we are supposing the existence of u0 ∈ U such that δJ(u0) = θ, and so that there
exists K > 0 for which N11(u0) +K > 0, N22(u0) +K > 0, (N11(u0) +K)(N22(u0) +
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K) − N12(u0)
2 > 0 (a.e. in S) and h1212/(2K0) > K where K0 is the constant related

to Poincaré Inequality and,

Nαβ(u0) = Hαβλµγλµ(u0).

Finally, in the last section, we prove a result similar to those obtained through the
Triality criterion introduced in Gao, [9], and establish sufficient conditions for the exis-
tence of a minimizer for the primal formulation. Such conditions may be summarized
by δJ(u0) = θ and

1

2

∫

S

Nαβ(u0)w,αw,βdS +
1

2

∫

S

hαβλµw,αβw,λµdS ≥ 0, ∀w ∈ W 2,2
0 (S). �

For this last result, we claim just the proof we give to be new, the statement of results
themselves follows Gao, [9].

2. Preliminaries

We denote by U and Y Banach spaces which the topological dual spaces are identified
with U∗ and Y ∗ respectively. The Canonical duality pairing between U and U∗ is
denoted by 〈., .〉U : U × U∗ → R, through which the continuous linear functionals on
U are represented.

Let us now recall that, given F : U → R̄ = R∪{+∞} its Fenchel conjugate F ∗ : U∗ → R̄

is defined as:

F ∗(u∗) = sup
u∈U

{〈u, u∗〉U − F (u)}, ∀u∗ ∈ U∗.

Recall also that the Fenchel sub-differential ∂F (u) is the subset of U∗ given by

∂F (u) = {u∗ ∈ U∗, such that 〈v − u, u∗〉U + F (u) ≤ F (v), ∀v ∈ U}.

The two next definitions are also relevant.

Definition 2.1 (Gateaux Differentiability). A functional F : U → R̄ is said to be
Gateaux differentiable at u ∈ U if there exists u∗ ∈ U∗ such that:

lim
λ→0

F (u+ λh)− F (u)

λ
= 〈h, u∗〉U , ∀h ∈ U.

The vector u∗ is said to be the Gateaux derivative of F : U → R at u and may be
denoted as follows:

u∗ =
∂F (u)

∂u
or u∗ = δF (u).

Definition 2.2 (Adjoint Operator). Let U and Y be Banach spaces and Λ : U → Y
a continuous linear operator. The Adjoint Operator related to Λ, denoted by Λ∗ : Y ∗ →
U∗ is defined through the equation:

〈u,Λ∗v∗〉U = 〈Λu, v∗〉Y , ∀u ∈ U, v∗ ∈ Y ∗. (7)
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The next results are concerned with the representation of the polar functional. Their
demonstrations can also be met in [6].

Recall that given an open subset S ⊂ R
n, g : S × R

l → R is a Carathéodory mapping
whenever:

∀ξ ∈ R
l, x 7→ g(x, ξ) is a measurable function,

and
for almost all x ∈ S, ξ 7→ g(x, ξ) is a continuous function.

For the proposition below indicated we consider the particular case U = U∗ = [L2(S)]l

(this is a especial situation concerning the more general hypothesis presented in [6]).

Proposition 2.3. For U = U∗ = [L2(S)]l, consider g(x, ξ) a Carathéodory mapping
as above indicated and the functional G : U → R, given by G(u) =

∫

S
g(x, u(x))dS.

Thus, we may express G∗ : U∗ → R̄ as:

G∗(u∗) =

∫

S

g∗(x, u∗(x))dS,

where g∗(x, y) = supη∈Rl(y.η − g(x, η)), almost everywhere in S.

For non-convex functionals may be sometimes difficult to express analytically condi-
tions for a global extremum. This fact motivates the definition of Legendre Transform,
which is established through a local extremum.

Definition 2.4 (Legendre’s Transform and Associated Functional). Consider
a differentiable function g : Rn → R, its Legendre Transform, denoted by g∗L : Rn

L → R

is expressed as:
g∗L(y

∗) = x0i .y
∗
i − g(x0),

where x0 is solution of the system:

y∗i =
∂g(x0)

∂xi

, (8)

and Rn
L = {y∗ ∈ R

n such that equation (8) has a unique solution}.

Furthermore, considering the functional G : Y → R defined as G(v) =
∫

S
g(v)dS, we

define the Associated Legendre Transform Functional, denoted by G∗
L : Y ∗

L → R as:

G∗
L(v

∗) =

∫

S

g∗L(v
∗)dS,

where Y ∗
L = {v∗ ∈ Y ∗ | v∗(x) ∈ Rn

L, a.e. in S}.

About the Legendre Transform, we have the following well known result, connecting
the local extremals of primal and dual formulations.

Theorem 2.5. Consider the functional J : U → R̄ defined as J(u) = (G ◦ Λ)(u) −
〈u, f〉U where Λ(= {Λi}) : U → Y (i ∈ {1, ..., n}) is a continuous linear operator and,
G : Y → R is a functional that can be expressed as G(v) =

∫

S
g(v)dS, ∀v ∈ Y (here

g : Rn → R is a differentiable function that admits differentiable Legendre Transform
denoted by g∗L : Rn

L → R).
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Under these assumptions we have:

δJ(u0) = θ ⇔ δ(−G∗
L(v

∗
0) + 〈u0,Λ

∗v∗0 − f〉U) = θ,

where v∗0 = ∂G(Λ(u0))
∂v

is supposed to be such that: v∗0(x) ∈ Rn
L, a.e. in S and in this

case:
J(u0) = −G∗

L(v
∗
0).

We now present the fundamental duality principle met at reference [6] and of great
interest for the calculus of variations:

Theorem 2.6. Let G : Y → R̄ and F : U → R be two convex l.s.c. (lower semi-
continuous) functionals so that J : U → R̄ defined as:

J(u) = (G ◦ Λ)(u) + F (u)

is bounded from below, where Λ : U → Y is a continuous linear operator which the
respective adjoint is denoted by Λ∗ : Y ∗ → U∗. Thus, if there exists u ∈ U such that
F (u) < +∞, G(Λu) < +∞, being G continuous at Λu, we have:

inf
u∈U

{J(u)} = sup
v∗∈Y ∗

{−G∗(v∗)− F ∗(−Λ∗v∗)}

and there exist at least one v∗0 ∈ Y ∗ which maximizes the dual formulation. If in
addition U is reflexive and

lim
||u||→+∞

J(u) = +∞

then both primal and dual formulations have global extremals so that, there exist u0 ∈ U
and v∗0 ∈ Y ∗ such that

J(u0) = min
u∈U

{J(u)} = max
v∗∈Y ∗

{−G∗(v∗)− F ∗(−Λ∗v∗)} = −G∗(v∗0)− F ∗(−Λ∗v∗0)

and also
G(Λu0) +G∗(v∗0) = 〈Λu0, v

∗
0〉Y ,

F (u0) + F ∗(−Λ∗v∗0) = 〈u0,−Λ∗v∗0〉U ,

so that
G(Λu0) + F (u0) = −G∗(v∗0)− F ∗(−Λ∗v∗0).

We are now ready to enunciate the result of Toland, [12], through which will be con-
structed the three last duality principles.

Theorem 2.7. Let J : U −→ R be a functional defined as J(u) = G(u) − F (u),
∀u ∈ U , where there exists u0 ∈ U such that J(u0) = infu∈U{J(u)} and ∂F (u0) 6= ∅,
then

inf
u∈U

{G(u)− F (u)} = inf
u∗∈U∗

{F ∗(u∗)−G∗(u∗)}

and for u∗
0 ∈ ∂F (u0) we have,

F ∗(u∗
0)−G∗(u∗

0) = inf
u∗∈U∗

{F ∗(u∗)−G∗(u∗)}.

Observe that along the proof it is clear that u∗
0 ∈ ∂G(u0).
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3. The Primal Variational Formulation

Let S ⊂ R
2 be an open bounded set (with a boundary denoted by Γ) which represents

the middle surface of a plate of thickness h. The vectorial basis related to the Cartesian
system {x1, x2, x3} is denoted by (aα, a3), where α = 1, 2 (in general Greek indices stand
for 1 or 2), a3 denotes the vector normal to S and t is the vector tangent to Γ and n
is the outer normal to S. The displacements will be denoted by:

u = {uα, u3} = uαaα + u3a3,

The Kirchhoff-Love relations are:

uα(x1, x2, x3) = uα(x1, x2)− x3w(x1, x2),α and u3(x1, x2, x3) = w(x1, x2),

where −h/2 ≤ x3 ≤ h/2 so that we have u = (uα, w) ∈ U where

U =

{

(uα, w) ∈ W 1,2(S)×W 1,2(S)×W 2,2(S), uα = w =
∂w

∂n
= 0 on Γu

}

.

Observe that Γu ⊂ Γ, Γ = Γu ∪Γt and Γu ∩Γt = ∅. The strain tensors are denoted by:

γαβ(u) =
1

2
[Λ1αβ(u) + Λ2α(u)Λ2β(u)] (9)

and
καβ(u) = Λ3αβ(u) (10)

where: Λ = {{Λ1αβ}, {Λ2α}, {Λ3αβ}} : U → Y = Y ∗ = L2(S;R10) ≡ L2(S) is defined
by:

Λ1αβ(u) = uα,β + uβ,α, (11)

Λ2α(u) = w,α (12)

and
Λ3αβ(u) = −w,αβ. (13)

The constitutive relations are expressed as:

Nαβ = Hαβλµγλµ, (14)

Mαβ = hαβλµκλµ (15)

where: {Hαβλµ} and {hαβλµ = h2

12
Hαβλµ}, are positive definite matrices and such that

Hαβλµ = Hαβµλ = Hβαλµ = Hβαµλ. Furthermore {Nαβ} denote the membrane forces
and {Mαβ} the moments. The plate stored energy, denoted by (G ◦ Λ) : U → R is
expressed as:

(G ◦ Λ)(u) =
1

2

∫

S

NαβγαβdS +
1

2

∫

S

MαβκαβdS (16)

and the external work, denoted as F : U → R, is given by:

F (u) =

∫

S

PwdS +

∫

Γt

(

P̄w + P̄αuα −Mn

∂w

∂n

)

dΓ, (17)
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where P denotes a vertical distributed load applied in S and P̄ , P̄α are forces applied
on Γt ⊂ Γ related to directions defined by a3 and aα respectively, and, Mn denote
moments also applied on Γt. The potential energy, denoted by J : U → R is expressed
as:

J(u) = (G ◦ Λ)(u)− F (u).

It is important to emphasize that conditions for the existence of a minimizer (here
denoted by u0) related to G(Λu) − F (u) were presented in Ciarlet, [3]. Such u0 ∈ U
satisfies the equation:

δ(G(Λu0)− F (u0)) = θ

and we should expect at least one minimizer if ||P̄α||L2(Γt) is small enough and m(Γu) >
0 (here m stands for the Lebesgue measure) and with no restrictions concerning the
magnitude of ||Pα||L2(S) if m(Γ) = m(Γu), so that in the latter case, we consider a field
of distributed forces {Pα} applied on S.

Some inequalities of Sobolev type are necessary to prove the above result, and in this
work we assume some regularity hypothesis concerning S and its boundary, namely:
beyond S be open and bounded, also it is supposed to be connected with a Lipschitz
continuous boundary Γ, and so that S is locally on one side of Γ.

The formal proof of existence of a minimizer for J(u) = G(Λu) − F (u) is obtained
through the Direct Method of Calculus of variations. We do not repeat this procedure
here, we just refer to Ciarlet, [3] for details.

4. The Legendre Transform

In this section it will be determined the Legendre Transform related to the function
g : R10 → R where:

g(y) =
1

2
Hαβλµ[(y1αβ +y1βα+y2αy2β)/2][(y1λµ+y1µλ+y2λy2µ)/2]+

1

2
hαβλµy3αβy3λµ (18)

and we recall that

G(Λu) =

∫

S

g(Λu)dS.

From Definition 2.4 we may write:

g∗L(y
∗) = 〈y0, y

∗〉R10 − g(y0)

where y0 is the unique solution of the system:

y∗i =
∂g(y0)

∂yi

which for the above function g, implies:

y∗1αβ = Hαβλµ(y1λµ + y2λy2µ/2)

y∗2α = Hαβλµ(y1λµ ,+y2λy2µ/2)y2β = y∗1αβy2β ,

and
y∗3αβ = hαβλµy3λµ ,
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so that inverting this system we obtain:

y021 = (y∗122 .y
∗
21 − y∗112 .y

∗
22)/∆,

y022 = (−y∗112 .y
∗
21 + y∗111 .y

∗
22)/∆,

and
y01αβ = H̄αβλµy

∗
1λµ − y02α .y02β/2

where ∆ = y∗111y
∗
122 − (y∗112)

2 (we recall that y∗112 = y∗121 , as a result of the symmetries
of {Hαβλµ}), and,

{H̄αβλµ} = {Hαβλµ}
−1.

By analogy:
y03αβ = h̄αβλµv

∗
3λµ

where:
{h̄αβλµ} = {hαβλµ}

−1.

Thus we can define the set Rn
L, concerning Definition 2.4 as

Rn
L = {y∗ ∈ R

10 | ∆ 6= 0}. (19)

After some simple algebraic manipulations we obtain the expression for g∗L : Rn
L → R,

that is:

g∗L(y
∗) =

1

2
H̄αβλµy

∗
1αβy

∗
1λµdS +

1

2
h̄αβλµy

∗
3αβy

∗
3λµdS +

1

2
y∗1αβy02αy02βdS (20)

and, also from Definition 2.4, we have

Y ∗
L = {v∗ ∈ Y ∗ = L2(S;R10) ≡ L2(S) | v∗(x) ∈ Rn

L a.e. in S}

so that G∗
L : Y ∗

L → R may be expressed as

G∗
L(v

∗) =

∫

S

g∗L(v
∗)dS

or, from (20):

G∗
L(v

∗) =
1

2

∫

S

H̄αβλµv
∗
1αβv

∗
1λµdS +

1

2

∫

S

h̄αβλµv
∗
3αβv

∗
3λµdS +

1

2

∫

S

v∗1αβv02αv02βdS. �

Changing the notation, as below indicated,

v∗1αβ = Nαβ, v∗2α = Qα = v∗1αβv02β = Nαβv02β , v∗3αβ = Mαβ

we could express G∗
L : Y ∗

L → R as

G∗
L(v

∗) =
1

2

∫

S

H̄αβλµNαβNλµdS +
1

2

∫

S

h̄αβλµMαβMλµdS +
1

2

∫

S

N̄αβQαQβdS,

where
N̄αβ = {Nαβ}

−1.
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Remark 4.1. Also we can use the transformation

Qα = Nαβw,β

and obtain:

G∗
L(v

∗) =
1

2

∫

S

H̄αβλµNαβNλµdS +
1

2

∫

S

h̄αβλµMαβMλµdS +
1

2

∫

S

Nαβw,αw,βdS.

The term denoted by Gp : Y
∗ × U → R and expressed as

Gp(v
∗, w) =

1

2

∫

S

Nαβw,αw,βdS

is known as the Gap Function.

5. The Classical Dual Formulation

In this section we establish the dual variational formulation in the classical sense.

We recall that J : U → R is expressed by

J(u) = (G ◦ Λ)(u)− F (u),

where (G ◦ Λ) : U → R and F : U → R were defined by equations (16) and (17)
respectively. It is known and easy to see that

inf
u∈U

{G(Λu) + F (u)} ≥ sup
v∗∈Y ∗

{−G∗(v∗)− F ∗(−Λ∗v∗)}. (21)

Now we prove a result concerning the representation of polar functional, namely:

Proposition 5.1. Considering the earlier definitions and assumptions on G : Y → R,
expressed by G(v) =

∫

S
g(v)dS, where g : R10 → R is indicated in (18), we have:

v∗ ∈ A∗ ⇒ G∗(v∗) = G∗
L(v

∗)

where

G∗
L(v

∗) =
1

2

∫

S

H̄αβλµNαβNλµdS +
1

2

∫

S

h̄αβλµMαβMλµdS +
1

2

∫

S

N̄αβQαQβdS (22)

and

A∗ =
{

v∗ = {Nαβ,Mαβ, Qα} ∈ Y ∗ | N11 > 0, N22 > 0,

and N11N22 −N2
12 > 0, a.e. in S

} (23)

Proof. Firstly consider the quadratic inequality in x as below indicated:

āx2 + b̄x+ c̄ ≤ 0, ∀x ∈ R,

which is equivalent to

(ā < 0 and b̄2 − 4āc̄ ≤ 0) or (ā = 0, b̄ = 0 and c̄ ≤ 0). (24)
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Consider now the inequality

a1x
2 + b1xy + c1y

2 + d1x+ e1y + f1 ≤ 0, ∀x, y ∈ R
2 (25)

and the quadratic equation related to the variable x, for

ā = a1, b̄ = b1y + d1 and c̄ = c1y
2 + e1y + f1,

and for a1 < 0, from (24) the inequality (25) is equivalent to:

(b21 − 4a1c1)y
2 + (2b1d1 − 4a1e1)y + d21 − 4a1f1 ≤ 0, ∀y ∈ R

and finally, for

ā = b21 − 4a1c1 < 0, b̄ = 2b1d1 − 4a1e1 and c̄ = d21 − 4a1f1,

also from (24), the last inequality is equivalent to:

−c1d
2
1 − a1e

2
1 + b1d1e1 − (b21 − 4a1c1)f1 ≤ 0. (26)

In order to represent the polar functional related to the plate stored energy, firstly we
will consider the polar functional related to g1(y), where:

g1(y) =
1

2
Hαβλµ

(

y1αβ +
1

2
y2αy2β

)(

y1λµ +
1

2
y2λy2µ

)

,

g(y) = g1(y) + g2(y)

and

g2(y) =
1

2
hαβλµy3αβy3λµ .

In fact it will be determined a set in which the polar functional is represented by the
Legendre Transform g∗1L(y

∗), where, from (20):

g∗1L(y
∗) =

1

2
H̄αβλµy

∗
1αβy

∗
1λµ +

y∗111 .
(

y∗22
)2

− 2.y∗112 .y
∗
21y

∗
22 + y∗122 .

(

y∗21
)2

2
[

y∗111y
∗
122 −

(

y∗112
)2
] (27)

Thus, as

g∗1(y
∗) = sup

y∈R6

{y∗1αβy1αβ + y∗2αy2α − g1(y)}

we can write:

g∗1L(y
∗) = g∗1(y

∗) ⇔ g∗1L(y
∗) ≥ y∗1αβy1αβ + y∗2αy2α − g1(y), ∀y ∈ R

6

or:

y∗1αβy1αβ + y∗2αy2α −
1

2
Hαβλµ

(

y1αβ +
1

2
y2αy2β

)(

y1λµ +
1

2
y2λy2µ

)

− g∗1L(y
∗) ≤ 0, ∀y ∈ R

6

(28)
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However, considering the transformation:

ȳ1αβ = y1αβ +
1

2
y2αy2β

y1αβ = ȳ1αβ −
1

2
y2αy2β (29)

and substituting such relations into (28), we obtain

g∗1L(y
∗) = g∗1(y

∗)

⇔ y∗1αβ

(

ȳ1αβ −
1

2
y2αy2β

)

+ y∗2αy2α −
1

2
Hαβλµȳ1αβ ȳ1λµ

− g∗1L(y
∗) ≤ 0, ∀ {ȳ1αβ , y2α} ∈ R

6.

(30)

On the other hand, since {Hαβλµ} is a positive definite matrix we have:

sup
{ȳ

1αβ}∈R4

{

y∗1αβ ȳ1αβ −
1

2
Hαβλµȳ1αβ ȳ1λµ

}

=
1

2
H̄αβλµy

∗
1αβy

∗
1λµ , (31)

and thus considering (31) and the expression of g∗L(y
∗) indicated in (27), inequality

(30) is satisfied if

−
1

2
y∗1αβy2αy2β + y∗2αy2α

−
y∗111 .

(

y∗22
)2

− 2.y∗112 .y
∗
21y

∗
22 + y∗122 .

(

y∗21
)2

2
[

y∗111y
∗
122 −

(

y∗112
)2
] ≤ 0, ∀{y2α} ∈ R

2,
(32)

so that, for

a1 = −
1

2
y∗111 , b1 = −y∗112 , c1 = −

1

2
y∗122 , d1 = y∗21 , e1 = y∗22

and

f1 = −
y∗111 .

(

y∗22
)2

− 2.y∗112 .y
∗
21y

∗
22 + y∗122 .

(

y∗21
)2

2
[

y∗111y
∗
122 −

(

y∗112
)2
]

we obtain

−c1d
2
1 − a1e

2
1 + b1d1e1 −

(

b21 − 4a1c1
)

f1 = 0

and therefore from (26), the inequality (28) is satisfied if a1 < 0 (y∗111 > 0) and
b21 − 4a1c1 < 0 (y∗111y

∗
122 − (y∗112)

2 > 0 which implies y∗122 > 0).

Thus we have shown that:

y∗ ∈ A∗ ⇒ g∗1(y
∗) = g∗1L(y

∗), (33)

where

A∗ =
{

y∗ ∈ R
6 | y∗111 > 0, y∗122 > 0, y∗111y

∗
122 − (y∗112)

2 > 0
}



144 F. Botelho / Dual Variational Formulations for a Non-Linear Model of Plates

On the other hand, by analogy to above results, it can easily be proved that

g∗2(y
∗) = g∗2L(y

∗), ∀{y∗3αβ} ∈ R
3 (34)

where

g∗2L(y
∗) =

1

2
h̄αβλµy

∗
3αβy

∗
3λµ (35)

and

g∗2(y
∗) = sup

y∈R3

{

y∗3αβy3αβ −
1

2
hαβλµy3αβy3λµ

}

From (33) and (34), we can write

if y∗ ∈ A∗ then g∗1(y
∗) + g∗2(y

∗) = g∗1L(y
∗) + g∗2L(y

∗) ≤ (g1 + g2)
∗(y∗).

As (g1 + g2)
∗(y∗) ≤ g∗1(y

∗) + g∗2(y
∗) we have

if y∗ ∈ A∗ then g∗L(y
∗) = g∗1L(y

∗) + g∗2L(y
∗) = (g1 + g2)

∗(y∗) = g∗(y∗). (36)

However, from Proposition 2.3:

G∗(v∗) =

∫

S

g∗(v∗)dS (37)

so that from (36) and (37) we obtain:

v∗ ∈ A∗ ⇒ G∗(v∗) =

∫

S

g∗L(v
∗)dS = G∗

L(v
∗)

where:

A∗ = {v∗ ∈ Y ∗ | v∗(x) ∈ A∗, a.e. in S}

or

A∗ =
{

v∗ ∈ Y ∗ | v∗111 > 0, v∗122 > 0, and v∗111v
∗
122 − (v∗112)

2 > 0, a.e. in S
}

, (38)

thus, through the notation

v∗1αβ = Nαβ, v∗2α = Qα = v∗1αβv02β = Nαβv02β , v∗3αβ = Mαβ

we have

A∗ =
{

v∗ = {Nαβ,Mαβ, Qα} ∈ Y ∗ | N11 > 0, N22 > 0,

and N11N22 −N2
12 > 0, a.e. in S

}

.
(39)
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5.1. The Fenchel Conjugate Functional Related to F : U → R̄

We are concerned with the evaluation of the below indicated extremum:

F ∗(−Λ∗v∗) = sup
u∈U

{〈u,−Λ∗v∗〉U − F (u)}

that is:
F ∗(−Λ∗v∗) = sup

u∈U
{〈Λu,−v∗〉Y − F (u)}

Considering that:

F (u) = −

(
∫

S

PwdS +

∫

Γt

(

P̄w + P̄αuα −Mn

∂w

∂n

)

dΓ

)

= 〈u, f〉U

we have:

F ∗(−Λ∗v∗) =

{

0, if v∗ ∈ C∗,

+∞, otherwise
(40)

where v∗ ∈ C∗ ⇔ v∗ ∈ Y ∗ and
{

v∗
1αβ,β = 0,

v∗2α,α + v∗
3αβ,αβ + P = 0, a.e. in S,

(41)

and














v∗
1αβ .nβ − P̄α = 0,
(

v∗2α + v∗
3αβ,β

)

.nα +
∂
(

v∗
3αβ tαnβ

)

∂s
− P̄ = 0,

v∗
3αβnαnβ −Mn = 0, on Γt

(42)

Remark 5.2. We can also denote:

C∗ = {v∗ ∈ Y ∗ | Λ∗v∗ = f}, (43)

where the relation Λ∗v∗ = f is defined by (41) and (42).

5.2. The Duality Principle

Considering inequality (21), the expression of G∗(v∗), and the set C∗ above defined,
we can write:

inf
u∈U

{(G ◦ Λ)(u)− F (u)} ≥ sup
v∗∈A∗∩C∗

{−G∗
L(v

∗)} (44)

so that the final form of the concerned duality principle results from the following
theorem:

Theorem 5.3. Let (G ◦ Λ) : U → R and F : U → R defined by (16) and (17)
respectively (and here we express F as F (u) = 〈u, f〉U). If −G∗

L : Y ∗
L → R attains a

local extremum at v∗0 ∈ A∗ under the constraint Λ∗v∗ − f = 0 then:

inf
u∈U

{(G ◦ Λ)(u) + F (u)} = sup
v∗∈A∗∩C∗

{−G∗
L(v

∗)}
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and u0 ∈ U and v∗0 ∈ Y ∗ such that:

δ{−G∗
L(v

∗
0) + 〈u0,Λ

∗v∗0 − f〉U} = θ

are also such that:
J(u0) = −G∗

L(v
∗
0) and δJ(u0) = θ.

The proof of above theorem is consequence of the standard necessary conditions for a
local extremum for −G∗

L : Y ∗
L → R under the constraint Λ∗v∗ − f = θ, the inequality

(44) plus an application of Theorem 2.5.

Therefore, in a more explicit format we would have:

inf
u∈U

{

1

2

∫

S

HαβλµγαβγλµdS +
1

2

∫

S

hαβλµκαβκλµdS

−

(
∫

S

PwdS +

∫

Γt

P̄wdS +

∫

Γt

P̄αuαdΓ−

∫

Γt

Mn

∂w

∂n
dΓ

)}

= sup
v∗∈A∗∩C∗

{

−
1

2

∫

S

H̄αβλµNαβNλµdS −
1

2

∫

S

h̄αβλµMαβMλµdS −
1

2

∫

S

N̄αβQαQβdS

}

where v∗ ∈ C∗ ⇔ v∗ ∈ Y ∗ and,
{

Nαβ,β = 0,

Qα,α +Mαβ,αβ + P = 0, a.e. in S

and














Nαβ.nβ − P̄α = 0,

(Qα +Mαβ,β)nα +
∂(Mαβtαnβ)

∂s
− P̄ = 0,

Mαβnαnβ −Mn = 0, on Γt,

with the set A∗ defined by (23) and

{N̄αβ} = {Nαβ}
−1. �

6. The Second Duality Principle

The next result is a extension of Theorem 2.7 and, instead of calculating the polar
functional related to the main part of primal formulation, it is determined its Legendre
Transform and associated functional.

Theorem 6.1. Consider Gateaux differentiable functionals G◦Λ : U → R̄ and F ◦Λ1 :
U → R̄ where only the second one is necessarily convex, through which is defined the
functional JK : U × Y → R̄ expressed as:

JK(u, p) = G(Λu+ p) +K〈p, p〉
L
2(S) − F (Λ1u)−

K〈p, p〉
L
2(S)

2
− 〈u, u∗

0〉U

so that it is supposed the existence of (u0, p0) ∈ U × Y such that

JK(u0, p0) = inf
(u,p)∈U×Y

{JK(u, p)}
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and δJK(u0, p0) = θ (here Λ = {Λi} : U → Y and Λ1 : U → Y are continuous linear
operators whose adjoint operators are denoted by Λ∗ : Y ∗ → U∗ and Λ∗

1 : Y ∗ → U∗

respectively).

Furthermore it is assumed the existence of a differentiable function denoted by g : Rn →
R so that G : Y → R̄ may be expressed as: G(v) =

∫

Ω
g(v)dS, ∀v ∈ Y where g admits

differentiable Legendre Transform denoted by g∗L : Rn
L → R.

Under these assumptions we have:

inf
(u,p)∈U×Y

{JK(u, p)} ≤ inf
(z∗,v∗,u)∈E∗

{J∗
K(z

∗, v∗, u)}

where

J∗
K(z

∗, v∗, u) = F ∗(z∗) + 1/(2K)〈v∗, v∗〉
L
2(S)

−G∗
L(v

∗) +K
n
∑

i=1

(

∥

∥

∥

∥

Λiu−
∂g∗L(v

∗)

∂y∗i

∥

∥

∥

∥

2

L2(S)

)

and
E∗ = {(z∗, v∗, u) ∈ Y ∗ × Y ∗

L × U | − Λ∗
1z

∗ + Λ∗v∗ − u∗
0 = θ}.

Also, the functions z∗0 , v
∗
0, and u0, defined by

z∗0 =
∂F (Λ1u0)

∂v
,

v∗0 =
∂G(Λu0 + p0)

∂v

and
u0 = u0

are such that
−Λ∗

1z
∗
0 + Λ∗v∗0 − u∗

0 = θ

and thus

JK(u0, p0) ≤ inf
(z∗,v∗,u)∈E∗

{J∗
K(z

∗, v∗, u)} ≤ JK(u0, p0) + 2K〈p0, p0〉L2(S) (45)

where we are assuming that v∗0 ∈ Y ∗
L .

Proof. Defining α = inf(u,p)∈U×Y {JK(u, p)}, G1(u, p) = G(Λu + p) +K〈p, p〉
L
2(S) and

G2(u, p) = F (Λ1u) + (K/2)〈p, p〉
L
2(S) + 〈u, u∗

0〉U we have:

G1(u, p) ≥ G2(u, p) + α, ∀(u, p) ∈ U × Y,

so that, ∀ v∗ ∈ Y ∗
L , we have

sup
(u,p)∈U×Y

{

〈v∗,Λu+ p〉
L
2(S) −G2(u, p)

}

≥ 〈v∗,Λu+ p〉
L
2(S) −G1(u, p) + α, ∀(u, p) ∈ U × Y,

(46)
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but from Theorem 2.6:

sup
(u,p)∈U×Y

{

〈v∗,Λu+ p〉
L
2(S) −G2(u, p)

}

= inf
z∗∈C∗(v∗)

{

F (z∗) + (1/2K)〈v∗, v∗〉
L
2(Ω)

}
(47)

where
C∗(v∗) = {z∗ ∈ Y ∗ | − Λ∗

1z
∗ + Λ∗v∗ − u∗

0 = θ}.

Furthermore

〈v∗,Λu+ p〉
L
2(S) −G1(u, p) = 〈v∗,Λu+ p〉

L
2(S) −G(Λu+ p)−K〈p, p〉

L
2(S)

so that choosing u = u and p satisfying the equations:

v∗i =
∂G(Λu+ p)

∂vi

which from a well known Legendre Transform property, implies that:

pi =
∂GL(v

∗)

∂v∗i
− Λiu

we would obtain

〈v∗,Λu+ p〉
L
2(S) −G1(u, p) = G∗

L(v
∗)−K

n
∑

i=1

(

∥

∥

∥

∥

Λiu−
∂g∗L(v

∗)

∂y∗i

∥

∥

∥

∥

2

L2(S)

)

and thus from last results and inequality (46) we have:

inf
z∗∈C∗(v∗)

{

F (z∗) + 1/(2K)〈v∗, v∗〉
L
2(S)

}

−G∗
L(v

∗) +K
n
∑

i=1

(

∥

∥

∥

∥

Λiu−
∂g∗L(v

∗)

∂y∗i

∥

∥

∥

∥

2

L2(S)

)

≥ α = inf
(u,p)∈U×Y

{JK(u, p)}

that is,

F (z∗) + 1/(2K)〈v∗, v∗〉
L
2(S) −G∗

L(v
∗) +K

n
∑

i=1

(

∥

∥

∥

∥

Λiu−
∂g∗L(v

∗)

∂y∗i

∥

∥

∥

∥

2

L2(S)

)

≥ α = inf
(u,p)∈U×Y

{JK(u, p)}, if z∗ ∈ C∗(v∗),

or

inf
(z∗,v∗,u)∈E∗

{

F (z∗) + (1/2K)〈v∗, v∗〉
L
2(S)

−G∗
L(v

∗) +K
n
∑

i=1

(

∥

∥

∥

∥

Λiu−
∂g∗L(v

∗)

∂y∗i

∥

∥

∥

∥

2

L2(S)

)}

≥ α = inf
(u,p)∈U×Y

{JK(u, p)}
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so that:
inf

(z∗,v∗,u)∈E∗

{J∗
K(z

∗, v∗, u)} ≥ inf
(u,p)∈U×Y

{JK(u, p)}

where E∗ = C∗(v∗)×Y ∗
L ×U, and the remaining conclusions follow from the expressions

of JK(u0, p0) and J∗
K(z

∗
0 , v

∗
0, u0).

Remark 6.2. It seems to be clear that the duality gap between the primal and dual
formulations, namely 2K〈p0, p0〉L2(S), goes to zero as K → +∞, since p0 ∈ Y satisfies
the extremal condition:

1

K

∂G(Λu0 + p0)

∂v
+ p0 = 0,

and JK(u, p) is bounded from below. We do not prove it in the present work, postponing
the analysis for a future work.

Specifically in the application of such result to the Kirchhoff-Love plate model, we
would have: F (Λ1u) = θ, and therefore the variable z∗ is not present in the dual
formulation. Also,

〈u, u∗
0〉U =

∫

S

PwdS +

∫

Γt

(

P̄αuα + P̄w −Mn

∂w

∂n

)

dΓ (48)

and thus the concerned duality principle could be expressed as:

inf
u∈U

{

G(Λu+ p) +K〈p, p〉
L
2(S) − 〈u, u∗

0〉U −
K

2
〈p, p〉

L
2(S)

}

≤ inf
(v∗,u)∈E∗

{

−
1

2

∫

S

H̄αβλµNαβNλµdS −
1

2

∫

S

h̄αβλµMαβMλµdS (49)

−
1

2

∫

S

N̄αβQαQβdS +
1

2K

∫

S

NαβNαβdS +
1

2K

∫

S

MαβMαβdS

+K
2
∑

α,β=1

∥

∥

∥

∥

1

2
(uα,β + uβ,α)− H̄αβλµNλµ+

1

2
v02αv02β

∥

∥

∥

∥

2

L2(S)

+K
2
∑

α=1

||w,α − v02α||
2
L2(S) +K

2
∑

α,β=1

∥

∥−w,αβ − h̄αβλµMλµ

∥

∥

2

L2(S)

}

(50)

where (v∗, u) ∈ E∗ = C∗ × U ⇔ (v∗, u) ∈ Y ∗
L × U and,

{

Nαβ,β = 0,

Qα,α +Mαβ,αβ + P = 0, a.e. in S

and














Nαβ.nβ − P̄α = 0,

(Qα +Mαβ,β)nα +
∂(Mαβtαnβ)

∂s
− P̄ = 0,

Mαβnαnβ −Mn = 0, on Γt,

where {v02α} is defined through the equations:

Qα = Nαβv02β
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and,
{N̄αβ} = {Nαβ}

−1.

Finally, we recall that

Y ∗
L = {v∗ ∈ Y ∗ | ∆ = N11N22 − (N12)

2 6= 0, a.e. in S}. �

7. The Third Duality Principle

Now we establish the third result which may be summarized by the following theorem:

Theorem 7.1. Let U be a reflexive Banach space, (G ◦Λ) : U → R̄ a convex Gateaux
differentiable functional and (F ◦ Λ1) : U → R̄ convex, coercive and lower semi-
continuous (l.s.c.) such that the functional

J(u) = (G ◦ Λ)(u)− F (Λ1u)− 〈u, p〉U

is bounded from below, where Λ : U → Y and Λ1 : U → Y are continuous linear
operators.

Then we may write:

inf
z∗∈Y ∗

sup
v∗∈B∗(z∗)

{F ∗(z∗)−G∗(v∗)} ≥ inf
u∈U

{J(u)}

where B∗(z∗) = {v∗ ∈ Y ∗ such that Λ∗v∗ − Λ∗
1z

∗ − p = 0}

Proof. By hypothesis there exists α ∈ R (α = infu∈U{J(u)}) so that J(u) ≥ α,
∀u ∈ U , that is,

(G ◦ Λ)(u) ≥ F (Λ1u) + 〈u, p〉U + α, ∀u ∈ U.

The above inequality clearly implies that:

sup
u∈U

{〈u, u∗〉U − F (Λ1u)− 〈u, p〉U} ≥ sup
u∈U

{〈u, u∗〉U − (G ◦ Λ)(u)}+ α

∀u∗ ∈ U∗, and, as F is convex, coercive and l.s.c., by Theorem 2.6 we may write:

sup
u∈U

{〈u, u∗〉U − F (Λ1u)− 〈u, p〉U} = inf
z∗∈A∗(u∗)

{F ∗(z∗)},

where,
A∗(u∗) = {z∗ ∈ Y ∗ | Λ∗

1z
∗ + p = u∗}

and, as G also satisfies the hypothesis of Theorem 2.6, we have:

sup
u∈U

{〈u, u∗〉U − (G ◦ Λ)(u)} = inf
v∗∈D∗(u∗)

{G∗(v∗)},

where
D∗(u∗) = {v∗ ∈ Y ∗ | Λ∗v∗ = u∗}.

Therefore we may summarize the last results as below indicated:

F (z∗) + sup
v∗∈D∗(u∗)

{−G∗(v∗)} ≥ α, ∀z∗ ∈ A∗(u∗)
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and this inequality implies that:

F (z∗) + sup
v∗∈B∗(z∗)

{−G∗(v∗)} ≥ α,

so that we can write:

inf
z∗∈Y ∗

sup
v∗∈B∗(z∗)

{F ∗(z∗)−G∗(v∗)} ≥ inf
u∈U

{J(u)}

where B∗(z∗) = {v∗ ∈ Y ∗ | Λ∗v∗ − Λ∗
1z

∗ − p = 0}.

We will apply the last theorem to a changed functional concerning the primal formula-
tion related to the Kirchhoff-Love plate model, that is we will redefine (G◦Λ) : U → R̄

and (F ◦ Λ1) : U → R̄ as below indicated:

(G ◦ Λ)(u) =
1

2

∫

S

Hαβλµγαβ(u)γλµ(u)dS

+
1

2

∫

S

hαβλµκαβ(u)κλµ(u)dS +
1

2
K

∫

S

w,α w,α dS

if N11(u) +K > 0, N22(u) +K > 0 and (N11(u) +K)(N22(u) +K)−N12(u)
2 > 0 and,

+∞ otherwise.

Remark 7.2. Notice that (G ◦ Λ) : U → R̄ is convex and Gateaux differentiable on
its effective domain, which is sufficient for our purposes, since the concerned Fenchel
conjugate may be easily expressed through the region of interest.

Also, we define:

F (Λ1u) =
1

2
K

∫

S

w,α w,α dS

〈u, p〉U =

∫

S

PwdS +

∫

S

PαuαdS

where
u = (uα, w) ∈ U = W 1,2

0 (S)×W 1,2
0 (S)×W 2,2

0 (S).

Observe that these boundary conditions refer to a clamped plate. Furthermore:

Λ1(u) = {w,1 , w,2 }

and
Λ = {Λ1αβ ,Λ2α ,Λ3αβ}

as indicated in (11), (12) and (13).

Calculating G∗ : Y ∗ → R̄ and F ∗ : Y ∗ → R̄ we would obtain:

G∗(v∗) =
1

2

∫

S

H̄αβλµNαβNλµdS +
1

2

∫

S

h̄αβλµMαβMλµdS

+
1

2

∫

S

Nαβw,α w,β dS +
1

2
K

∫

S

w,α w,α dS (51)
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if v∗ ∈ E∗, where:
v∗ = {Nαβ,Mαβ, w,α},

E∗ =
{

v∗ ∈ Y ∗ | N11 +K > 0, N22 +K > 0

and (N11 +K)(N22 +K)−N2
12 > 0, a.e. in S

}

and,

F ∗(z∗) =
1

2K

∫

S

(z∗1)
2dS +

1

2K

∫

S

(z∗2)
2dS.

Furthermore, v∗ ∈ B∗(z∗) ⇔ v∗ ∈ Y ∗ and,
{

Nαβ,β + Pα = 0,

−(z∗α),α + (Nαβw,β),α +Mαβ,αβ +Kw,αα + P = 0, a.e. in S.

Finally, we can express the application of last theorem as:

inf
z∗∈Y ∗

sup
v∗∈B∗(z∗)

⋂

E∗

{

1

2K

∫

S

(z∗1)
2dS +

1

2K

∫

S

(z∗2)
2dS −

1

2

∫

S

H̄αβλµNαβNλµdS

−
1

2

∫

S

h̄αβλµMαβMλµdS −
1

2

∫

S

Nαβw,α w,β dS −
1

2
K

∫

S

w,α w,α dS

}

≥ inf
u∈U

{J(u)} (52)

The above inequality can in fact represents an equality if the positive real constant

K is chosen so that the point of local extremum v∗0 = ∂G(Λu0)
∂v

∈ E∗ (which means

N11(u0) +K > 0, N22(u0) +K > 0, and (N11(u0) +K)(N22(u0) +K)−N12(u0)
2 > 0).

The mentioned equality is a result of a little change concerning Theorem 2.5.

Remark 7.3. For the determination of G∗(v∗) in (51) we have used the transformation

Qα = Nαβw,β +Kw,α,

similarly as indicated at Remark 4.1.

8. A Convex Dual Formulation

Remark 8.1. In this section we assume:

Hαβλµ = h

{

4λ0µ0

λ0 + 2µ0

δαβδλµ + 2µ0(δαλδβµ + δαµδβλ)

}

,

and

hαβλµ =
h2Hαβλµ

12
,

where δαβ denotes the Kronecker delta and λ0, µ0 are appropriate constants.

The next result may be summarized by the following theorem, which also establishes
sufficient conditions for optimality.
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Theorem 8.2. Consider the functionals (G ◦ Λ) : U → R̄, (F ◦ Λ1) : U → R̄ and
〈u, p〉U defined as

(G ◦ Λ)(u)

=
1

2

∫

S

Hαβλµγαβ(u)γλµ(u)dS +
1

2

∫

S

hαβλµκαβ(u)κλµ(u)dS +
1

2
K

∫

S

w,α w,α dS,

F (Λ1u) =
1

2
K

∫

S

w,α w,α dS

and

〈u, p〉U =

∫

S

PwdS +

∫

S

PαuαdS

where
u = (uα, w) ∈ U = W 1,2

0 (S)×W 1,2
0 (S)×W 2,2

0 (S),

Observe that these boundary conditions refer to a clamped plate. The operators {γαβ}
and {καβ} are defined in (9) and (10), respectively. Furthermore, we define J(u) =
(G ◦ Λ)(u)− F (Λ1u)− 〈u, p〉U , and

Λ1(u) = {w,1 , w,2 }.

Thus, supposing the existence of u0 ∈ U such that δJ(u0) = 0, and so that there exists
K > 0 for which N11(u0) +K > 0, N22(u0) +K > 0, (N11(u0) +K)(N22(u0) +K) −
N12(u0)

2 > 0 (a.e. in S) and h1212/(2K0) > K where K0 is the constant related to
Poincaré Inequality where also,

Nαβ(u0) = Hαβλµγλµ(u0),

we have that:

J(u0) = min
u∈U

{J(u)} = max
(v∗,z∗)∈E∗∩B∗

{−G∗(v∗) + 〈z∗α, z
∗
α〉L2(S)/(2K)}

= −G∗(v∗0) + 〈z∗0α , z
∗
0α〉L2(S)/(2K) (53)

where,

v∗0 =
∂G(Λu0)

∂v
and z∗0α = Kw0,α,

G∗(v∗) = G∗
L(v

∗)

=
1

2

∫

S

H̄αβλµNαβNλµdS +
1

2

∫

S

h̄αβλµMαβMλµdS +
1

2

∫

S

N̄K
αβQ,αQ,βdS

if v∗ ∈ E∗, where v∗ = {{Nαβ}, {Mαβ}, {Qα}} ∈ E∗ ⇔ v∗ ∈ L2(S,R10) and

N11 +K > 0 N22 +K > 0 and (N11 +K)(N22 +K)−N2
12 > 0, a.e. in S

and,

(v∗, z∗) ∈ B∗ ⇔



















Nαβ,β + Pα = 0,

Qα,α +Mαβ,αβ − z∗α,α + P = 0,

h̄1212M12 + z∗1,2/K = 0,

z∗1,2 = z∗2,1, a.e. in S, and, z∗ = θ on Γ,

being {N̄K
αβ} as indicated in (6).
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Proof. Similarly to Proposition 5.1, we may obtain: if v∗ ∈ E∗ then:

G∗
L(v

∗) = G∗(v∗) ≥ 〈v∗,Λu〉Y −G(Λu), ∀u ∈ U,

so that

G∗
L(v

∗)−
1

2K
〈z∗α, z

∗
α〉L2(S) ≥ 〈v∗,Λu〉Y −

1

2K
〈z∗α, z

∗
α〉L2(S) −G(Λu), ∀u ∈ U,

and thus, as Λ∗v∗ − Λ∗
1z

∗ − p = 0 (see the definition of B∗) we obtain:

Qα,α +Mαβ,αβ − z∗α,α + P = 0 a.e. in S,

and, through this equation we may symbolically write

M12 = Λ−1
312{(−Qα,α + z∗α,α − M̄αβ,αβ − P )/2}, (54)

where M̄αβ,αβ denotes M11,11 +M22,22, in S, so that substituting such a relation in the
last inequality we have:

1

2

∫

S

H̄αβλµNαβNλµdS +
1

2

∫

S

h̄1111M
2
11dS +

∫

S

h̄1122M11M22dS +
1

2

∫

S

h̄2222M
2
22dS

+ 2

∫

S

h̄1212(Λ
−1
312(v

∗, z∗))2dS +
1

2

∫

S

N̄K
αβQ,αQ,βdS −

1

2K
〈z∗α, z

∗
α〉L2(S)

≥ 〈Λ1u, z
∗〉L2(S;R2) −

1

2K
〈z∗α, z

∗
α〉L2(S) −G(Λu) + 〈u, p〉U , ∀u ∈ U, (55)

where M12 is made explicit through equation (54), and, this equation makes z∗ an
independent variable, so that evaluating the supremum concerning z∗, particularly for
the left side of above inequality, the global extremum is achieved through the equation:

−
([

Λ−1
312

]∗ [
h̄1212Λ

−1
312(v

∗, z∗)
])

,α
− z∗α/K = 0, a.e. in S

which means:

−h̄1212Λ
−1
312(v

∗, z∗)− z∗α,β/K = 0, a.e. in S and z∗1 = z∗2 = 0 on Γ

or
h̄1212M12 + z∗α,β/K = 0, a.e. in S and z∗1 = z∗2 = 0 on Γ

for (α, β) = (1, 2) and (2, 1). Therefore, after evaluating the suprema in both sides of
(55), we may write:

G∗
L(v

∗)−
1

2K
〈z∗α, z

∗
α〉L2(S)

≥ F (Λ1u)−G(Λu) + 〈u, p〉U , ∀u ∈ U, and (v∗, z∗) ∈ B∗ ∩ E∗

and it seems to be clear that the condition h1212/(2K0) > K guarantees coercivity
for the expression of left side in the last inequality, so that the unique local extremum
concerning z∗ is also a global extremum. The equality and remaining conclusions results
from the Gateaux differentiability of primal and dual formulations and an application
(with little changes) of Theorem 2.5.
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Remark 8.3. Observe that the dual functional could be expressed as

G∗
L(v

∗)−
1

2K
〈z∗α, z

∗
α〉L2(S)

=
1

2

∫

S

H̄αβλµNαβNλµdS +
1

2

∫

S

h̄1111M
2
11dS +

∫

S

h̄1122M11M22dS

+
1

2

∫

S

h̄2222M
2
22dS +

1

2

∫

S

N̄K
αβQ,αQ,βdS +

∫

S

h1212(z
∗
1,2)

2/K2dS

+

∫

S

h1212(z
∗
2,1)

2/K2dS −
1

2K
〈z∗α, z

∗
α〉L2(S)

and thus, through the relation h1212/(2K0) > K (where K0 is the constant related to
Poincaré inequality), it is now clear that the dual formulation is convex on E∗ ∩B∗.

9. A Final Result, Other Sufficient Conditions for Optimality

This final result is developed similarly to the Triality criterion introduced in Gao, [9],
which describes in some situations, sufficient conditions for optimality.

We prove the following result:

Theorem 9.1. Consider J : U → R where J(u) = G(Λu) + F (u),

G(Λu) =
1

2

∫

S

Hαβλµγαβ(u)γλµ(u)dS +
1

2

∫

S

hαβλµw,αβw,λµdS,

here the operators γαβ must be considered as defined in (9), and

F (u) = −

∫

S

PwdS ≡ −〈u, f〉U ,

and also
U = W 1,2

0 (S)×W 1,2
0 (S)×W 2,2

0 (S).

Thus, if u0 ∈ U is such that δJ(u0) = θ and

1

2

∫

S

Nαβ(u0)w,αw,βdS +
1

2

∫

S

hαβλµw,αβw,λµdS ≥ 0, ∀w ∈ W 2,2
0 (S), (56)

then
J(u0) = min

u∈U
{J(u)}.

Proof. It is clear that

G(Λu) + F (u) ≥ −(G ◦ Λ)∗(u∗)− F ∗(−u∗), ∀u ∈ U, u∗ ∈ U∗,

so that

G(Λu) + F (u) ≥ −(G ◦ Λ)∗(Λ∗v∗)− F ∗(−Λ∗v∗), ∀u ∈ U, v∗ ∈ Y ∗. (57)

Consider u0 for which δJ(u0) = θ and such that (56) is satisfied.
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Defining

v∗0 =
∂G(Λu0)

∂v
,

from Theorem 2.5 we have that

δ(−G∗
L(v

∗
0) + 〈u0,Λv

∗
0 − f〉U) = θ,

J(u0) = −GL(v
∗
0),

and
Λ∗v∗0 = f,

which means
F ∗(−Λ∗v∗0) = 0.

On the other hand

(G ◦ Λ)∗(Λ∗v∗0) = sup
u∈U

{〈Λu, v∗0〉Y −G(Λu)},

or

(G ◦ Λ)∗(Λv∗0)

= sup
u∈U

{

〈uα,β + uβ,α

2
, Nαβ(u0)

〉

L2(S)
+ 〈−w,αβ,Mαβ(u0)〉L2(S)

+ 〈w,αQα(u0)〉L2(S) −
1

2

∫

S

Hαβλµγαβ(u)γλµ(u)dS −
1

2

∫

S

hαβλµw,αβw,λµdS

}

.

Since

γαβ(u) =
uα,β + uβ,α

2
+

1

2
w,αw,β,

from last equality, we may write

(G ◦ Λ)∗(Λ∗v∗0)

= sup
u∈U

{

〈γαβ(u), Nαβ(u0)〉L2(S) −
〈w,αw,β

2
, Nαβ(u0)

〉

L2(S)
+ 〈−w,αβ,Mαβ(u0)〉L2(S)

+ 〈w,α, Qα(u0)〉L2(S) −
1

2

∫

S

Hαβλµγαβ(u)γλµ(u)dS −
1

2

∫

S

hαβλµw,αβw,λµdS

}

.

As (Qα(u0)),α + (Mαβ(u0)),αβ + P = 0, we obtain

(G ◦ Λ)∗(Λ∗v∗0)

≤ sup
u∈U

{

−
〈w,αw,β

2
, Nαβ(u0)

〉

L2(S)
−

1

2

∫

S

hαβλµw,αβw,λµdS +

∫

S

PwdS

}

+
1

2

∫

S

H̄αβλµNαβ(u0)Nλµ(u0)dS. (58)

Therefore, from hypothesis (56) the extremum indicated in (58) is attained for functions
satisfying

(Nαβ(u0) wβ),α − (hαβλµ wλµ),αβ + P = 0, (59)
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which, from δJ(u0) = θ and boundary conditions implies that

w = w0,

so that

(G ◦ Λ)∗(Λ∗v∗0) ≤
〈w0,αw0,β

2
, Nαβ(u0)

〉

L2(S)
+

1

2

∫

S

hαβλµw0,αβw0,λµdS

+
1

2

∫

S

H̄αβλµNαβ(u0)Nλµ(u0)dS. (60)

However, since
Qα(u0) = Nαβ(u0)w0,β ,

and
Mαβ(u0) = −hαβλµw0,λµ

from (60) we obtain

(G ◦ Λ)∗(Λ∗v∗0) ≤
1

2

∫

N̄αβ(u0)Qα(u0)Qβ(u0)dS +
1

2

∫

S

h̄αβλµMαβ(u0)Mλµ(u0)dS

+
1

2

∫

S

H̄αβλµNαβ(u0)Nλµ(u0)dS

and hence
(G ◦ Λ)∗(Λ∗v∗0) ≤ GL(v

∗
0) = −J(u0),

and thus as F ∗(−Λ∗v∗0) = 0, we have that

J(u0) ≤ −(G ◦ Λ)∗(Λ∗v∗0)− F ∗(−Λ∗v∗0),

which, from (57) completes the proof.

10. Final Remarks

In this paper we present four different dual variational formulations for the Kirchhoff-
Love plate model. Earlier results (see references [10], [7]) present a constraint concern-
ing the gap functional to establish the complementary energy (dual formulation). In
the present work the dual formulations are established on the hypothesis of existence
of a global extremum for the primal functional and the results are applicable even for
compressed plates. Particularly the second duality principle is obtained through an
extension of a theorem met in [12], and in this case we are concerned with the solution
behavior as K → +∞, even though a rigorous and complete analysis of such behavior
has been postponed for a future work. However, what seems to be interesting is that
the dual formulation as indicated in (50) is represented by a natural extension of the
results found in [12] (particularly Theorem 2.7), plus a kind of penalization concerning
the inversion of constitutive equations.

It is worth noting that the third dual formulation was also established based on the
commented theorem, despite the fact such a result had not been directly used, we
followed a similar idea to prove the mentioned duality principle. For this last result,
the membrane forces are allowed to be negative since it is observed the restriction
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N11+K > 0, N22+K > 0 and (N11+K)(N22+K)−N2
12 > 0, a.e. in S, where K ∈ R

is a positive suitable constant.

In Section 8, we obtained a convex dual variational formulation for the concerned plate
model, which allows non positive definite membrane force matrices. In this formulation,
the Poincaré inequality plays a fundamental role.

Finally, in the last section, we developed a result similarly as in Gao’s Triality criterion
presented in [9], now for the present case, obtaining sufficient conditions for optimality.
We present a proof, which seems to be new, for sufficient conditions of existence of a
global extremum for the primal problem. As earlier mentioned, such conditions may
be summarized by δJ(u0) = θ and

1

2

∫

S

Nαβ(u0)w,αw,βdS +
1

2

∫

S

hαβλµw,αβw,λµdS ≥ 0, ∀w ∈ W 2,2
0 (S). �
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